
SPARK User Group Meeting 1'

&

$

%

NuSPADE: An Integrated Approach to

Exception Freedom Proof

Andrew Ireland

Dependable Systems Group
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh

SPARK User Group Meeting 2'

&

$

%

Context
• Investigate the role of proof planning within the

SPARK Approach to high integrity software

• Bill Ellis (Research Associate)

• Funded by the EPSRC Critical Systems Programme
(GR/R24081) in collaboration with Praxis

www.macs.hw.ac.uk/nuspade



SPARK User Group Meeting 3'

&

$

%

Overview
• Focus on the problems that arise when proving

exception freedom verification conditions (VCs)

• Present an integrated approach to these problems

• Results and future directions

SPARK User Group Meeting 4'

&

$

%

An Example
subtype AR_T is Integer range 0..9;

type A_T is array (AR_T) of Integer;

...

procedure Filter(A: in A_T; R: out Integer)

is

begin

R:=0;

for I in AR_T loop

if A(I)>=0 and A(I)<=100 then

R:=R+A(I);

end if;

end loop;

end Filter;



SPARK User Group Meeting 5'

&

$

%

Exception Freedom VC
H1: for_all (i___1: integer, ((i___1 >= ar_t__first) and

(i___1 <= ar_t__last)) -> ((element(a, [i___1]) >=

integer__first) and (element(a, [i___1]) <=

integer__last))) .

H2: loop__1__i >= ar_t__first .

H3: loop__1__i <= ar_t__last .

H4: element(a, [loop__1__i]) >= 0 .

H5: element(a, [loop__1__i]) <= 100 .

H6: r >= integer__first .

H7: r <= integer__last .

->

C1: r + element(a, [loop__1__i]) >= integer__first .

C2: r + element(a, [loop__1__i]) <= integer__last .

C3: loop__1__i >= ar_t__first .

C4: loop__1__i <= ar_t__last .

SPARK User Group Meeting 6'

&

$

%

A Closer Look
...

H4: element(a, [loop__1__i]) >= 0 .

H5: element(a, [loop__1__i]) <= 100 .

H6: r >= integer__first← −32768 .

H7: r <= integer__last←− 32767 .

->

...

C2:r+element(a,[loop__1__i])<=integer__last

... ↑

VC is unprovable, i.e.
if (32668 ≤ r ≤ 32767) then possible overflow error



SPARK User Group Meeting 7'

&

$

%

The SPARK Approach

Code
&

Spec
VCs

Proofs

Unproved
VCs

CmdsRevisions

SPARK
Examiner

SPADE
Simplifier

User
Interaction

'
&

$
%

SPADE
Proof

Checker

- - -

-

?

6
6

SPARK User Group Meeting 8'

&

$

%

Extending the SPARK Approach

Code
&

Spec
VCs

Proofs

Unproved
VCs

Cmds
Program

Properties

SPARK
Examiner

SPADE
Simplifier

NuSPADE

SPADE
Proof

Checker

- - -

-

?

6
6



SPARK User Group Meeting 9'

&

$

%

NuSPADE

NuSPADE

Unproved
VCs

Schematic
Properties

Program
Properties CmdsProgram

Analyzer
Proof

Planner

?

�� -

SPARK User Group Meeting 10'

&

$

%

Proof Planning
• Use of high-level proof outlines, known as proof

plans, to guide proof search

• proof plan = methods + critics + tactics

• Proof planning supports:

– a flexible style of proof search, e.g. use of
meta-variables to delay choice during proof search

– automatic proof patching via proof-failure analysis

– diversity of proof, i.e. tactics can be ported to
different proof checkers



SPARK User Group Meeting 11'

&

$

%

Proof Methods

Exception Freedom Loop Invariant

elementary annotate

simplify wave

transitivity induction

decomposition generalize

fertilize

SPARK User Group Meeting 12'

&

$

%

Program Analysis
• Focus on the generation of program properties that

support exception freedom proof

• Program analysis methods:

– subtype

– non-looping code

– looping code

– loop guards



SPARK User Group Meeting 13'

&

$

%

Integration via Proof-Failure Analysis
• A proof method is applicable if all its preconditions

are true

• A proof critic is applicable if its associated proof
method fails to apply

• Proof-failure analysis is used to guide the selection of
program properties that will progress the proof
process

SPARK User Group Meeting 14'

&

$

%

Proof-Failure Analysis
Preconditions for elementary critic:

• All preconditions for the elementary method fail.

• There exists a top-level goal of the form E Rel C, e.g.

r + element(a, i) ≤ integer last

• There exists a variable Vi that occurs within E such that there
exists a hypothesis of the form Vi Rel Ei, e.g.

r ≤ integer last

• A counter-example can be found that shows that the bound Ei is
insufficient to prove exception freedom, e.g.

32668 ≤ r ≤ 32767

Patch: generate schematic properties, e.g. (r ≥ X) ∧ (r ≤ Y )



SPARK User Group Meeting 15'

&

$

%

A Program Analysis Technique
• Recurrence relations are recursive definitions of mathematical

functions or sequences, e.g.






g(0) = 0

g(n) = g(n− 1) + (2 ∗ n) − 1

• Solving a recurrence relation corresponds to finding a “closed
form” of the function, e.g. g(n) = n2

• Recurrence relations can be used to express the value of variables
within loops, where the solutions provide loop invariants

• There are many off-the-shelf recurrence relation solvers, e.g.
PURRS (University of Parma)

SPARK User Group Meeting 16'

&

$

%

Recurrence Relation for Variable I
Recurrence Relation






I0 = 0

I
n

= I
n−1 + 1

Solution

I
n

= I0 + n

I0 ⇒ 0

I
n

= 0 + n

0 + Y ⇒ Y

I
n

= n



SPARK User Group Meeting 17'

&

$

%

Recurrence Relation for Variable R

Recurrence Relation






R0 = 0

Rn = Rn−1

Rn = Rn−1 + ele(A, I)
︸ ︷︷ ︸

problem
term

Extreme Recurrence Relation






R0 = 0

Rn = Rn−1

Rn = Rn−1 + 0

Rn = Rn−1 + 100

Note problem term is eliminated by generalizing the recurrence
relation, i.e. by considering the bounds of ele(A, I).

SPARK User Group Meeting 18'

&

$

%

Solving for Variable R
• true-branch:

lower − bound upper− bound

Rn = Rn−1 + 0 Rn = Rn−1 + 100

Rn = R0 + n ∗ 0 Rn = R0 + n ∗ 100

Rn = 0 Rn = n ∗ 100

• false-branch:
Rn = Rn−1

Rn = R0

Rn = 0



SPARK User Group Meeting 19'

&

$

%

Combining Solutions

I
n

= n ∧ (R
n

= 0 ∨ ((R
n
≥ 0) ∧ (R

n
≤ n ∗ 100)))

⇓

I
n

= n ∧ (R
n
≥ 0) ∧ (R

n
≤ n ∗ 100)

⇓

(R
n
≥ 0) ∧ (R

n
≤ I

n
∗ 100)

⇓

--# assert R >= 0 and R <= I*100;

SPARK User Group Meeting 20'

&

$

%

Revised Filter Code
procedure Filter(A: in A_T; R: out Integer)

is

begin

R:=0;

for I in AR_T loop

--# assert R >= 0 and R <= I*100;

if A(I)>=0 and A(I)<=100 then

R:=R+A(I);

end if;

end loop;

end Filter;



SPARK User Group Meeting 21'

&

$

%

Revised Exception Freedom VC
H1: r >= 0 .

H2: r <= loop__1__i * 100 .

...

H6: element(a, [loop__1__i]) >= 0 .

H7: element(a, [loop__1__i]) <= 100 .

...

->

...

C2:r+element(a,[loop__1__i])<=integer__last

...

SPARK User Group Meeting 22'

&

$

%

Planning Proof
Given: r ≤ i ∗ 100 ∧ ele(a, i) ≤ 100

Proof:
r + ele(a, i) ≤ integer last

transitivity

r + ele(a, i) ≤ X0 ∧ X0 ≤ integer last

decomposition

r ≤ X1 ∧ ele(a, i) ≤ X2 ∧ X1 + X2 ≤ integer last

fertilize

((i ∗ 100) + 100) ≤ integer last

simplify

((i ∗ 100) + 100) ≤ 32767

elementary

Note: fertilize produces {i ∗ 100/X1, 100/X2}



SPARK User Group Meeting 23'

&

$

%

Loop Invariant VC
H1: r >= 0 .

H2: r <= loop__1__i * 100 .

...

H6: element(a, [loop__1__i]) >= 0 .

H7: element(a, [loop__1__i]) <= 100 .

...

->

C1:r+element(a,[loop__1__i]) >= 0 .

C2:r+element(a,[loop__1__i]) <=

(loop__1__i + 1) * 100 .

...

SPARK User Group Meeting 24'

&

$

%

Results
• Our evaluation was based upon examples drawn from the

literature and industrial data provided by Praxis, e.g. SHOLIS

• SPADE Simplifier is very effective on exception freedom VCs, i.e.
typical hit-rate of 90%

• NuSPADE targeted the VCs which the SPADE Simplifier failed
to prove i.e. typically loop-based code

• While critical software is engineered to minimize the number
and complexity of loops, we found that 80% of the loops we
encountered were provable using our techniques



SPARK User Group Meeting 25'

&

$

%

Phase Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 b4 c1 c2 c3

P1

P1 1 ◦ • •

P1 2 ◦ • •

P1 3 ◦ • •

P1 4 ◦ • •

P1 5 ◦ • •

P2

P2 1 •

P2 2 •

P2 3 •

P2 4 •

Note: the key to the results table appears at the end of these notes

SPARK User Group Meeting 26'

&

$

%

Limitations & Future Work
• Constraint solving fails when reasoning with “big numbers”, i.e.

integers out with −(225) . . .225 − 1

• Precondition strengthening would improve our hit-rate,
constraint solving may have a role to play

• We could make greater use of constraint solving for debugging

• Integrating decision procedures within NuSPADE would also
improve our hit-rate

• A follow-on “knowledge transfer” project, funded by the EPSRC
RAIS Scheme starts early 2005

• “Critical Software Components in SPARK”, in collaboration with
Kung-Kiu Lau (University of Manchester) and Praxis



SPARK User Group Meeting 27'

&

$

%

Conclusion
• NuSPADE = Proof Planning + Program Analysis

• Proof planning guides proof search

• Proof-failure analysis coupled with program analysis
selectively strengthens program specifications

• NuSPADE increases automation for exception
freedom proof

SPARK User Group Meeting 28'

&

$

%

Results Table Key

Plan
a1 loop invariant

a2 exception freedom

Critic

b1 fertilize

b2 elementary

b3 transitivity

b4 decomposition

PropGen

c1 entry

c2 for-loop range

c3 range constraint

Note that • denotes the successful application of a proof plan while ◦

denotes partial success


