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Abstract

We develop a framework for heuristic code-level analysis in support of pro-
gram proof. Qur hypothesis is that this will increase proof automation. We
see this framework as part of a larger research project, and the system that
we engineer will be integrated with the rest of the project software.

The framework is based on the general concept of algorithmic patterns.
An algorithmic pattern is a pattern of data type manipulation that is com-
mon to a family of algorithms, e.g. array based searching and sorting algo-
rithms. We develop seven different heuristics and test them on non-trivial
sorting and searching algorithms.

Heuristic code-level analysis focuses on two kinds of properties, logical
properties, which directly support proof, and meta-data, which supports the
search for proof.

The system we create performs a bottom-up style code analysis that
complements the existing top-down analysis that most contemporary proof
software uses. This will provide additional leverage in developing program

proofs.
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Chapter 1

Introduction

Safety-critical software systems are systems whose failure can cause catas-
trophic injury or loss of life. Examples of such software include applica-
tions for air traffic control, fly-by-wire software, computer programs for ABS
brakes on cars and nuclear power station control systems.

Because of the risks involved, safety-critical software is subject to much
more stringent standards than other computer systems, for example the UK
MoD Defence Standard 00-55 [19]. Typically formal methods are used in
the requirements specification phase to express the desired workings of the
system in mathematical terms. In the coding and testing phase, the most
stringent approaches demand formal verification of code. Such verification
involves mathematical proof, and is very time consuming and demands sig-
nificant expertise if carried out by hand. Computer assistance is essential
when conducting mathematical proof within the context of formal verifi-
cation. This is true whether we are reasoning about specification and/or
program code.

Except in special cases, fully automatic verification is not possible. The
focus of this project is in supporting verification at the level of program
code. Often the verifier is able to handle most of the code itself, but for
the remaining 10%-20%, say, the user must actively participate. One reason

why verifiers do not manage to verify all code is that they are unable to



derive from the code all the necessary information required for the proof to
go through, so most user interaction involves the user supplying the missing
knowledge. Almost all verifiers use purely mechanical methods for finding
code information, whereas users tend to use heuristics developed through
experience when they find the missing knowledge.

Little research has been carried out on how one can automate the heuris-
tics that users apply in this process. In this dissertation we investigate how
heuristics can be encoded within a verifier so that some of the knowledge
supplied by the user in traditional verifiers is automatically discovered. This
will lead to less user interaction, thus increasing productivity since users are
able to spend less time on the proof level and more on other tasks.

In this dissertation we propose and prototype a framework for extracting
such information from source code. This information will complement the
knowledge that the verifier derives on its own, and thus enable the verifier
to carry out more of the verification task without human help. We imple-
ment our methods within an extendible software framework, so that further
experiments and prototyping can take place using our software.

We call our framework AUTOGAP - Automatic Generation of Algorithmic
Properties. AUTOGAP allows us to represent common patterns of algorithms
and associate algorithmic properties with these patterns. An algorithmic
pattern is a general pattern that often occurs in programs. For example,
programs that frequently manipulate arrays provide good examples of algo-
rithmic patterns. This is because most code tends to treat arrays in the same
way, using loops to operate on them. Algorithmic properties, or algorithmic
patterns, identify such frequently used manners of computation, expressing
them in a general way so that we can reuse them for different algorithms.
Two kinds of properties are considered, conventional logical properties that
support program proofs, and properties that guide the search for program

proofs. We refer to these two kinds of properties as logical properties and



meta-data respectively.

AUTOGAP forms part of the NUSPADE project. The aim of the NUSPADE
project is to increase the level of automation for one particular verifier,
called SPADE. The programming language that NUSPADE and AUTOGAP are
developed for is called SPARK. SPARK is an industrial strength high integrity
language.

Some background knowledge of formal methods in general and of AUTOGAP
in particular is needed to understand this dissertation. The necessary back-
ground is given in the next chapter, together with an outline of the AUTOGAP
proposal. We then develop the requirements for the AUTOGAP software in
chapter 3. There is a separate chapter 4 on system design, where AUTOGAP
is decomposed into its constituent parts. After elaborating the design we
describe in chapter 5 how the AUTOGAP software was implemented, so that
the necessary maintenance can be carried out. Finally, in chapters 6 and 7,

we present the test results and discuss the achievements we have made.



Chapter 2

Background

As mentioned in chapter 1, AUTOGAP can be placed within formal verifica-
tion, which is part of the larger area of computing known as formal methods.
In this part of the document we aim to provide the reader with the necessary
background knowledge to understand AUTOGAP. First we give a general in-
troduction to formal methods, with a focus on formal verification. Then we
elaborate on the theory behind AUTOGAP, giving examples of what algo-
rithmic patterns are and how they can be used in verification.

Finally we place AUTOGAP within the research project NUSPADE. This
will enable us to clearly explain the problem we are trying to solve with

AUTOGAP, and the contribution we have made to the NUSPADE project.

2.1 Formal methods

Formal methods can be divided into formal specification and formal verifi-
cation. Common to both of these areas is that they are mostly applied to
safety-critical software, where correctness is particularly important. Below
we give a brief introduction to formal methods. The interested reader should
consult [11], [6] and [16] for a more complete overview of the area.

Formal specification uses mathematics to describe the software system



and its properties. Therefore, a formal specification is much more precise
and unambiguous than a specification written in English. This is a great
advantage, because it avoids misunderstandings between engineers and cus-
tomers due to English usage and also because mathematics allows us to
reason about the specification in a rigorous way.

Formal verification goes one step beyond formal specification; it is used
to analyse a system for desired properties and to prove correctness. There
are two main approaches to formal verification, model checking and theorem
Proving.

In model checking we build a finite model of a system and check via
verification that some desired property holds in the model. This check is
performed as an exhaustive state space search, guaranteed to terminate since
the model is finite. Model checking is a powerful technique which can be
carried out by computers in a matter of minutes or hours, but may take
days, depending on the size of the model.

Theorem proving for verification is about proving logical properties of
programs using a formal logic. This involves combining the axioms and rules
of the logic in order to justify a conjecture. Theorem proving is more power-

ful than model checking, but in general, requires significant user interaction.

2.1.1 Formal specification

The following table summarises of some important techniques for specifying

software systems.

Abstraction level | Purpose Language

High Modelling Z, LOTOS
Modelling with refinement | B, VDM

Low Code-level specification SPARK, ESC/Java

Table 2.1: Summary of formal specification techniques.



There is a hierarchy of techniques that depends on the abstraction level
employed. At the highest level we have modelling techniques like Z and
LOTOS, which model the entire software system in terms of logic.

Modelling with refinement encompasses methods that not only model the
system but also refines the model from a higher to a lower level of abstrac-
tion. Using the B-Method and VDM we start by creating a specification of
the required functionality. The design then proceeds by refining the spec-
ification to a lower level again and again until the specification is defined
at such a low level that it is ready to be implemented. Code generation is
suitable for these methods since the refinement process can be automated.

At the lowest level in the hierarchy of specification techniques, we find
methods that work at the code level. In contrast to the other methods,
SPARK and ESC/Java do not attempt to model the entire software system
but instead concentrate on the code itself. The programmer is required to
supply extra annotations, special comments in the code, that contain infor-
mation on how the program should behave. Given the annotations, code
level specification techniques perform static analysis of the source code,
which means that the code is analysed at compile-time. The program is
translated into a set of werification conditions (VCs), which expresses the
code using logic formulae. Proving the VCs formally guarantees the cor-
rectness of the code with respect to the specification. Proving the VCs is
achieved via a theorem prover, a computer program that carries out proof.
Automated reasoning is the research area for this kind of verification. An
accessible survey of the field is provided in [5]. Examples of annotations
include pre- and postconditions and loop invariants. The most ambitious
systems, like SPARK, use annotations both for error checking and for formal
verification. ESC/Java does not to aim verify code, but only carries out the
static analysis to find errors. Code level specification techniques provide the

static analyser as a separate program, so that the user can use an ordinary



compiler to generate the executable code. See [18] for an introduction to

ESC/Java. SPARK is treated separately later.

2.1.2 Formal verification of program code

When using a theorem prover to verify that software is correct, we must
supply some extra information within the code by adding annotations. Most
importantly, we give pre- and postconditions for our programs. Usually
we want to carry out a proof of the partial correctness of the program.
Partial correctness means that if the program is called with the right input,
then, assuming that the program terminates, the program will give the right
output. The input is specified by the precondition and the output is specified
by the postcondition. Proving then involves showing that the postconditions
- the final state of the program - are correct with respect to the preconditions
- the initial state of the program. Also, we supply careful statements of what
is done within the program. Such statements are called assertions. The
point at which we insert an assertion is called a checkpoint. Attaching an
assertion to a checkpoint means that we attach a statement about what we
believe to be true at this point of execution [10]. A particularly important
class of assertions are loop invariants. A loop invariant describes what is
true within loops. Automatic loop invariant generation is undecidable in
general.

Once we have added this extra information to the code, we “hand over”
the code to the verification software. Now, the code is first translated into
a language that the theorem prover can understand. It is in this translation
process that our assertions are used. The result of the translation is a a set
of verification conditions (VCs). A verification condition is a mathematical
conjecture, and consists of some hypotheses followed by a conclusion, ex-
pressed in a mathematical language. Now, the task of the theorem prover is

to prove that the conclusions of the VCs follow from the hypotheses. Thus,



the problem of program proof has been reduced to proving that the VC
conclusion is valid.

What we have described so far is the traditional method of software
verification. But there is a problem with this VC-oriented approach.

Despite all the extra information we put into the code, the verification
package is often unable to carry out the entire proof on its own. Sometimes
it simply gets stuck and needs a user to help out, demanding human inter-
action. Often this involves the user giving new facts about the code that the
verification software did not spot during the translation from programming
language code to VCs. The verification package will not go back to the code
itself once the translation is complete, which is a weakness. By focusing
only on the VCs, without looking more at the code, the verification software
is effectively “tying one hand behind its back”. We believe that extracting
more information from the code, in the form of meta-data, will enable more

proofs to go through without human interaction.

2.2 Exploring algorithmic patterns

As mentioned in the introduction, algorithmic patterns express general, re-
occurring, structures of code. Programmers use algorithmic patterns all
the time, usually unconsciously, when they reuse particular code sequences.
For example, arrays are often initialised using loops, an act that appears
completely natural to programmers. Algorithmic patterns are akin to design
patterns, but describe software at a much lower level. If we can pick out
some patterns that can be useful for proof, and search for them in code, we
will be able to deduce additional knowledge about how a program works.
This type of knowledge is not manifested in VCs.

Algorithmic patterns describe general code properties. The meta-data
and logical properties are instances of algorithmic patterns for particular

programs. We want to use algorithmic patterns to drive the search for such



information. The additional logical properties are often crucial to obtain-
ing a proof while meta-data is used to guide search. Let us reinforce the

explanation with an illustrative example.

2.2.1 Algorithmic patterns at work

The following code snippet, written in the SPARK language, should illustrate
what AUTOGAP does. Note that Flag’First and Flag’Last refers to the
subscripts of the first and last elements of the array Flag respectively. Inci-
dentally, the code presents a solution to a famous programming problem, the

Polish Flag problem . See [7], [14] and [1] for descriptions of this problem.

!The Polish Flag problem is sometimes called the two-colour problem, and is a simpli-
fication of the Dutch Flag problem, which deals with three colours



type Colour is (Red, White);

procedure Partition_Section(Flag: in out Array0fColours)

--# pre (for all I in IndexRange => (Flag(I)=Red or Flag(I)=White));

--# post for some P in Integer range Flag’First..(Flag’Last+1) =>

——# ((for all Q in Integer range Flag’First..(P-1) => (Flag(Q) = Red)) and
——# (for all R in Integer range P..Flag’Last => (Flag(R) = White)));

is
subtype JustBiggerRange is Integer range Flag’First .. Flag’Last+1;
I: JustBiggerRange;
J: JustBiggerRange;
T: Colour;
begin
I:=Flag’First;
J:=Flag’Last+1;

loop
—-—# assert true;
exit when I=J;
if Flag(I)=Red then

I:=I+1;

else
J:=J-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J) :=T;

end if;

end loop;

end Partition_Section;

Figure 2.1: Polish flag problem

This is a primitive sorting algorithm that takes an array of colours and
sorts it so that all the Red elements precede all the White elements. This
outcome is expressed by the postcondition.

Variables I and J play an important role in the algorithm, because they
are indez variables. An index variable is used to index arrays. The idea
behind the use of I and J is that they refer to two distinct partitions of the
array. All elements in the lower part are red while all the elements in the
upper part are white. The lower part is indexed by Flag’First..I-1 while

the upper part is indexed by J..Flag’Last. This is conveyed in picture (b)
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of figure 2.2.

Red White
P
(a)

I J

R — -
R |[R |R [R |R MIX W|W|W| W W

: (b)

Flag’First I J Flag’Last

“Red” partition grows Unsorted partition shrinks

Figure 2.2: (a) illustrates the postcondition. When sorting finishes there
are two partitions. All the Red elements precede the White ones. (b) shows
three partitions in the array for the Polish Flag problem during execution.
The algorithm places all the Red elements before the White ones. I indexes
the sorted part of the array while J indexes the unsorted part. In the middle
there is a mix of colours that have not yet been sorted. (b) captures a loop
invariant for the program.

Note also the user supplied loop invariant - --# assert true. This
invariant is inadequate for the partial correctness proof of this program.
Picture (b) in figure 2.2 shows the necessary invariant, which can be written

as a SPARK annotation like this:
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--# assert I<=J and

——# (for all Q in Integer range Flag’First..(I-1) => (Flag(Q)=Red)) and

——# (for all R in Integer range J..Flag’Last => (Flag(R)=White));
The assertion involves three conjuncts, and AUTOGAP seeks to generate

properties like I <= Jdirectly and automatically from the code. AUTOGAP

also aims to provide meta-data on the code that will guide a proof planner in

generating the second and third conjuncts during the course of a proof. Note

that the last two conjuncts of this invariant represent a weakening of the

given postcondition. AUTOGAP will not generate such properties directly,

but the discovery of meta-data will aid the proof planner in deducing this

knowledge. The trick involves finding the instantiation for P that will provide

a suitable invariant. Note that any instantiations for P of the correct type are

possible - the problem is in selecting the right instantiation. The key insight

is in identifying that the variables I and J define the upper and lower bounds

on array partitions for which the desired postcondition property holds. Let

us study how we can discover such meta-data and properties like I <= J

automatically.

2.2.2 Searching for algorithmic patterns

When the above program starts, it initialises I to be smaller than J. Inside
the loop, I is incremented while J is decremented. These operations are the
only ones performed on the loop control variables themselves, so we may say
that I is monotonically increasing while J is monotonically decreasing. These
statements about how the loop control variables change during execution can
be represented as meta-data. In identifying the monotonic nature of I and J,
we used two algorithmic patterns; we looked for variables that only increase
or decrease.

In this particular example, elements 0 up to I and Flag’Last down to
J denote partitions with only Red or White elements. This observation, or

what we call meta-data, about the code strongly suggests that P should be

12



instantiated to be I in the first conjunct of the postcondition and to be J in
the second conjunct.

Analysing the code further, we see that before the loop is entered it
is true that I < J. At the start of the loop, where the present invariant
is inserted, all we can say about the relationship between I and J is that
I <= J - which is part of the loop invariant.

Since I increases while J decreases we can identify at least two different
partitions of the array, as shown in figure 2.2. For this example, we are
thus able to deduce that the variable I is the upper bound on a partition of
the array while J is a lower bound. So the meta-data represents aspects of

picture (b) in figure 2.2.

2.2.3 Two kinds of algorithmic properties

When describing algorithmic properties it is useful to introduce two overall
classes. These correspond to information that can be used directly to gen-
erate VCOs and information that cannot be used in VC-generation, but can
still be useful.

The first kind of algorithmic properties are called logical properties. Such
properties contribute directly to VC-generation. The most important ex-
ample of this class of properties are loop invariants, such as I <= J in the
example above.

The second kind of algorithmic properties we call meta-data. Such prop-
erties are more abstract than logical properties. They do not enable VC-
generation and are therefore not directly useful to the theorem prover. Meta-
data are properties such as variables being monotonically increasing, array
partitions changing (as in the example above) and other properties that are

not directly translatable into VCs.
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2.3 The sPARK Language

In order to find algorithmic properties, AUTOGAP will carry out static anal-
ysis of source code, as roughly lined out in the previous example. We focus
on analysis of programs written in SPARK, a high-integrity programming
language developed by Praxis Critical Systems Ltd. [2] 2

SPARK is a subset of Ada, augmented with an annotation language. The
annotations are written as special Ada comments, which allows users to
apply any Ada compiler to generate executable code. We used SPARK for
the Polish Flag example, where the pre- and postconditions are examples
of annotations. SPARK excludes many unsafe Ada constructs in order to
provide a language that is suitable for safety-critical systems development.
Recursion and dynamic memory allocation are examples of features that
have been removed, since they provide a risk of the program crashing by
running out of memory. Developing safety-critical software using SPARK
involves coding in SPARK, applying a static analyser called the Examiner
to the code in order to generate verification conditions, and proving these
verification conditions using the SPADE theorem prover. The example of

section 2.2.1 is written in SPARK.

2.4 The NUSPADE Project

The NUSPADE project is a collaboration between the Dependable Systems
Group and Praxis Critical Systems Ltd 3. The primary focus of this research
is to apply recent advances in proof planning and automatic deduction to
industrial strength problems. Praxis Critical Systems provide a vehicle for
this, the SPARK programming language and its associated toolset. [13] and
[4] provide good explanations of proof planning.

The SPADE theorem prover is automated, and is able to carry out parts

>The SPARK website is http://www.sparkada.com/
3See http://www.cee.hw.ac.uk/ air/clamspark/
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of proofs without any help from human users. The remaining parts, however,
require human interaction at a sophisticated level. This human engagement
is time consuming and therefore a bottleneck in the overall proof effort. In
NUSPADE we seek to reduce this bottleneck by improving SPADE in such
a way that users need contribute less in the proof process. The research

hypothesis of the NUSPADE project is that:

By applying proof planning techniques to improve the SPADE theorem
prover, significantly less human interaction will be required. This will speed

up the proof process.

SPADE takes VCs as input and uses a set of rewrite rules to attempt a
proof. SPADE’s task can be viewed as searching a space of several hundred
rewrite rules to find applicable rules. The proof is then carried out using
the matching rewrite rules. Thus SPADE is a low-level tool. With proof
planning we attempt to bring the verification task to a higher abstraction
level by introducing an additional level of control above SPADE, the SPADE-
PP proof planner. This proof planner sits on top of SPADE, taking the VCs as
input and producing a tactic. A tactic is a kind of “program” that specifies
the rewrite rules that SPADE should apply. Hence the search of the rule space
is much constrained. Together, SPADE and SPADE-PP make up the NUSPADE

software, as shown in figure 2.3.

2.5 AUTOGAP - Automatic Generation of Algorith-

mic Properties

AUTOGAP will work in support of NUSPADE software. The task of AUTOGAP
is to analyse source code in order to extract algorithmic properties that will

enable the NUSPADE theorem prover to carry out more proofs without help
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Figure 2.3: With proof planning we extend theorem proving by providing an
extra layer of control on top of the SPADE theorem prover. A main outcome
of the NUSPADE project is the NUSPADE software system, an augmented
theorem prover for SPARK with a proof planner.
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from humans, partly alleviating the disadvantages of the VC approach.

2.5.1 The task of AUTOGAP

The AUTOGAP system will perform an extra level of source code analysis to
add to the knowledge presented to the theorem prover as VCs. This added
knowledge is algorithmic properties, deduced by search. The hypothesis that

motivates us to build AUTOGAP is:

Knowledge of the algorithmic patterns that occur within a program can

significantly increase automation of program proof.

2.5.2 The relationship between AUTOGAP and the NUSPADE

system

AUTOGAP can be viewed both as an additional system within NUSPADE and
as stand-alone software. Figure 2.4 gives a simple overview of the interaction
between the SPADE-PP proof planner and AUTOGAP.

AUTOGAP will be applied to a file of SPARK, analyse the code and produce
algorithmic properties for that program. AUTOGAP works as a stand-alone
system at the moment, because SPADE-PP is not yet complete. This means
that for the moment the output of AUTOGAP is made available to the user
only. In the future it is intended that AUTOGAP is integrated within NUS-
PADE, so that SPADE-PP can use AUTOGAP’s results in order to simplify the
proof task.

AUTOGAP’s contribution to the NUSPADE project is to provide an extra
level of code analysis within an extendible framework. The analysis encodes
heuristics that are akin to those humans use when interacting with verifi-
cation packages and so AUTOGAP will give NUSPADE an extra “edge” since

few other verification systems use such methods. The logical properties that

17



AUTOGAP generates are concrete enough to be translated into SPARK anno-
tations and thus used by SPARK to generate improved VCs. These VCs will
be easier to prove automatically than the original ones since they contain
more information. The more abstract meta-data can be used by NUSPADE
to constrain the search for applicable proof rules. AUTOGAP is extendible
so that experiments with other heuristics than those presently used can be
conducted within the AUTOGAP framework. We will revisit this feature of

our system in chapter 3.

User
VCs /
SPADE theorem SPADE-PP ;
prover ; proof planner [< : AUTOGAP
Tactics Logical
properties

and meta-data

NUSPADE

Proof

Figure 2.4: AUTOGAP and the NUSPADE system. AUTOGAP provides an
extra input to the SPADE-PP proof planner.

2.5.3 AUTOGAP explained

SPADE-PP’s use of the algorithmic properties generated by AUTOGAP is an

example of a heuristic approach to program verification, where heuristic

18



techniques are employed to obtain more knowledge about the program. This
approach was introduced by Zohar Manna and Shmuel M. Katz in [17].
Heuristics are like rules of thumb, where we employ a mixture of science
and knowledge gained from experience to analyse the code. This is how
users help the theorem prover carry out a proof that it is unable to complete
alone, using their experience and understanding of the proof process to find
the missing pieces of information that the prover needs. Note that there is
no guarantee of success when using a heuristic approach. However, we do
have empirical evidence for the effectiveness of such an approach, since users
apply this successfully when they interact with theorem provers.

The paper by Manna and Katz was influential, but the techniques they
described were never implemented in a mechanised form. The properties
they focused on are still mostly supplied to the theorem prover by human
users. In building AUTOGAP we take inspiration from their ideas. Note
that AUTOGAP is not intended to be a “complete” tool, but a “proof of
concept”, showing that heuristic techniques can be mechanised. Also, it is
important to mention that our approach is novel in the sense that it includes
meta-data. [17] only mentions the more concrete logical properties.

AUTOGAP will attempt to translate the more concrete properties, the
logical properties, into SPARK annotations. In SPARK annotations supply
the extra information needed to produce VCs. Meta-data, which cannot be
translated into annotations and therefore have no connection with VCs, will

be taken up by the SPADE-PP proof planner instead.

Top-down and bottom-up methods for code analysis

In [17] Katz and Manna distinguish between two general approaches to ob-
taining algorithmic properties, top-down and bottom-up methods.
In the top-down approach we expect to be given information about what

is true at various points in the program. This information should be given
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by the programmer in the form of assertions. For example, in generating a
loop invariant we would combine assertions that are true at the beginning
and end of the loop. An example of a top-down method is VC-generation,
which in SPARK requires annotations in order to work.

Using the bottom-up approach we analyse the code itself in order to
identify algorithmic properties, as briefly sketched in the example of section
2.2. We do not assume that any extra assertions are supplied by the user.
The AUTOGAP system will identify algorithmic patterns using the bottom-
up approach, as a complement to the top-down approach presently used for
VC-generation. We believe that by using bottom-up analysis methods in
addition to the existing top-down VC-generation, NUSPADE will be able to
carry out more proofs on its own than if just one of the approaches were
used. As Katz and Manna put it in [17], for simple programs “it is generally
clear that the top-down approach is the natural method to use. However,

. for real (nontrivial) programs ... bottom-up techniques were found in-
dispensible.” An additional advantage of our bottom-up approach is that
by automatically generating annotations, we alleviate the user from some of
the responsibilities of adding annotations to the code. In [18] adding anno-
tations is identified as a significant bottleneck because many programmers

are unfamiliar with adding them.
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Chapter 3

Software requirements

3.1 Introduction

Here we discuss in more detail what the requirements of AUTOGAP are.
Firstly, we state the overall objectives of the software and then we consider
the system at a lower level. While this chapter takes the form of an infor-
mal discussion, note that Appendix D contains a more detailed listing of

individual requirements.

3.2 Overall objectives

AUTOGAP should analyse SPARK code and produce logical properties and
meta-data. This will provide an extra level of code analysis, which will be
useful for verification of that source code. The analysis should be based on
a number of heuristics. These heuristics, or algorithmic patterns, are di-
vided into two classes, logical properties and meta-data. Logical properties
are directly relevant for VC-generation in SPARK because they can be ex-
pressed as annotations in the code. Meta-data will help constrain the proof
search. Furthermore, AUTOGAP should be designed and implemented such

that it may be integrated into NUSPADE at a later time (when the imple-
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mentation status of NUSPADE allows this). Also, AUTOGAP should provide
an extendible framework so that it is possible to add further heuristics in
the future. AUTOGAP is envisaged as a fully automatic software tool used
in batch mode. Note that AUTOGAP is not intended to be a complete tool,

but a prototype to show how heuristics may be encoded and automated.

3.3 System requirements

Here we look at the different features of AUTOGAP in turn, and give the

resulting requirements.

3.3.1 Algorithmic patterns

We will focus the analysis on non-trivial programs that have loops and per-
form computations on arrays. These are the sorts of programs that are most
interesting from a verification perspective, since they can be hard to prove
and often require human interaction for the proof to succeed. Therefore,
the algorithmic patterns employed by AUTOGAP focus on arrays and loops.
Let us define the patterns that AUTOGAP will use. The definitions given
below are fairly short, due to space constraints, but a fuller version appears
in Appendix D together with an explanation of the syntax for the output of

each heuristic.

Initial values It is useful to know the initial value of variables. The initial
value of a variable is the first value it is assigned. However, if the
variable is assigned to for the first time after it has been referenced
in a test or another assignment, no initial value will be recorded. An
example of such a case is variables that are input to a procedure, and

therefore initialised outside that procedure.

Monotonic variables Some variables are monotonically decreasing or in-

creasing within a loop. This means that they consistently increase or
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decrease, and never oscillate in relative value.

Counter variables These are variables that appear in a loop exit condition

and have their values changed by assignment in that loop.
Index variables Index variables appear as an index into an array.

Array partitions Within a loop there is a partition in an array. This
heuristic will name the array, the start and end of the partition and

the loop within which the partition exists.

Bounds We ascertain what the minimum or maximum values of a variable

are.

Loop invariants A loop invariant is a statement about some of the vari-

ables within a loop that is true at all times.

Of these seven heuristics, six are meta-data that identifies properties
of variables and arrays. The loop invariants pattern is a logical property.
In SPARK loop invariants can be expressed as annotations within the code.
Note that these heuristics are just a sample of many possible ones and that

more than one definition of a heuristic is possible.

3.3.2 Use and integration with NUSPADE

We are seeking to increase the automation of program proof, so AUTOGAP
should be a fully automatic tool. Since AUTOGAP is intended for use by
programmers and scientists a simple, quick interface is preferable.

We therefore require the AUTOGAP software to run in batch mode, with
no intervention from the user. The ideal way of invoking AUTOGAP would
be a single command followed by the name of the file we want to analyse.

NUSPADE will not be ready for integration with AUTOGAP until after this
dissertation is finished. However, AUTOGAP should be implemented in such

a way that integration can happen seamlessly. The best way of ensuring
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this is to have AUTOGAP as a program on its own that can be invoked from
within NUSPADE, and to let the result of AUTOGAP be written to a file that
is readable by NUSPADE. Since AUTOGAP is meant to be a prototype, we
also require it to be extendible, so that it is easy to add new heuristics. By
implementing the AUTOGAP system in a kind of library fashion, AUTOGAP
will not be a monolithic program but one that can be used as a framework

for prototyping and experimenting.

3.3.3 Analysis

In order to analyse SPARK source code it will be necessary to parse SPARK, SO
AUTOGAP should contain a parser. To keep the size of AUTOGAP down the
parser should apply to a subset of SPARK rather than the entire language.
The entire subset appears in Appendix G. It excludes administrative con-
structs like packages but still contains enough constructs to enable coding
of interesting programs. Also, we will assume that the user has applied the
Examiner (the SPARK static analyser) to the source code before submitting
it to AUTOGAP. This is advantageous because the Examiner contains a full
SPARK parser, which means that no error checking will be needed in the
AUTOGAP parser.

After parsing, the analysis itself should take place on an internal rep-
resentation of the code. This representation should be a graph, the most
obvious and useful structure for analysing computer programs. This analysis

should look for instances of the algorithmic patterns given above.

3.3.4 AUTOGAP output

The results of AUTOGAP should be made available to both the user and
for future use within NUSPADE. The easiest way of achieving both these
goals is to have AUTOGAP produce some new files as its output rather than

displaying meta-data and logical properties on the screen. Two files are
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called for; one that holds the results in a format accessible to NUSPADE and
one which relates the results to the code of the analysed program. When
possible, logical properties should be integrated into the original code as
annotations. This will give the user feedback in the relevant place in the
code and enable SPARK VC-generation to proceed with added annotations.
The only logical property that can be translated into annotations is the loop

invariants algorithmic pattern.
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Chapter 4

Design

Now that we have shown how AUTOGAP exists in context with NUSPADE
and given the requirements we can design the AUTOGAP software. Let us

start by considering a large picture, figure 4.1.

AUTOGAP takes SPARK code, parses it and then analyses it. The output
(meta-data and logical properties) is made available to the NUSPADE proof
planner and theorem prover. Meta-data is presented directly to NUSPADE
while logical properties are combined with the original code in order to
create new annotations. Using the SPARK VC generator, the new code is
translated into verification conditions, which are presented to NUSPADE.

In this chapter we give a detailed explanation of the design of AUTOGAP.
First we elaborate some high-level considerations, which govern how the low-
level design is created. Then we move on to giving the design itself.

The design is described in terms of Data Flow Diagrams (DFDs), figures
and high-level pseudocode where applicable. See [20] for a good introduction
to the DFD notation.
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Original
SPARK
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AUTOGAP

SPARK code
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VC-generator NUSPADE
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and
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Figure 4.1: AUTOGAP takes SPARK code and produces Meta-data for guiding
the theorem prover and Logical properties that can be used to create new
annotations and combined with the original code.
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4.1 High-level design considerations

At the highest level there some important factors that play a decisive role
in how AUTOGAP is designed.

Firstly, there is a need to translate the SPARK source code into some
internal representation. This internal representation must lend itself well to
deriving algorithmic properties. It would be very difficult to use the SPARK
code directly for this purpose. Therefore we build a parser, or some other
preliminary processing system to carry out the transformation from source
code to the internal representation.

The process of extracting algorithmic properties from SPARK code is
a kind of static analysis, and a common internal representation for static
analysis is the graph. Graphs allow us to represent control structures in
an intuitive way. The basic graphs are shown in figure 4.2. By choosing a
graph as our internal representation we can derive algorithmic properties by
traversing the graph, collecting information about the program semantics
and structure.

Also, we cannot afford to lose any information about the semantics of the
program as we perform the translation into a graph. So any intermediate
representations as well as the graph must preserve the meaning of the SPARK
source code.

Finally, the design should adhere to good software engineering practice
and be modular, so that the components of the system depend as little as

possible on each other.
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()

Figure 4.2: Control-flow graphs of program statements. (a) if e then A
else B. (b) if e then A. (c) while e do A. From [3].
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Having identified these high-level factors, we now have a rough layout of
the AUTOGAP design. Let us first explore the translation process in greater

depth, before we move on to the algorithmic properties generation.

4.2 Translating SPARK code

First, we create the top level design for AUTOGAP. Then we look closely at
the part of the design that translates SPARK into our internal representation
(a graph).

The top-level DFD (level 0) is shown in figure 4.3.

Meta-data SPADE-PP
SPARK GAP
AUTO
de fil . .
code e Original code
A k
ugrmente Augmented
SPARK code
SPARK code
file

Figure 4.3: DFD-0. Level 0 Data Flow Diagram showing the basic inputs
and outputs of AUTOGAP.

The level 0 DFD describes the entire AUTOGAP system, showing the
most basic flow of data. Figure 4.3 conveys that there is one source of
data for AUTOGAP, the SPARK code, and two results, Meta-data and Aug-
mented SPARK, with new annotations. Both outputs are made available to
SPADE-PP. We must now decompose this high-level view of the system into
components that are described in sufficient detail to be implemented.

As noted above, we need to translate SPARK into a graph and then

analyse the graph in order to generate the required logical properties and
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meta-data. We propose to divide this task into two subsystems. The first
subsystem will take the SPARK code and translate it into a representation
from which a graph can be derived. The second subsystem’s task will be to
create the graph and analyse it, producing meta-data. We call these modules
Preliminary Processing and the Kernel respectively. Thus, the level 1 DFD

is shown in figure 4.4.

Original code

Internal code Meta-data
Original code Preliminary representation

- - Kernel

Processing

Augmented SPARK

code

Figure 4.4: DFD-1. Level 1 Data Flow Diagram. AUTOGAP is broken
down into two subsystems, one that does some preliminary processing on
the source code and one that generates the algorithmic properties.

Another way of designing AUTOGAP would be to keep all the transla-
tion within Preliminary Processing (including the graph building) and have
the meta-data generation as an entirely separate component in the Kernel.
However, as we shall see later, the graph and the meta-data generation are
so tightly related that they fit naturally together.

Having found two subsystems within AUTOGAP, we expand on the Pre-
liminary Processing module. As explained above, we wish to obtain a new
representation of the SPARK source for analysis. This mapping from code to
internal representation is called parsing. Hence, the Preliminary Process-
ing module is actually a kind of parser. The reason we do not name this

module “Parser” instead is that some more computations are needed that
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an ordinary parser cannot be expected to perform. A regular parser for a
compiler takes source code and produces e.g. a parse tree as an intermediate
representation, which is useful if one wants to generate machine code. But
we need to carry out a kind of analysis that demands a higher level inter-
nal representation. We therefore split the Preliminary Processing module
into two further subsystems; the LW-SPARK-PARSER (Light-Weight SPARK
Parser) and SUBPROG-SPIDER (Subprogram Spider). This is shown in figure

4.5, a level 2 DFD.

Original code
LW-SPARK-PARSER

Parsed structure

Internal code

representation
SUBPROG-SPIDER

Figure 4.5: DFD-1-1. Level 2 Data Flow Diagram. Expands the Prelimi-
nary Processing process. Two subsystems emerge, one that deals with basic
parsing and one that creates an intermediate representation.

The LW-SPARK-PARSER carries out an ordinary parse of the source code.
Its output is a Parsed structure, essentially a textual version of the Parse
tree that it builds as it tries to match the code statements to the grammar.
By nature, a parse tree is a very low level construct that gives a lot of detail
about how the source code is built up of grammatical statements. In order
to obtain a more compact representation, which will be easier to convert into
the graph structures exemplified in figure 4.2, we create SUBPROG-SPIDER.

The task of SUBPROG-SPIDER is to take the Parsed structure and turn it into
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a higher level structure that will be used to generate the graphs . In all,
we would like the Preliminary Processing module to produce simple output
that is readily convertible into graph structures.

Let us decompose the Preliminary Processing module further, down to
a level where it is ready to be implemented. The level 3 DFD that shows

the components of LW-SPARK-PARSER is figure 4.6.

Parse tree

Original code

Lexemes Parsed

structure

Figure 4.6: DFD-1-1-1. Level 3 Data Flow Diagram. Breaks the Lw-
SPARK-PARSER process from DFD-1-1 up into subsystems along the lines of
a traditional parser. Process Formatter carries out rudimentary formatting
of the Parse tree for translation into a more useful representation.

Three subsystems are found. The first stage of parsing is carried out
by the Lexer. The Lexer’s task is to read in the SPARK code from file and
divide program statements up into the basic constituent parts, like identifiers
and numbers. These Lezemes are fed into the Parser. The parser matches
the sequence of Lexemes against a grammar for the SPARK programming
language, building a Parse tree. If the entire program parses, the complete
Parse tree is output to the Formatter. Here, the Parse tree is traversed and
a textual representation of the Parse tree is generated, the Parsed structure.
This structure is the input to SUBPROG-SPIDER.

Lexemes are defined in terms of regular expressions, like those commonly

1SUBPROG-SPIDER is implemented entirely by Research Associate Bill J. Ellis. This is
explained in the “Implementation” section later.
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used in Unix. The Lexer operates by looking at the source program and
matching it against these regular expressions When a regular expression
is recognised, the Lexer looks at its corresponding Lexeme definition and

passes that Lexeme on to the parser, as shown in figure 4.7.

Original code Lexemes

Lexeme definitions

Lexeme definitions
(regular expressions)

Figure 4.7: DFD-1-1-1-1. Level 4 Data Flow Diagram. Expands the Lexer
process from DFD-1-1-1. Using Lexeme definitions in the form of regular
expressions, the Lexer translates the source program into Lexemes.

The Parser matches the Lexeme sequence against a SPARK Grammar.
This Grammar is defined in terms of the Lexemes. Whenever a particular
Grammar rule is satisfied, a node in the Parse tree is generated and linked
to the other nodes by the Parse tree builder. The organisation of the Parser

is shown in figure 4.8.

The Formatter can be described as a Parse tree traverser. It moves over
the parse tree, using the structure of the tree and a set of rules for how
to transform the nodes of the tree into text. The Formatter’s structure is

shown in figure 4.9.

Having decomposed the LW-SPARK-PARSER, we now turn to SUBPROG-

SPIDER. The decomposition of SUBPROG-SPIDER is shown in figure 4.10.

This is a description that is readily implemented, so we will not decom-
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Parse tree
I

Lexemes
B —

Parse tree

builder

Grammar rules

SPARK Grammar
rules

Figure 4.8: DFD-1-1-1-2. Level 4 Data Flow Diagram. Expands the
Parser process from DFD-1-1-1. Matching the Lexeme sequence against the
Grammar rules, the Parser builds a Parse tree.

Parse tree Parsed structure

Parse tree

traverser

Transformation rules

Parse tree
Transformation rules

Figure 4.9: DFD-1-1-1-3. Level 4 Data Flow Diagram. Expands the
Formatter process from DFD-1-1-1. Matching the structure of the parse
tree against a set of transformation rules, the Formatter creates the Parsed
structure
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Engine

Transformation rules
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rules repository

Figure 4.10: DFD-1-1-2. Level 3 Data Flow Diagram. Expands the
SUBPROG-SPIDER process from DFD-1-1, revealing two subsystems - a set
of rules and an “engine” for applying them.

pose it further. The core of the SUBPROG-SPIDER module is the Rewrite
Engine. Using a set of transformation rules, the Rewrite Engine takes the
Parsed structure from the Formatter and alters it. The result is an Internal
code representation. Thus we now have two intermediate representations,
resulting from the decomposition of the Preliminary Processing module.
So far, we have only elaborated on the actual processing within Prelim-
inary Processing. Before designing the Kernel, we need to give more details

on the intermediate representations.
The Parse tree, the Parsed structure and the Internal code repre-
sentation

The Parse tree is made up of a number of nodes and edges. There is one
node per grammar rule, and each node can have any number of children
from zero to six. The nodes contain all the grammatical information about

the SPARK code in a record. This record is required to hold:
1. The type of the node. This is the name of the grammar rule that the
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node corresponds to, for example expression.
2. The Lexeme. The Lexeme is the actual string found in the source code.

3. Links to children. Clearly, the leaves have no children. Likewise, the
root must have some children. The number of children for a node is
determined by how many composite rules the node’s grammar rule is

made up of.

4. Additional information. Some “administrative” information is useful
in the Formatter process. This data does not correspond to the source
code itself but will aid the final tree traversal. Additional information
includes a count of the number of children for a node, any special
formatting flags (some nodes have a non-standard text format), and a

count of how many times a node has been visited.

The actual meta-data generation is best carried out in Prolog, since
Prolog is ideal for symbolic and logic processing. Therefore the Parsed
structure and the Internal code representation are best represented in a
form that is easily processed in Prolog.

We envisage the parsed structure as a “pretty-printed” version of the
Parse tree, in the form of a Prolog term. Anticipating the implementation,
SUBPROG-SPIDER will be coded in Prolog, since the Prolog DCG formalism
provides a very powerful language interpretation mechanism. The Parsed
structure will contain all the grammatical information encoded in the Parse
tree.

The SUBPROG-SPIDER output, the Internal code representation, should
be a simpler, more direct representation of the code than the Parsed struc-
ture. Because it directly reflects the grammatical structure of the SPARK

source, the Parsed structure is large and unwieldy. Also, it contains much
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information that is not interesting for deriving meta-data and logical prop-
erties. When we look for algorithmic patterns in a program, we do not care
how identifiers and reserved words are combined to make up a grammati-
cal construct. Rather, we want to analyse the semantics of the program.
So the Internal code representation need be more compact than the Parsed
structure while not changing the program meaning. The SUBPROG-SPIDER
output is formed by several Prolog terms that are easily translatable into a

graph. The terms should keep information on

o The data types used. Any defined data types should be present in
the SUBPROG-SPIDER output, with their name and attributes (default

values, range limits and so on).

e The variables used. All the variables that appear in the source code
should be represented, preferably separate from the rest of the source

code.

e The code. The code sequence should be encoded as a list of standard
statement representations. SPARK programs consist of standardised
statement types, like assignment statements, control constructs and
so on. It will simplify the graph generation if the SUBPROG-SPIDER

output is also standardised.

Preferably, these three information types should be kept separate from
each other rather than in one monolithic term, since it is easier to deal with
a number of smaller chunks of data. A more detailed description of the

Internal code representation is given in appendices A and B.

4.3 The Kernel

The Kernel uses the Internal code representation and the Original SPARK

code to derive meta-data and logical properties from the SPARK program.
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The Kernel consists of three processes. The Graph Builder is first ap-
plied to the Internal code representation. As its name suggests, the Graph
Builder creates a Graph, similar to those shown in figure 4.2. The Graph
is then passed to the Graph analyser. This is the most important part of
AUTOGAP. The Graph Analyser looks for algorithmic patterns in the graph
representation of SPARK code. The result of the graph analysis is Meta-data
and Logical properties. The Meta-data is written directly to a file for use
at a later stage by SPADE-PP. The Logical properties, if any are found, are
merged with the Original SPARK code to produce a new source file containing
new annotations. We also append the Logical properties and the Meta-data

to the new source file.

Original SPARK code
Merge

results
Meta-data and

Logical properties

and code

Wemed SPARK code

Augmented
SPARK code file Augmented

Graph

Internal code | Builder

SPARK
Meta-data code

representation

Meta-data file Meta-data

Figure 4.11: DFD-1-2. Level 2 Data Flow Diagram. Breaks the Kernel
process from DFD-1 up into its constituent parts. A graph is built and
analysed. The output is SPARK code with added annotations and a fact file.

The Graph Builder makes up the last stage of translation, taking the
Internal code representation as input and turning it into a Graph. The

Graph Builder’s design is shown in figure 4.12.
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Figure 4.12: DFD-1-2-1. Level 3 Data Flow Diagram. The Graph Builder
has a Graph Generator as its core, and uses a set of Graph building utilities
and Transformation rules to make a graph of the Internal code representa-
tion
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The Graph Generator will process the Internal code representation and
produce the Graph. In order to achieve this, some Transformation rules are
needed, one for each possible construct that can appear in the Internal code
representation. Also, some Utilities for graph building are used, in the form
of some standard methods that create vertices, edges and so on.

The Graph Analyser is shown in greater detail in the level 3 DFD of
figure 4.13. Its design is quite simple. Given the Graph and a library
of algorithmic patterns, it will traverse the Graph looking for instances of
the patterns. Although its design is simple, the operation of the Graph
Analyser is complicated. In section 4.3.2 we elaborate on this. The Graph
analyser will process the Graph in several “passes”, each time adding to the
knowledge of the previous pass. Each algorithmic pattern corresponds to a
separate type of pass.

The Graph Analyser, the core of AUTOGAP, is generic. The Graph
Analyser has a library of algorithmic patterns that are applied in order to
generate the required meta-data. Existing patterns can be changed and new
patterns added to the library, enabling the Graph Analyser to look for and
generate new types of meta-data.

For any program only one graph will be created. But because the Graph
Analyser has an interchangeable library of algorithmic patterns, it will be
able to find many different patterns for the same program despite traversing

a single graph.

Merging the results and code is the last process in AUTOGAP. This
module will create a new SPARK file, containing the original code augmented
with annotations. The module is made up of two distinct processes, the Add
Annotations and the Append Meta-data & Logical properties. An overview

is given in figure 4.14.

The Augmented SPARK code will consist of the Original SPARK code with

annotations (derived from the Logical properties) in the appropriate places
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Figure 4.13: DFD-1-2-2. Level 3 Data Flow Diagram. Expands the Graph
Analyser process from DFD-1-2. Meta-data and Logical properties are gen-
erated by traversing the graph looking for instances of algorithmic patterns.

Original
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Meta-data &\ spPARK code
- =

Logical
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Figure 4.14: DFD-1-2-3. Level 3 Data Flow Diagram. Creating a new
SPARK file involves merging Logical properties and Meta-data with the Orig-
inal SPARK code
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and the Meta-data appended onto the end. Adding annotations is further
decomposed into two processes, Create Annotations and Merge, as displayed

in figure 4.15.

Logical

' Annotated
Properties Create SPARK code
—— . -
Annotations Merge

Original SPARK code

Figure 4.15: DFD-1-2-3-1. Level 4 Data Flow Diagram. The Annotated
SPARK code is arrived at by first creating annotations from the Logical prop-
erties and then merging these annotations with the Original SPARK code.

Let us now take a closer look at the Graph

4.3.1 The Graph

While the Graph Analyser is the single most important module in AUTOGAP,
the Graph is the most important data structure. If the Graph is implemented
well, it will ease the task of the Graph Analyser. An important goal is that
the Graph should be a flexible structure that allows prototyping of heuristics.
By keeping the Graph as general as possible, the heuristics can be altered
quickly to look for different algorithmic patterns.

As for the other two SPARK representations (the Parsed structure and
the Internal code representation), the Graph must preserve the exact mean-
ing of the program to be analysed. Moreover, it should also be easy to
search, by containing as much supporting information as possible. Support-
ing information is “administrative” data on the code such as supplementary

comments attached to edges and vertices. Figure 4.16 displays an example
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graph for a program.

enter

assignment(I := 1) G)

enterloop

loopjunction(3)

ifexit(I = 9)

truebranch

endloopjunction(3)

iftest(C = 8)

truebranch

assignment(B := 3)

ifjunction

()

enter

)
()

)

6

repeatloop

falsebranch

falsebranch

exit

I:=1;

loop

-# assert true;
if I = 9 then
exit;

end if;
I:=1+1;
end loop;

if C = 8 then
B = 3;

end if;

assignment(I := 1 + 1)

Figure 4.16: An example graph showing some standard graph constructs.

Most importantly, loops and test statements are standardised.
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The Graph is made up of several standardised components, built from
edges and vertices. The number of components is kept as low as possible,
and using these subassemblies we are able to represent any SPARK program

in a uniform way.

Overall structure

The Graph is a collection of edges and vertices. There should be one entry
and one exit vertex for every program, so that the start and end can be
easily identified. The vertices will encode the program statements.

The vertices should be numbered. The Internal code representation
keeps the sequential ordering of program statements, so it is natural to
create the Graph by processing this representation from start to end, and
so that the order of program statements can be encoded explicitly in the
Graph. In addition, the vertices should have an associated type and pro-
gram statement. Examples of vertex types in figure 4.16 are loopjunction,
ifexit, enter, iftest, endloopjunction, assignment, if junction and
exit.

Edges are somewhat simpler, and have three attributes. Firstly, each
edge must have a start and end vertex. Secondly, edges can have comments
attached to them. An example of a comment is the edge from vertex 3
to vertex 5, which is tagged “truebranch”. Thirdly, the edges must encode
direction, since we need to know which direction we are traversing the graph

in.

Standard components - loops and tests

As mentioned, we would like the Graph to be built from a small number
of basic subassemblies. Figure 4.16 shows that loops are translated into a
standard format. Firstly, there is a unique start and end point for a loop.

Vertex 2, labelled loopjunction(3) and vertex 5 (endloopjunction(3))
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are the start point and end point for the loop respectively. Because we
can have an arbitrary number of loops inside loops, we need an easy way
of discriminating between loops. We choose to identify a loop by the line
number of its ——# assert true statement in the code, as shown for vertices
2 and 5. All exit statements in a loop are translated into simple tests. If
the test is true then the loop is left, otherwise the next statement in the
loop body is executed. At the end of the loop body, an edge connects the
vertex representing the last loop statement to the start of the loop (the edge
labelled repeatloop).

The tests that make up exit statements in a loop are the same as those
representing other tests such as if-then-else. For every condition there is a
vertex, and out of that vertex comes a false and a true edge. Every test has
a junction node which acts as a collection point for the branches of the test.
After the branches have been brought together, the rest of the code that

does not belong to the test statement follows.

4.3.2 The Graph Analyser and the Graph

The Graph Analyser carries out a bottom-up analysis of the SPARK program
by traversing the Graph. The Graph Analyser performs several passes over
the Graph, each time adding to its knowledge of the SPARK program. Here
we give the pseudocode for the algorithms that encode the heuristics. Note
that some of the heuristics depend upon the results of others, so the order
in which the heuristics are called is important. The order in which we list
the pseudocode here is the actual order in the implementation. Also note
that since we are using heuristics, it would be possible to encode them in
different ways depending upon the meaning that different persons assign to
the concepts. Through prototyping we have arrived at definitions that work
well in practice. Now we define some variables that are common to all the

heuristics.

46



Start_Loop - the first graph node of any loop
End_Loop - the last graph node of the loop that Start_Loop starts

Loop_Id - the loop identifier for the loop bounded by Start_Loop
and End_Loop, that is, the line in the SPARK program where
the default loop invariant (--# assert true) appears

The first and simplest heuristic is init_val, which finds the initial values

of variables.

for all variables V used in the program unit
Node_1 = the first node where V is assigned;

if V is used in a test or an assignment before Node_1 then
exit;

else
Value = the value that V is assigned at Node_1;
Save(init_value(V, Value));

Variables that have their values defined outside the program, for example
parameters to procedures, are not taken into account by init_val.

counter finds loop counter variables. A loop counter variable is a vari-
able that is incremented or decremented within a loop and appears in that

loop’s exit condition.

for all loop exit condition nodes Exit
E_Loop = the final node of the loop that Exit belongs to;

S_Loop = the first node of the loop that Exit belongs to;

L_Id = the loop identifier for the loop bounded by
S_Loop and E_Loop;

for all variables V mentioned in Exit’s test

if V is incremented or decremented within the loop bounded
by S_Loop and E_Loop then

Save(counter(V, L_Id));
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Next is mono, which identifies variables that are monotonically decreasing
or increasing within a loop. Formal verification of loop code is difficult, and
therefore it will be useful to identify variables that exhibit structured changes

in value during execution of the loop.

for all variables V used in the program unit
Node_1 = the first node where V is incremented by a positive value;

find Start_Loop and End_Loop such that V appears within that loop;

if V is not assigned any other values than a simple increment
by a positive value within the loop found above then
Save(value(V, this_iteration) is larger than
value(V, previous_iteration)
in loop Loop_ID);
else
exit;

The code for monotonically decreasing variables is similar, but considers
variables that are decremented instead. It would be possible for a vari-
able to be assigned via division or multiplication and still be monotonically
increasing, but we have found that such code almost never occurs.

index var finds index variables. An index variable is any variable that
occurs as an index into an array, either in a test or in an assignment state-
ment. The heuristic for finding array partitions processes loop code and
uses index var, which is why there are two versions of index _var. The one
described below finds index variables within loops. The other one is not

restricted to loops, but is so similar to the heuristic below that we omit its

pseudocode.

for all nodes N used in the program unit that involves a test or
an assignment

if N is within the loop bounded by Start_Loop and End_Loop then

Statement = the code statement associated with N
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A_List = list of all arrays Array_Name in Statement;
I_List = list of all indices I for those arrays in Statement;
Result_List = Merge A_List and I_List;

for all elements on Result_List
Save (index_var (Array_Name, I));

The bounds heuristic finds the maximum or minimum value for mono-

tonic variables involved in simple loop exit conditions.

for all variables V in the program unit
if V is monotonically increasing or decreasing within loop
Loop_Identifier and
V is compared to a constant value in that loop’s exit condition
using the ’=’ operator

C_Val = the constant value V is compared to in the exit
condition;

if V is monotonically increasing then
Save (bound(V, C_Val, upper_bound) ;
else
Save (bound(V, C_Val, lower_bound);

Array partitions are found within loops. They arise when a monotoni-
cally increasing or decreasing variable is used to index an array. For mono-
tonic index variables the array partition grows from the initial value of the
index variable towards the final value of the index variable. The initial value
of the index variable is used to denote one end of the partition while the vari-
able itself denotes the other end. For a partition to exist, the index variable

must also be a counter variable. The name of this heuristic is partition.

Find Start_Loop, End_Loop and Loop_Id;
Array_List = use the index_var heuristic to find all arrays Array_Name
and their associated index variables for the loop Loop_Id;
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for all index variables I on Array_List
if I has an initial value and
I is a counter variable for the loop Loop_Id and
I is monotonically increasing or decreasing within that loop then

Expand Array_List to include the initial value of I and its
monotonic nature;

else
remove I from Array_List;

for all elements on Array_List
if the index variable for the array is monotonically increasing
then
Save(partition(Array_Name, Lower_Bound = initial value of I,
Upper_Bound = I, Loop_Id))
else
Save(partition(Array_Name, Lower_Bound = I,
Upper_Bound = initial value of I, Loop_Id))

invariant automatically generates loop invariants. This is a very hard
problem, so we concentrate upon finding simple invariants of the form variable
<operator> variable. We focus on the loop exit condition, since this often
gives a clue to how program variables relate to each other. It would be easy
to find a large number of invariants by listing variables that do not change
within the loop, but we do not consider such trivial cases. Also, we start
off by looking for monotonically increasing or decreasing variables. Such

variables often appear within loop invariants.

for all variables M that are either monotonically increasing or decreasing

L_Id = the loop identifier for the loop within which Mono_Variable
is monotonic;

for all Exit nodes for the loop L_Id
Statement = the exit condition for Exit;
if M appears within Statement then

Other_Var = the other variable within Statement;

Condition the relationship between Mono_Variable and
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Other_Var within Statement;

InvarCondition = the invariant relationship between
Mono_Variable and Other_Var within the loop
L_Id ;

Save(Invariant (InvarCondition, Loop_Id));

This concludes the AUTOGAP design. We have decomposed the rough
picture in figure 4.1 into modules simple enough for implementation. Three
main subsystems have been found, the LW-SPARK-PARSER, SUBPROG-SPIDER
and the Kernel. We have described how each module works and given an

outline of how each heuristic works.
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Chapter 5

Implementation

We now describe how the design was implemented. Since AUTOGAP is in-
tended for integration with NUSPADE at a later date, we write this chapter
not only with description but also maintenance in mind. First we give an
overview of the implementation and then we consider the LW-SPARK-PARSER,
SUBPROG-SPIDER and the Kernel in turn. The final part of this chapter ex-
amines how AUTOGAP is implemented in terms of a library system which

makes it extendible and how extensions can be made.

5.1 Overview

AUTOGAP is implemented in seven different languages - C, Prolog, Awk,
Lex, Yacc, Sed and Unix shell scripts. In total it consists of roughly 12500
lines of code, of which Prolog makes up almost 8000. AUTOGAP is written

on the Linux platform.

5.1.1 Choice of languages

LW-SPARK-PARSER is written in Lex and Yacc with C. The reason we chose
this technology was firstly that it provides a mature and well tested plat-

form for building non-trivial parsers and secondly that we already had some
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experience with this combination. The Kernel is written entirely in Prolog,
which was chosen because it is a logic programming language and hence
ideally suited to the kind of logic analysis that AUTOGAP performs. Also,
Prolog has the ability to manipulate and reason with records just as easily as
with strings and numbers. This makes Prolog ideally suited for AUTOGAP.
We believe it would be extremely hard to engineer AUTOGAP using imper-
ative languages like C or Java. The scripting languages Awk, Sed and the
basic Unix shell script were selected because they constitute a very pow-
erful trio of tools for overall management of Unix software. The scripts
for controlling the different subsystems of AUTOGAP are written in these

languages.

5.1.2 Top level control

The three subsystems of AUTOGAP make up three separate programs and
each is executed via its own command on the command line. In order
to control these programs and to manage the output a shell script called
autogap has been written. Thus the user types autogap <SPARK source
file> in order to apply AUTOGAP to a SPARK program unit. The autogap
script also calls further scripts written in Sed and Awk in order to create
formatted files for the results. Two files are created to hold output - one
called autogresults, which lists all logical properties and meta-data for use
by NUSPADE and one with the suffix .autogap that is a report containing
the original code with any discovered invariants in place and other results
appended. Appendix C contains the main script and shows an example of

running AUTOGAP.
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5.2 LW-SPARK-PARSER

LW-SPARK-PARSER is implemented in Lex and Yacc and was very difficult
to create because of its size and complexity, which is why we spent so much
time in second term on it. The Lexer was created using Lex while the
Parser consists of a Yacc grammar with actions specified in C. The grammar
appears in Appendix G. The Parser builds the Parse tree, which is processed
by the Formatter and turned into the Parsed structure. Praxis Critical
Systems Ltd. kindly provided the entire SPARK grammar in a form that
was readily translated into Yacc. The Lexer and Parser consist of mostly
repetitive code, so we give attention to the Parse tree instead. The Parse
tree is a C data structure that consists of nodes and links. These are the

attributes of each node.

e node_type. This is the name of the grammar rule that the node corre-

sponds to.

o token_string. If the corresponding grammar rule has an associated
identifier (as is true for leaf nodes), this field contains that identifier.
Otherwise it contains the empty string. The Lexer stores all identifiers

in a buffer that is made available to the Parser.

o field_1, field_2, ..., field_6. These are pointers to the children of the

current node. Any unused pointers are set to null.

o need_comma. This is a boolean flag that is set to true for nodes whose
grammar rules do not originally have an associated identifier but are
required to hold an identifier anyway. This flag is used by the Format-

ter.

o visit_count. This is a simple count of how many times the Formatter

has looked at a node. When the value of this field equals the value of
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the field that contains the children count, all children of a node have

been processed and the Formatter may proceed to the next node.

o already_visited. This is another formatting flag, used by the Formatter
when processing the nodes to indicate that no further processing of a

node is necessary.

e no_of children. A count of how many children a node has, depending

on how many of the field_ pointers are non-null.

e already_parenthesized. This boolean flag is set to true if a node that
requires extra parentheses has had those parentheses printed to the

output.

The Parse tree is an exact grammatical representation of the source
code. The Formatter transforms the tree into a Prolog term (the Parsed
structure), which is better suited to treatment by SUBPROG-SPIDER. The
Formatter consists of two C routines, named traverse and visit_node,

which were both notoriously hard to write correctly.

5.3 SUBPROG-SPIDER

All of SUBPROG-SPIDER was written by the eminent Bill J. Ellis, research
associate in the Dependable Systems Group. He is the main implementor of
NUSPADE and took on the job of creating SUBPROG-SPIDER because we re-
alised that mutual co-operation would benefit both NUSPADE and AUTOGAP.
SUBPROG-SPIDER is coded in Prolog and consists of a set of rewrite rules
and an engine for applying them. The size of SUBPROG-SPIDER is just under
1700 lines, and is in addition to the 12500 we mentioned in section 5.1 (since
SUBPROG-SPIDER was not implemented by us).

The result of rewriting the Parsed structure is the Internal code repre-

sentation, which is a kind of pseudocode for the SPARK program unit. The
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Internal code representation consists of a number of terms, the most im-
portant of which are called sparkType and sparkCode. sparkType gives
definitions of all user defined data types while the actual pseudocode is con-
tained within sparkCode. The BNF for the pseudocode language appears
in Appendix B.

5.4 The Kernel

The Kernel consists of routines for creating the Graph and extracting al-
gorithmic properties from it by heuristic analysis. The Kernel is written

entirely in Prolog.

5.4.1 The Graph

The Graph is implemented as a loose collection of edges and vertices. This
means that vertices and edges are created separately and “tied” together to
form the Graph. The Prolog database is used to store all the information
about the graph. Traversing the Graph is therefore done by searching the
database looking for vertices and edges that connect them.

The two main predicates used to create the Graph are addSequenceCode
and addLoopCode. As their names suggest, addSequenceCode creates the
part of the Graph that consists of ordinary sequential code (such as assign-

ment statements and if-then-else tests) while addLoopCode processes loops.

5.4.2 The heuristics

Each heuristic is kept in a separate file, apart from the loop invariants heuris-
tic, which spans five files. This keeps the implementation modular, to allow
for easy extension in the future.

The implementation closely adheres to the pseudocode given in the pre-

vious chapter, although it is obviously much more complex. The code for
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the heuristics utilises the Prolog backtracking mechanism and the Prolog
findall predicate for finding all solutions of a predicate. This allows the
code to be kept as simple as possible, but at the same time sacrifices effi-
ciency. However, since it only takes a couple of seconds to execute AUTOGAP
on the test programs, this does not significantly decrease performance.
Note that the heuristics are executed in the order given in chapter 4.
They all store their results in the Prolog database so that the succeeding

heuristics can make use of them.

5.5 The library organisation

To adhere to the requirement that AUTOGAP should be extendible with new
heuristics we have organised the implementation of the heuristics as a library
of files. The library definition is given in the file config.pl. Extending the
AUTOGAP system is done by replacing this file by a new configuration file.
There are two parts to the configuration file. The first part is a list of
Prolog include statements, which lists all the heuristics files that are needed
for compilation. The second part of the configuration file is a predicate
called installConfiguration. The first part of this predicate is a list of
lists which gives the order of the heuristics, their names and the number of
arguments. There is one list element for each heuristic, which is itself a list.

This is the format used to describe the heuristics:

[PredicateName, PredicateArity, AssertionName, AssertionArity]

where PredicateName and PredicateArity is the name and number of
arguments for the heuristic, and AssertionName and AssertionArity is
the name and number of arguments for the Prolog statement that is saved
to the database as a fact when the heuristic has finished. The second part

of the installConfiguration predicate saves the names of the assertions
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and predicates to the Prolog database. The information given in config.pl
is used to execute all the heuristics in the given order and collect their re-
sults. The code which does this is contained within the file autogapmain.pl.
Given config.pl as an example configuration file it should be easy for an

experienced Prolog programmer to modify AUTOGAP with new heuristics.
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Chapter 6

Evaluation and results

We now show the results of the tests and then evaluate AUTOGAP against

the requirements.

6.1 Results

The LW-SPARK-PARSER and SUBPROG-SPIDER was tested on a corpus of
SPARK programs during implementation . AUTOGAP was then evaluated as
a whole on 19 different SPARK programs. The programs we have focused on
are searching and sorting routines, because such programs are often hard
to prove and contain a lot of information for extraction by AUTOGAP. The
following tables lists the programs and a summary of which heuristics gave
results. The full report files with the source code and including results
appear in Appendix F. First, we define what the shorthand notation for

program names means.
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Shorthand | Program

P1 Binary search

P2 Bubble sort

P3 Dutch flag problem !

P4 Gaussian elimination [21]

P5 Exchange sort [23]

P6 Find [12]

P7 Insertion sort

P8 Sum of integer series [23]

P9 Linear search

P10 Majority voting algorithm [1]

P11 Finding maximum value element in array
P12 Merge routine

P13 Finding minimum value element in array
P14 Pivot routine from quicksort [8]

P15 Polish flag problem, version 1 [7], [14]
P16 Polish flag problem, version 2 2

P17 Prime number generator [23]

P18 Selection sort

P19 Square root [23]

Table 6.1: Shorthand notation for algorithms used in testing.

We now give the results of the application of AUTOGAP to these al-
gorithms. Note that the Roman literals denote a particular heuristic, as

follows:

I Initial values
IT Counter variables
ITT Monotonically increasing variables
IV Monotonically decreasing variables
V Bounds
VI Index variables
VII Array partitions

VIII Loop invariants

!See http://www.csse.monash.edu/ lloyd/tildeAlgDS/Sort/Flag/ and [1].
2Two solutions to the Polish flag problem have been used for testing.
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Program Heuristic Logical Meta-data
property
I IT IIT IV V VI VII VIII
P1 *oOOK M1 - M8
P2 *oxo X * * M9 - M17
P3 *oxo X * * * L1 M18 - M31
P4 *oox K ook X L2-13 M32 - M53
P5 ok X ook X * L4-15 M54 - M69
P6 *oox X * * MT0 - M84
P7 kox K X X * * L6 - L7 M85 - M95
P8 *oxo X M95 - M100
P9 koK * * * L8 M101 - M106
P10 * oK * * * * * L9 M107 - M115
P11 *oox X * * M116 - M121
P12 *oox K * * M122 - M142
P13 ok X * * M143 - M148
P14 ok X * * M149 - M158
P15 *oox X * * * * L10 M159 - M169
P16 ok * * * * * L11 M170 - M180
P17 koK * * * L12 M181 - M191
P18 * oK * * * M192 - M204
P19 *oxo X * L13 M205 - M214

Table 6.2: Test results showing which heuristics triggered for each test pro-
gram and the properties that were found.

So, for example, a

%9

character in column V means that the Bounds

heuristic gave a result for the corresponding program. The logical proper-

ties and the meta-data found for each program are listed in tables 6.3 - 6.10.

In Appendix E there is an explanation of the syntax used for the meta-data

and logical properties.
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We note that since all the test algorithms contain loops, counter variables
are found for all of them. Also, initial values are found for all the programs,
and monotonically increasing variables are discovered in all but one program.

The Bounds heuristic only gives results for variables whose bounds are
fixed to constant values. Giving constant bounds for variables is quite un-
common, so this heuristic does not give results very often.

Time did not permit us to develop Loop invariant heuristics as advanced
as we hoped, so invariants are only discovered for ten of the programs. These

are the invariants that AUTOGAP discovered:

Logical properties
L1 —-# assert R<=MN;
L2 --# assert I<=100;
L3 ——# assert J<=100;
L4 ——# assert Idx>=2;
L5 ——# assert I<=100;
L6 --# assert I1<=100;
L7 —--# assert J>=1;
L8 --# assert Ans<=100;
L9 --# assert K<=100;
L10 | --# assert I<=J;
L11 ——# assert M<=W;
L12 ——# assert Candidate<=1999;
L13 —-# assert I<=N_Max;

Table 6.3: The loop invariants (logical properties) discovered by AUTOGAP.

The meta-data facts that were discovered now follow in tables 6.4 - 6.10.

62



Meta-data

M1 initial_val(’Left’, integer(1))
M2 initial_val(’Right’, integer(100))
M3 initial_val(’Placement’, -(integer(1)))
M4 initial_val(’Middle’,(variable(’Left’)
+variable(’Right’))/integer(2))
M5 initial_val(’Found’, variable(’False’))
M6 count_var (’Right’, 20)
M7 count_var (’Left’, 20)
M8 count_var (’Found’, 20)
M9 initial_val(’I’, integer(1))
M10 | initial_val(’Temp’,element(variable(’Sort_Me’),
variable(’J’)-integer(1)))
M11 | initial_val(’J’, integer(1))
M12 count_var(’I’, 13)
M13 count_var(’J’, 20)
M14 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(13))
M15 | mono_inc(value(’J’,now), greaterthan,
value(’J’ ,previous), line(20))
M16 index_var(’J’, ’Sort_Me’)
M17 array_partition(’Sort_Me’, integer(1), ’J’, 20)
M18 initial_val(’R’, integer(1))
M19 | initial_val(’M’, integer(100))
M20 | initial_val(’W’, integer(100))
M21 initial_val(’Temp’, element(variable(’Flag’),
variable(’M’)-integer(1)))
M22 count_var (’R’, 21)
M23 count_var (°’M’, 21)
M24 | mono_inc(value(’R’,now), greaterthan,
value (’R’,previous), line(21))
M25 | mono_dec(value(’M’,now), lessthan, value(’M’,previous),
line(21))
M26 | mono_dec(value(’W’,now), lessthan, value(’W’,previous),
line(21))
M27 | index_var(’M’, ’Flag’)
M28 | index_var(’R’, ’Flag’)

Table 6.4: Meta-data derived by AUTOGAP
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Meta-data

M29 | index_var(’W’, ’Flag’)
M30 | array_partition(’Flag’, ’M’, integer(100), 21)
M31 | array_partition(’Flag’, integer(1), ’R’, 21)
M32 | initial_val(’I’, integer(1))
M33 | initial_val(’Size_1’, integer(101))
M34 initial_val(’Max’, variable(’I’))
M35 | initial_val(’Temp’, element(variable(’Equation_Set’),
variable(’1’)))
M36 | initial_val(’Start_1’, variable(’I’)+integer(1))
M37 initial_val(’J’, variable(’Start_1’))
M38 initial_val(’K’, variable(’I’))
M39 count_var(’I’, 20)
M40 count_var(’J’, 29)
M41 count_var (’K’, 43)
M42 count_var(’J’, 55)
M43 count_var (’K’, 60)
M44 | mono_inc(value(’I’,now), greaterthan,
value(’I’,previous), line(20))
M45 | mono_inc(value(’J’,now), greaterthan,
value(’J’ ,previous), line(29))
M46 | mono_inc(value(’J’,now), greaterthan,
value(’J’ ,previous), line(55))
M47 | mono_inc(value(’K’,now), greaterthan,
value (’K’ ,previous), line(43))
M48 | mono_dec(value(’K’,now), lessthan, value(’K’,previous),
line(60))
M49 | bound(’°I’, 100, upper)
M50 | bound(’J’, 100, upper)
M51 | index_var(’J’, ’Equation_Set’)
M52 | index_var(’Max’, ’Equation_Set’)
Mb53 | index_var(’I’, ’Equation_Set’)
M54 initial_val(’I’, integer(1))
M55 | initial_val(’Idx’, integer(101))
M56 initial_val(’Temp’, element(variable(’Arr’),
variable(’Position’)))
M57 initial_val(’Max’, element(variable(’Arr’),integer(1)))
M58 | initial_val(’Position’, integer(1))

Table 6.5: Meta-data derived by AUTOGAP
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Meta-data

M59 count_var(’I’, 32)
M60 count_var (’Idx’, 22)
M61 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(32))
M62 | mono_dec(value(’Idx’,now), lessthan,
value (’Idx’,previous), line(22))
M63 | bound(’°I’, 100, upper)
M64 | bound(’Idx’, 2, lower)
M65 index_var(’I’, ’Arr’)
M66 index_var (’Position’, ’Arr’)
Me67 index_var (’Idx’, ’Arr’)
M68 array_partition(’Arr’, integer(1), ’I’, 32)
M69 array_partition(’Arr’, ’Idx’, integer(101), 22)
M70 initial_val(’M’, integer(1))
M71 initial_val(’N’, integer(100))
M72 initial_val(’R’, element(variable(’Arr’),variable(’F’)))
M73 initial_val(’I’, variable(’M’))
M74 initial_val(’J’, variable(’N’))
M75 initial_val(’Temp’, element(variable(’Arr’),
variable(’1’)))
M76 count_var (°’M’, 41)
MT7 count_var (°’N’, 41)
MT78 count_var(’I’, 55)
M79 count_var(’J’, 55)
M80 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(63))
M81 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(72))
M82 | mono_dec(value(’J’,now), lessthan, value(’J’,previous),
line(72))
M8&3 index_var(’I’, ’Arr’)
M84 index_var(’J’, ’Arr’)
M85 initial_val(’I’, integer(1))
M&6 initial_val(’Idx’, element(variable(’To_Sort’),
variable(’1’)))
M87 initial_val(’J’, variable(’I’))
M&8 count_var(’I’, 18)
M&9 count_var(’J’, 25)
M90 | mono_inc(value(’I’,now), greaterthan,

value(’I’,previous), line(18))

Table 6.6: Meta-data derived by AUTOGAP
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Meta-data

M9I1 mono_dec(value(’J’ ,now), lessthan, value(’J’,previous),
line(25))

M92 bound(’I’, 100, upper)

M93 bound(’J’, 1, lower)

M94 index_var(’J’, ’To_Sort’)

M95 array_partition(’To_Sort’, ’J’, variable(’I’), 25)

M96 initial_val(’No_Terms’, variable(’Terms’))

M97 initial_val(’Sum’, integer(0))

M98 initial_val(’Terms’, integer(1))

M99 count_var(’Sum’, 21)

M100 | mono_inc(value(’Terms’,now), greaterthan,
value(’Terms’ ,previous), line(21))

M101 initial_val(’Ans’, integer(1))

M102 count_var(’Ans’, 18)

M103 mono_inc (value(’Ans’,now), greaterthan,

value(’Ans’ ,previous), 1ine(18))

M104 | bound(’Ans’, 100, upper)

M105 index_var(’Ans’, ’A’)

M106 array_partition(’A’, integer(1), ’Ans’, 18)

M107 initial_val(’K’, integer(1))

M108 | initial_val(’E’, integer(1))

M109 initial_val(’Winner’, element (variable(’All_Votes’),

tick(’Index’,’First’)))

M110 count_var(’K’, 31)

M111 | mono_inc(value(’K’,now), greaterthan,
value (’K’ ,previous), line(31))

M112 | mono_inc(value(’E’,now), greaterthan,
value (’E’ ,previous), line(31))

M113 | bound(’K’, 100, upper)

M114 index_var(’K’, ’All_Votes’)

M115 | array_partition(’All_Votes’, integer(1), ’K’, 31)

M116 initial_val(’I’, integer(1))

M117 initial_val(’Max_Value’, element(variable(’Arr’),

tick(’Index’,’First?)))

M118 count_var(’I’, 19)

M119 | mono_inc(value(’I’,now), greaterthan,
value(’I’,previous), line(19))

M120 index_var(’I’, ’Arr’)

Table 6.7: Meta-data derived by AUTOGAP.
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M121 array_partition(’Arr’, integer(1), ’I’, 19)

M122 | initial_val(’Left_End’, variable(’Middle’)-integer(1))

M123 initial_val(’No_Elements’, variable(’Right’)-
variable(’Left’)+integer (1))

M124 | initial_val(’Tmp_Pos’, variable(’Left’))

M125 | initial_val(’I’, integer(1))

M126 count_var(’Left’, 41)

M127 count_var(’Middle’, 41)

M128 count_var(’Left’, 65)

M129 count_var(’Middle’, 79)

M130 count_var(’I’, 94)

M131 | mono_inc(value(’Left’,now), greaterthan,
value(’Left’ ,previous), line(41))

M132 | mono_inc(value(’Left’,now), greaterthan,
value(’Left’ ,previous), line(65))

M133 mono_inc(value(’Middle’ ,now), greaterthan,
value(’Middle’ ,previous), line(41))

M134 | mono_inc(value(’Middle’,now), greaterthan,
value(’Middle’ ,previous), line(79))

M135 mono_inc(value(’Tmp_Pos’,now), greaterthan,
value (’ Tmp_Pos’ ,previous), line(41))

M136 | mono_inc(value(’Tmp_Pos’,now), greaterthan,
value (’Tmp_Pos’ ,previous), line(65))

M137 | mono_inc(value(’Tmp_Pos’,now), greaterthan,
value (’Tmp_Pos’ ,previous), line(79))

M138 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(94))

M139 | mono_dec(value(’Right’,now), lessthan,
value (’Right’ ,previous), line(94))

M140 index_var(’Left’, ’To_Sort’)

M141 index_var(’Middle’, ’To_Sort’)

M142 | index_var(’Tmp_Pos’, ’Temp’)

M143 | index_var(’Right’, ’To_Sort’)

M142 index_var(’Right’, ’Temp’)

M143 initial_val(’I’, integer(1))

M144 initial_val(’Min_Value’, element(variable(’Arr’),
tick(’Index’,’First?’)))

M145 count_var(’I’, 18)

M146 mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(18))

M147 index_var(’I’, ’Arr’)

Table 6.8: Meta-data derived by AUTOGAP
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M148 array_partition(’Arr’, integer(1), ’I’, 18)
M149 | initial_val(’Left’, integer(1))
M150 | initial_val(’Right’, integer(100))
M151 initial_val(’Pivot_El’, integer(0))
M152 initial_val(’First_Key’, element(variable(’Arr’),
variable(’Left’)))
M153 | initial_val(’Start_Left’, variable(’Left’)+integer(1))
M154 | initial_val(’Up’, variable(’Start_Left’))
M155 count_var(’Up’, 28)
M156 mono_inc(value(’Up’,now), greaterthan,
value(’Up’,previous), 1line(28))
M157 index_var(’Up’, ’Arr’)
M158 | array_partition(’Arr’, variable(’Start_Left’), ’Up’, 28)
M159 initial_val(’I’, integer(1))
M160 | initial_val(’J’, integer(101))
M161 | initial_val(’T’, element(variable(’Flag’),
variable(’I’)))
M162 count_var(’I’, 25)
M163 count_var(’J’, 25)
M164 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(25))
M165 | mono_dec(value(’J’,now), lessthan, value(’J’,previous),
line(25))
M166 | index_var(’I’, ’Flag’)
M167 | index_var(’J’, ’Flag’)
M168 array_partition(’Flag’, integer(1), ’I’, 25)
M169 array_partition(’Flag’, ’J’, integer(101), 25)
M170 initial_val(’M’, integer(1))
M171 | dinitial_val(’W’, integer(100))
M172 initial_val(’Temp’, element(variable(’Flag’),
variable(’M?’)))
M173 count_var(’M’, 32)
M174 count_var(°W’, 32)
M175 mono_inc(value(’M’ ,now), greaterthan,
value(’M’ ,previous), line(32))
M176 | mono_dec(value(’W’,now), lessthan, value(’W’,previous),
line(32))
M177 | index_var(’M’, ’Flag’)
M178 | index_var(’W’, ’Flag’)
M179 array_partition(’Flag’, integer(1), ’M’, 32)
M180 | array_partition(’Flag’, ’W’, integer(100), 32)

Table 6.9: Meta-data derived by AUTOGAP.
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M181 | initial_val(’Size’, integer(3))

M182 | initial_val(’Divisor’, integer(1))

M183 | initial_val(’Candidate’, integer(3))

M184 initial_val(’Prime’, variable(’True’))

M185 count_var(’Divisor’, 35)

M186 | count_var(’Candidate’, 25)

M187 | mono_inc(value(’Size’,now), greaterthan,
value(’Size’ ,previous), line(25))

M188 | mono_inc(value(’Divisor’,now), greaterthan,
value(’Divisor’,previous), line(35))

M189 mono_inc(value(’Candidate’ ,now), greaterthan,
value(’Candidate’ ,previous), line(25))

M190 | bound(’Candidate’, 1999, upper)

M191 index_var(’Size’, ’Arr’)

M192 | initial_val(’I’, integer(1))

M193 | initial_val(’J’, integer(2))

M194 initial_val(’Min’, variable(’I’))

M195 initial_val(’Temp’, element(variable(’Sort_Array’),

variable(’I’)))

M196 count_var(’I’, 22)

M197 count_var(’J’, 32)

M198 | mono_inc(value(’I’,now), greaterthan,
value(’I’ ,previous), line(22))

M199 | mono_inc(value(’J’,now), greaterthan,
value(’J’,previous), 1line(32))

M200 | index_var(’J’, ’Sort_Array’)

M201 index_var(’Min’, ’Sort_Array’)

M202 | index_var(’I’, ’Sort_Array’)

M203 | array_partition(’Sort_Array’, integer(2), ’J’, 32)

M204 | array_partition(’Sort_Array’, integer(1l), ’I’, 22)

M205 | initial_val(’Sqrt’, variable(’X0’))

M206 | initial_val(’Eps’, integer(1.0E-06))

M207 | initial_val(’N_Max’, integer(9))

M208 | initial_val(’X0’, variable(’N’)/integer(2.0))

M209 initial_val(’X_01d’, variable(’X0’))

M210 | initial_val(’I’, integer(1))

M211 count_var(’I’, 36)

M212 count_var(’X0’, 36)

M213 count_var(’X_014’, 36)

M214 | mono_inc(value(’I’,now), greaterthan,

value(’I’ ,previous), line(36))

Table 6.10: Meta-data derived by AUTOGAP.
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6.2 Evaluation against requirements

The AUTOGAP system has been implemented and works according to the
requirements we set out. The system analyses a useful subset of SPARK
source code in a bottom-up fashion and generates algorithmic properties.
AUTOGAP has been implemented in co-operation with the implementors of
NUSPADE in order to ensure that it can be included within NUSPADE in
the future. The results from AUTOGAP are made available to NUSPADE as a
single file of algorithmic properties, using a syntax that has been agreed with
the NUSPADE developers. Also, AUTOGAP creates a report file that displays
the time of execution and the original source code with any discovered loop
invariants in place, together with the algorithmic properties appended onto
the end. AUTOGAP is extendible, so that new heuristics can be added in
the future. Let us list the contributions AUTOGAP makes to the NUSPADE

project.

e Provides meta-data for constraining proof search. The meta-data that
AUTOGAP produces can be used by the NUSPADE proof planner (SPADE-
PP) to constrain the search for proofs. This will reduce the time taken
to arrive at a proof. Also, the additional information that the meta-
data gives can provide additional clues for how proof can be carried
out, as compared to NUSPADE using VCs only. The role of such meta-

data in the discovery of loop invariants was illustrated in section 2.2.

o Automatically generates loop invariants from unannotated code. The
report file generated by AUTOGAP has all discovered invariants em-
bedded within the code. Also, all other results are appended onto the
code as comments. The user is therefore given instant feedback on his

code.

e FEnhances the SPARK V(-generation. By embedding loop invariants

within the code, improved VCs can be produced for use by NUSPADE.
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This increases the chance of a successful proof without user interven-

tion.

Helps NUSPADE achieve a higher degree of automation. The above
three properties aid NUSPADE so that less user interaction is needed to

carry out proofs.

Represents a novel approach to analysing programs in support of proof.
The heuristic approach that AUTOGAP takes is uncommon. As a pro-
totype for analysing code in addition to conventional VC-generation,
the system provides some answers for how this should be carried out.

This is further investigated in the discussion in the next chapter.

Provides a wvehicle for further prototyping of heuristics. AUTOGAP
is a prototype system and does not represent a “final” solution to
the problem of extracting information from source code. It has been
engineered by means of a library system, which allows the NUSPADE

developers to add and remove heuristics easily.
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Chapter 7

Conclusion

Let us summarise the achievements and discuss what could be done to im-

prove AUTOGAP.

7.1 Summary of contribution

® AUTOGAP- a static analyser for SPARK code has been designed, pro-
totyped and evaluated. It consists of approximately 12500 lines of

code.
e A number of heuristics have been developed and tested using AUTOGAP.

e As a framework, AUTOGAP is flexible and extendible. Now that the
framework is complete more heuristics (algorithmic patterns) and their

associated properties can be investigated.

® AUTOGAP has been judged ready for testing with the NUSPADE system

in the near future (once the NUSPADE proof planner is ready).
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7.2 Limitations and suggestions for future work

While the requirements of AUTOGAP have been met, AUTOGAP is not a
perfect system. AUTOGAP is a prototype, a first try at generating logical
properties and meta-data using algorithmic patterns.

There are many more heuristics that could be useful for proof. For
example, we have not considered the values of individual array elements
in any of the heuristics we have implemented. In [17] Katz and Manna
emphasise such analysis because it can yield advanced loop invariants. Due
to the complexity and time it would take to implement such heuristics, they
have not been considered in AUTOGAP. We would recommend that such
heuristics are given due attention in any future development of meta-data
and logical properties generation.

Also, the loop invariant heuristics of AUTOGAP generate relatively basic
invariants, and do not discover invariants for all the test programs. For ex-
ample, consider the bubble sort test program, which appears as the second
program in Appendix F. The exit conditions for the loops are I > Size
and J > I. Because of the way our heuristics are formulated, no invari-
ants are discovered. If given more time, we would develop more heuristics
for invariant generation that look more closely at the relationship between
variables, for example by comparing different exit conditions in nested loops
and deciding which counter variables relate. Now that the framework is
in place, extending AUTOGAP with new heuristics requires significantly less
effort than we have put into it so far.

We have not attempted to use any advanced mathematical reasoning,
but rather applied common sense and intuition in the AUTOGAP heuristics.
Invariant generation is an extraordinary hard problem - “it is very difficult

to look at an existing program and guess what ... assertions should be” .

1C. A. R. Hoare in “Assertions: a personal perspective” (unpublished, but available at
http://www.research.microsoft.com/ thoare/6Jun_assertions_personal_perspective.htm

73



While [17], our main inspiration, gives some techniques that we have not
used, others have suggested different approaches. A lot of research has been
conducted on the automatic discovery of invariants, and [15], [22] and [9]
give techniques alternative to those we have used. Loop invariant discovery
is important since invariants are crucial for proof of non-trivial programs,
and so any future work on heuristics for code analysis should take this
into account, preferably in combination with the type of array heuristics
mentioned above.

The use of annotations in code is not commonly accepted among pro-
grammers, except within the high end of safety-critical systems development.
Indeed, [18] regards program annotations as a major bottleneck in develop-
ment. Most current static analysers expect the programmer to annotate the
code, and then the analysers carry out a top-down analysis. An advantage
of the methods used in AUTOGAP is that annotations for loop invariants
can be generated automatically, thus liberating the programmer of some of
the annotation burden. However, it is probably not feasible to generate all
necessary annotations automatically, even if a much more powerful static
analyser is developed - “the ultimate goal of automatic assertion generation
is almost certainly unattainable” [17]. The best way forward is to have users
interact with the machine. For example, a more intelligent analyser could
ask the user detailed questions when it got stuck. Also, if programmers give
part of the assertions this would shorten the process.

To fully exploit the potential of bottom-up analysis, the analyser should
be tightly integrated with the theorem prover or proof planner. Ideally,
the verification package should invoke the analyser with requests for specific
information when proofs are failing due to lack of data on the program.
This would focus the analyser’s effort and give clues to the sort of questions
that the analyser might ask the user. Obviously, this means that a com-

mon set of heuristics must be used within the analyser and the rest of the
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verification package. Also, the full power of bottom-up code analysis can
only be exploited if combined with top-down methods for VC-generation.
Proof is based upon translating programs into VCs, so we cannot do with-
out top-down analysis. But by introducing bottom-up methods we can gain
additional leverage and make more proofs go through automatically.

With respect to the AUTOGAP implementation, it would be useful if we
used a more user-friendly format for the appended results in the augmented
code file. At the moment, these results are displayed in the same format as
they are in the file for use by NUSPADE. While the current form is certainly
understandable for experienced programmers, it could be improved. Also,
we left out some important constructs from the subset of SPARK. It would

be good if the parser handled more of SPARK, especially while- and for-loops.

7.3 Summary and conclusion

AUTOGAP has been successfully implemented as a prototype system for
bottom-up analysis of code. AUTOGAP provides a crucial component in
testing the hypothesis that Knowledge of the algorithmic patterns that oc-
cur within a program can significantly increase automation of program proof.
AUTOGAP will now be used in conjunction with NUSPADE. We have shown
that it is possible to use bottom-up heuristic methods to derive properties
of source code. Two kinds of properties were investigated. Firstly, conven-
tional program properties that are essential to proof construction. Secondly,
meta-data on programs that provides useful constraints for a theorem prover
when searching for a proof. AUTOGAP is extendible and provides possibilities
for further experiments with heuristics. Used in context with conventional
top-down VC-generation methods, the bottom-up approach helps increase

the automation of program proof.
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7.4 Postscript

On a more personal basis, it is safe to say that the development of AUTOGAP
has been a huge challenge. In creating AUTOGAP we confronted a very
interesting combination of theoretical and practical problems. It took a
long time to understand the underlying principles, but once the theory was
established, implementation proceeded at great speed.

As mentioned, AUTOGAP is implemented in seven different languages.
This shows how it ties in with much of the work done in the degree course.
The most useful courses seen from this perspective has been the work on
compilers in third year, scripting languages and Prolog in third year and all
the programming courses.

The author is much indebted to the supervisor and the rest of the De-
pendable Systems Group for the chance to get an insight into some of the

hardest research problems in computer science.
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Appendix A

Internal code representation

The Parsed structure is very complicated and mundane to read, so instead
we give an example of the Internal code representation. This is the output
from SUBPROG-SPIDER for the minimum value source code (minvalue.adb).

sparkVariable(variable(’Arr’), ’Int_Array’, parameter(in)).
sparkVariable(variable(’Min_Value’), ’Integer’, parameter(out)).

sparkVariable(variable(’I’), ’Integer’, local(uninitilised)).
sparkType(’Index’, fromto(integer(1),integer(100))).

programName (’Min’) .

sparkCode(’Min’,
useVariable([variable(’Arr’),
variable(’Min_Value’),
variable(’I’)1),
codeSequence ([becomes (variable(’Min_Value’),
element (variable(’Arr?),
tick(’Index’,’First?))),
becomes(variable(’I’),tick(’Index’,’First’)),
loop(codeSequence([
invariant (18),
ifexit(variable(’I’)>tick(’Index’,’Last’),
codeSequence([]1)),
if (<=(element (variable(’Arr’) ,variable(’I’)),
variable(’Min_Value’)),
codeSequence(
[becomes(variable(’Min_Value’),
element (variable(’Arr’) ,variable(’I’)))]),
codeSequence([])) ,becomes(variable(’I’),
variable(’I’)+integer(1))1))1)).
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Appendix B

Internal code representation
BNF

The Internal code representation language is surprisingly small despite the
significant subset of SPARK that we are working with. Note that Then_codeSequence
and Else_codeSequence are only present to increase readability.

codeSequence ::= codeStatement | codeStatement codeSequence | EMPTY
loopCodeSequence ::= Invariant codeSequence
codeStatement ::= AssignmentStatement | ReturnStatement | IfStatement |

LoopStatement | InvariantStatement | IfexitStatement

AssignmentStatement ::= becomes(variable, codeExpression)
ReturnStatement ::= return(variable, codeExpression)
IfStatement ::= if(booleanCondition,

Then_codeSequence,
Else_codeSequence)

Then_codeSequence ::= codeSequence

Else_codeSequence ::= codeSequence

Loop_statement ::= loop(Loop_codeSequence)

Invariant ::= invariant(integer)

Ifexit_Statement ::= ifexit(booleanCondition, Then_codeSequence)
booleanCondition ::= Identifier comparisonUperator Identifier
codeExpression ::= codeExpression + Term | codeExpression - Term
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Term ::= Term * Factor | Term/Factor | Factor
Factor ::= (codeExpression) | Identifier
Identifier ::= variable | Number

Number ::= integer | floatingpointnumber

comparisonOperator ::= > | = | < | >= | <=
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Appendix C

Running AUTOGAP

In order to use AUTOGAP, just type autogap <sparkfilename> at the com-

mand line:

bash-2.05b$ autogap binarysearch.adb

Input file:standard.parsed

Output file:parsed.spider

Installing predicates...done

Finished graph construction

Running heuristics... Found all solutions for initVal(_30581,_30574)
Found all solutions for countVar(_30782,_30775)

Found all solutions for monoInc(_30977,_30970)

Found all solutions for monoDec(_31168,_31161)

Found all solutions for bounds(_31359,_31352)

Found all solutions for indexVar

Found all solutions for partition(_31716,_31709,_31702,_31695)
Found all solutions for invariant(_31917,_31910)

done

Saving meta-data to file...done

bash-2.05b$

Figure C.1: Running AUTOGAP on “binarysearch.adb”.

This is the main AUTOGAP script, which is invoked by the autogap

command:

82



#!/bin/bash
# File "autogap" - the main executable for autogap.
# Author: Tommy Ingulfsen, May 2003.

# Assign the name of the input file to IN.
IN=$1

# Cut off the part before .adb and assign it to

# PREDOT, then use this to create the output file to
# be named after the input file.

PREDOT=‘echo $IN | sed -e ’s/"\(.*\)\..*x$/\1/g*¢

# Parse the input.
parser2 $1 > standard.parsed

# Apply the Spider to the parsed result.
spider.exe standard.parsed parsed.spider

# Run Autogap (results stored in autogapswapped and in
# autogresults).
autogap.exe

# Create header for the output file.

echo " AUTOGAP OUTPUT " > autogap.output
date >> autogap.output

cat autogap.output | sed s/"/--\ /g > $PREDOT.autogap
echo " " >> $PREDOT.autogap

echo " " >> $PREDOT.autogap

# autogap.invariant contains the invariant that is created

# (in legal SPARK), so substitute that invariant into the original
# code.

callsubstitute autogap.invariant $1

# If Autogap has found any invariants the result of the above call
# for substitution is contained within file autogapswapped. So

# write that new source code to file and append all meta-data and
# program properties as comments. Otherwise just do the append

# (no invariants found).

if [ -f autogapswapped ]

then

cat autogapswapped >> $PREDOT.autogap

echo " " >> $PREDOT.autogap

echo " " >> $PREDOT.autogap

echo "-- ALGORITHMIC PROPERTIES " >> $PREDOT.autogap
echo " " >> $PREDOT.autogap

cat autogresults | sed s/~/--\ /g >> $PREDOT.autogap
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# Remove the temporary file for inserting invariants, otherwise this
# will be used again when no invariants are found and insert the

# previous invariant in a totally wrong place.

rm autogapswapped

else

cat $1 >> $PREDOT.autogap

echo " " >> $PREDOT.autogap

echo " " >> $PREDOT.autogap

echo "-- ALGORITHMIC PROPERTIES " >> $PREDOT.autogap
echo " " >> $PREDOT.autogap

cat autogresults | sed s/"/--\ /g >> $PREDOT.autogap
fi

# Remove temporary file
rm autogap.output
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Appendix D

Requirements

This appendix contains a formal listing of each AUTOGAP requirement.

D.1 Explanation

Requirement #:

Each requirement is numbered to enable easy cross-referencing.

Requirement type:

Functional or non-functional.

Description:

A succinct description of the requirement.

Rationale:

A justification of the requirement.
Fit criterion:

An objective measure of the requirement, so that it is possible to test

whether the solution successfully implements the requirement.
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Dependencies:

A list of other requirements that depend upon this one.

D.2 Requirements listing

Requirement #1

Requirement type: Non-functional.

Description: The system should be compatible with the software of the

NUSPADE project.

Rationale: The system should aid and complement the NUSPADE software.

Fit criterion: Since the NUSPADE software is not yet finished, and will not
be finished before this dissertation project is over, it is not possible to eval-
uate this requirement fully. However, by co-operating with the developers

of the NUSPADE software it should be possible to achieve such compatibility.

Dependencies: None.
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Requirement #2

Requirement type: Functional

Description: The system should be able to parse a subset of SPARK pro-

grams.

Rationale: In order to extract information from the SPARK code, we need
an internal representation of the code. To achieve this we must parse it.
AUTOGAP should concentrate on parsing a useful subset of the SPARK lan-

guage.

Fit criterion: After applying the Examiner, the system written in this

dissertation should be able to parse SPARK programs without errors.

Dependencies: None.
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Requirement #3

Requirement type: Functional

Description: The system should analyse a single program unit.

Rationale: While SPARK software may consist of more than one source
code file, it is not necessary to analyse more than one program in order to
demonstrate the feasibility of AUTOGAP. This requirement thus simplifies

the implementation of AUTOGAP.

Fit criterion: A single SPARK program should be analysed.

Dependencies: None.

Requirement: #4:

Requirement type: Functional

Description: The system should be designed so as to work after the user

has applied the SPARK Examiner to his or her code.

Rationale: When the SPARK Examiner has been successfully run, we know

for sure that the code is syntactically correct. This simplifies the parsing.

Fit criterion: None.

Dependencies: 2
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Requirement #5

Requirement type: Functional

Description: The system should build an internal representation of the

code in the form of a flow graph structure.

Rationale: To analyse the code, we need an internal representation. A
graph is the most common and natural data structure for this type of appli-

cation.

Fit criterion: None.

Dependencies: 7

Requirement #6

Requirement type: Functional

Description: The system should analyse SPARK programs to generate meta

data from them.

Rationale: This states the goal of the project.

Fit criterion: The final testing will reveal if this has been met.

Dependencies: None.
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Requirement #7

Requirement type: Functional

Description: The system should analyse source code by analysing the graph

structure that is made.

Rationale: If the graph structure and the interface between it and the
analysis is good, then each of these parts can be implemented separately,

creating a modular system that is easy to change.

Fit criterion: The final code should reflect this requirement. No analysis

should take place on structures other than the graph.

Dependencies: None.

Requirement #8

Requirement type: Functional

Description: The analysis should be carried out in a bottom-up fashion.

Rationale: Bottom-up means that no extra information about the code (ex-
isting annotations) are taken into consideration. AUTOGAP should analyse

the code alone.

Fit criterion: The final code should reflect this requirement.

Dependencies: None.
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Requirement #9

Requirement type: Functional

Description: Where possible, new annotations should be added to the

original source file, derived from the algorithmic patterns.

Rationale: If we can create new facts about the SPARK program, then the
SPADE theorem prover might be able to perform a complete proof automat-

ically or with less interaction with the user.

Fit criterion: Any new source files should contain new annotations.

Dependencies: 10.
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Requirement #10

Requirement type: Functional

Description: If new annotations can be derived from a source file, then the
system should incorporate these at a suitable place and write back a new
source file containing everything from the old source in addition to the new

annotations.

Rationale: By keeping the new and old source files separate, it will become

easier to test the system since the test file itself is not destroyed.

Fit criterion: No old files should be destroyed or changed.

Dependencies: None.
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Requirement #11

Requirement type: Functional

Description: The result of the algorithmic patterns generation should be
a set of text files (in addition to any new annotations incorporated in the

source file).

Rationale: This conforms to the SPARK approach, which entails that each
subsystem creates its own output files, not overwriting any others. By using

text files, communication with the NUSPADE system is eased.

Fit criterion: A single or more text files containing program properties

and meta-data should be produced for every execution of the system.

Dependencies: 1.
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Requirement #12

Requirement type: Functional

Description: The SPARK source code that is to be analysed should contain
the default assertion, assert true; on the line immediately succeeding the

start of all loops.

Rationale: In order to identify the point in the source code where a loop
is started we need an identifier. When parsing the SPARK code it is easy
to recognise the assertion and record the line number where it occurred.
This will also help in inserting any new annotations at the correct place.
Demanding this conforms to the existing SPARK approach, since the original
SPARK static analyser automatically adds the default annotation at the start

of each loop where none exists.

Fit criterion: All test files should have the default annotation at the start

of each loop.

Dependencies: 10, 11.

94




Requirement #13

Requirement type: Functional

Description: AUTOGAP should be an extendible framework so that new

heuristics can be added in the future.

Rationale: AUTOGAP should be regarded as a prototype system for gener-
ating information on source code. Its utility will be greatly increased if it is

possible to add new heuristics after it is finished.

Fit criterion: An experienced programmer should be able to create new
heuristics by understanding how the graph and some of the existing heuristics
work. Some sort of library system should be implemented, so that heuristics

can be removed and added easily.

Dependencies: None.
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Appendix E

Definitions of algorithmic

patterns

This is a more formal listing of the algorithmic patterns that AUTOGAP
looks for in SPARK code. Note that Syntax describes the output of each
heuristic as it appears in the file that is generated for use by NUSPADE. This

is also the syntax for the results that are appended onto each reports file.
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Name: mono

Type: Monotonically increasing/decreasing variables.

Syntax:

mono_inc(value(Var, now),
greaterThan,
value(Var, previous),

line(LoopStart))

mono_dec(value(Var, now),
lessThan,
value(Var, previous),

line(LoopStart))

Description: Var is a monotonically increasing or monotonically decreas-
ing program variable within the loop has its annotation at line LoopStart.
Such variables either consistently increase or decrease but do not oscillate in

relative value within that loop.

Precondition: A variable that is incremented but never decremented is
monotonically increasing. A variable that is decremented but never in-
cremented is monotonically decreasing (simplification). The increment or

decrement must be of the form Var := Var + integer.

97




Name: init

Type: Initial values of variables.

Syntax: initial val(Var, Value)

Description: The first value that the program variable Var takes is Value.

Precondition: Var is explicitly assigned a value Value before being used.

Name: counter

Type: Counter variables.

Syntax: count_var(Var, Line)

Description: Var is a counter variable for the loop that has its annotation

at line Line. Such variables are used for loop control.

Precondition: Var appears in a loop control condition and is incremented

or decremented within the loop.
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Name: index

Type: Index variables.

Syntax: index var(Var, Array)

Description: Var is associated with array Array because it indexes Array.

Precondition: Var appears as an index into Array at least once.

Name: partition

Type: Array partitions.

Syntax: partition(Array, Start, End, Line)

Description: Throughout execution, there is a partition from Start to End
in array Array within the loop that has its annotation at line Line. Start

and End can be program variables or constants.

Precondition: Any variables must be counter variables and be monoton-
ically increasing or decreasing within the loop referred to by Line. Any
variables must also be index variables for the array Array, and their initial

value must be known.

99




Name: invariant

Type: Loop invariants.

Syntax: invar(Line, Expression)

Description: Expression is a loop invariant for the loop that has its an-
notation at line Line. Typically Expression contains a simple comparison

between program variables or a variable and a constant, e.g. I<=J.

Precondition: Expression is derived from the loop exit condition for the
loop and the monotonic nature of the variable(s) that occur within the exit

condition.

Name: bounds

Type: Variable bounds.

Syntax:

bound(Var, Value, upper)

bound(Var, Value, lower)

Description: The upper or lower bound on variable Var is the constant

Value.

Precondition: Variables with upper bounds must be monotonically in-

creasing. Variables with lower bounds must be monotonically decreasing.
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Appendix F

Report files generated by

AUTOGAP

Here are the reports generated by AUTOGAP

- AUTOGAP OUTPUT
-- Sat May 31 20:36:58 BST 2003

procedure Binary_Search(Search_Array : in IntArray;
Item_To_Find : in Integer;
Placement : out Integer)
is
subtype Index is Integer range 1..100;

Left : Index;
Right : Index;
Middle : Index;
Found : Boolean;

begin
Left := Index’First;
Right := Index’Last;
Found := False;
Placement := -1;
loop

——# assert true;
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if Right < Left then

exit;
end if;

if Found then
exit;
end if;

Middle := (Left + Right)/2;

if Ttem_To_Find = Search_Array(Middle) then
Placement := Middle;
Found := True;

end if;

if Ttem_To_Find < Search_Array(Middle) then
Right := Middle - 1;
else
Left := Middle + 1;
end if;

end loop;

end Binary_Search;

-- ALGORITHMIC PROPERTIES

-- initial_val(’Left’, integer(1)).

-- initial_val(’Right’, integer(100)).

-- initial_val(’Placement’, -(integer(1))).
-- initial_val(’Middle’, (variable(’Left’)+variable(’Right’))/integer(2)).
-- initial_val(’Found’, variable(’False’)).
-- count_var (’Right’, 20).

-- count_var(’Left’, 20).

-- count_var (’Found’, 20).
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- AUTOGAP OUTPUT
—— Sun Jun 1 15:17:49 BST 2003

procedure Bubble_Sort(Sort_Me : in out IntArray)
is
subtype Index is Integer range 1..100;

Temp : Index;
I : Index;
J : Index;
begin
I := Index’First;
loop

—-—# assert true;
exit when I > Size;

J :=1;

loop
—-—# assert true;
exit when J > I;

if Sort_Me(J-1) > Sort_Me(J) then
Temp := Sort_Me(J-1);
Sort_Me(J-1) := Sort_Me(J);
Sort_Me(J) := Temp;

end if;

J::=J+1;
end loop;

I =1+ 1;
end loop;
end Bubble_Sort;

-- ALGORITHMIC PROPERTIES

-- initial val(’I’, integer(1)).

-- initial_val(’Temp’, element(variable(’Sort_Me’),variable(’J’)-integer(1))).
—-- initial_val(’J’, integer(1)).

-- count_var(’I’, 13).

-- count_var(’J’, 20).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(13)).

-- mono_inc(value(’J’,now), greaterthan, value(’J’,previous), line(20)).

-- index_var(’J’, ’Sort_Me’).

-- array_partition(’Sort_Me’, integer(1), ’J’, 20).
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- AUTOGAP OUTPUT
—— Sun Jun 1 16:23:00 BST 2003

procedure Dutch_Flag(Flag : in out Array0fColours)
is

subtype Index is Integer range 1..100;

R : Index;
M : Index;
W : Index;

Temp : Colour;

begin
R := Index’First;
M := Index’Last;
W := Index’Last;
loop

—-—# assert R<=M;
exit when R = M;

-- if element is white then no problem
if Flag(M-1) = White then
M:=M-1;

end if;

-- if element is red we must swap with the
== Rth element
if Flag(M-1) = Red then

Temp := Flag(M-1);
Flag(M-1) := Flag(R);
Flag(R) := Temp;

R := R+1;
end if;

—— if the element is blue we must first make
-— room in the sector that is to become blue
-- and then swap the elements

if Flag(M-1) = Blue then
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M:=M-1;
W:=W-1;

Temp := Flag(M);
Flag(M) := Flag(W);
Flag(W) := Temp;

end if;

end loop;
end Dutch_Flag;

-- ALGORITHMIC PROPERTIES

—-- initial_val(’R’, integer(1)).

—-- initial_val(’M’, integer(100)).

—-- initial_val(’W’, integer(100)).

-- initial_val(’Temp’, element(variable(’Flag’),variable(’M’)-integer(1))).
-- count_var(’R’, 21).

-- count_var(’M’, 21).

-- mono_inc(value(’R’,now), greaterthan, value(’R’,previous), line(21)).
-- mono_dec(value(’M’ ,now), lessthan, value(’M’,previous), line(21)).

-- mono_dec(value(’W’,now), lessthan, value(’W’,previous), line(21)).

-- index_var(’M’, ’Flag’).

-- index_var(’R’, ’Flag’).

-- index_var(’W’, ’Flag’).

-- array_partition(’Flag’, ’M’, integer(100), 21).

-- array_partition(’Flag’, integer(1), ’R’, 21).

-- invar (21, variable(’R’)<=variable(’M’)).
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- AUTOGAP OUTPUT
—- Sun Jun 1 15:27:57 BST 2003

procedure Eliminate(Equation_Set : in out Matrix)
is
subtype Index is Integer range 1..100;

Max : Index;
Temp : Index;
Start_1 : Index;
Size_1 : Index;

I : Index;
J : Index;
K : Index;
begin
Size_1 := Index’Last + 1;
I := Index’First;
loop

-—# assert I1<=100;
exit when I = Index’Last;

Max := I;
Start_1 := I+1;
J := Start_1;

loop
--# assert J<=100;

exit when J = Index’Last;

if Equation_Set(J, I) > Equation_Set(Max, I) then

Max := J;
end if;
J =7+ 1
end loop;
K := I;

loop
—-# assert true;
exit when K > Size_1;

Temp := Equation_Set(I, K);
Equation_Set(I, K) := Equation_Set(Max, K);
Equation_Set (Max, K) := Temp;

K := K + 1;

106



end loop;

J := Start_1;
loop
—-—# assert true;
exit when J > Index’Last;

K := Size_1;
loop
--# assert true;
exit when K < I;
Equation_Set(J, K) := Equation_Set(J, K) -
Equation_Set (I, K)*Equation_Set(J, I)/Equation_Set(I, I);

K :=K - 1;
end loop;
J :=J+ 1;
end loop;
I:=1+1;

end loop;
end Eliminate;

—-- ALGORITHMIC PROPERTIES

-- initial val(’I’, integer(1)).

-- initial_val(’Size_1’, integer(101)).

-- initial_val(’Max’, variable(’I’)).

-- initial_val(’Temp’, element(variable(’Equation_Set’),variable(’I’))).
-- initial_val(’Start_1’, variable(’I’)+integer(1)).

-- initial_val(’J’, variable(’Start_17)).

-- initial_val(’K’, variable(’I’)).

-- count_var(’I’, 20).

-- count_var(’J’, 29).

-- count_var (’K’, 43).

-- count_var(’J’, 55).

-- count_var (’K’, 60).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(20)).
-- mono_inc(value(’J’ ,now), greaterthan, value(’J’,previous), line(29)).
-- mono_inc(value(’J’,now), greaterthan, value(’J’,previous), line(55)).
-- mono_inc(value(’K’,now), greaterthan, value(’K’,previous), line(43)).
-- mono_dec(value(’K’,now), lessthan, value(’K’,previous), line(60)).

-- bound(’I’, 100, upper).

-- bound(’J’, 100, upper).

—-- index_var(’J’, ’Equation_Set’).

-- index_var(’Max’, ’Equation_Set’).

-- index_var(’I’, ’Equation_Set’).

-- invar(20, variable(’I’)<=integer(100)).

-- invar(29, variable(’J’)<=integer(100)).

107



- AUTOGAP OUTPUT
—- Sun Jun 1 15:29:38 BST 2003

-- File "exchange.adb". Implementation file for the exchange sort
-- algorithm. Taken from "Programming in Ada" by Richard Wiener
-- and Richard Sincovec.

-- Author: Tommy Ingulfsen, May 2003.
procedure Exchange_Sort(Arr : in out Int_Array)
is
subtype Index is Integer range 1..100;
Temp : Index;
Idx : Integer;
Max : Index;
Position : Index;
I : Index;
begin

Idx := Index’Last +1;

loop
-—# assert Idx>=2;

Idx := Idx - 1;

-- find max value in array from 1 to Idx
Max := Arr(1);

Position := 1;
I := Index’First;
loop

--# assert I<=100;

if I = Index’Last then
exit;
end if;

if Arr(I) >= Max then
Max := Arr(I);

Position := I;
end if;
I:=1+1;
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end loop;

-- exchange Arr(Position) with Arr(Idx)
Temp := Arr(Position);

Arr (Position) := Arr(Idx);

Arr(Idx) := Temp;

exit when Idx = 2;
end loop;

end Exchange_Sort;

-- ALGORITHMIC PROPERTIES

-- initial_val(’I’, integer(1)).

-- initial_val(’Idx’, integer(101)).

-- initial_val(’Temp’, element(variable(’Arr’) ,variable(’Position’))).
-- initial_val(’Max’, element(variable(’Arr’),integer(1))).

—-- initial_val(’Position’, integer(1)).

-- count_var(’I’, 32).

-- count_var(’Idx’, 22).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(32)).
-- mono_dec(value(’Idx’,now), lessthan, value(’Idx’,previous), line(22)).
-- bound(’I’, 100, upper).

-- bound(’Idx’, 2, lower).

-- index_var(’I’, ’Arr’).

-- index_var(’Position’, ’Arr’).

-- index_var(’Idx’, ’Arr’).

-- array_partition(’Arr’, integer(1), ’I’, 32).

-- array_partition(’Arr’, ’Idx’, integer(101), 22).
-- invar(32, variable(’I’)<=integer(100)).

-- invar(22, variable(’Idx’)>=integer(2)).
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- AUTOGAP OUTPUT
—— Sun Jun 1 15:31:26 BST 2003

-- File "find.ads", specification file for the Find algorithm.
-- Taken from Tony Hoare’s paper in the Communications of the
-- ACM, Volume 14, Number 1, January 1971.

-- Problem: Find that element of an array Arr(1:Size) whose

-- value is Fth in order of magnitude, and to

- rearrange the array in such a way that this element
- is placed in Arr(F), and furthermore, all elements
- with subscripts greater than F have greater values.
- Thus on completion of the program the following

- relationship will hold:

-- Arr (1), Arr(2), ..., Arr(F-1) <= Arr(F) <= Arr(F+1), .., Arr(Size)

—-— Author: Tommy Ingulfsen, May 2003
procedure H_Find(Arr : in out Int_Array;
F : in Integer)
is
subtype Index is Integer range 1..100;

M : Index;
R : Index;
I : Index;
J : Index;
Temp : Index;
N : Index;
begin
—— M<=F &For all P, Q (1 <=P < M<=Q <= Size => Arr(P) <= Arr(Q) )
— F <= N &TFor all P, Q (1<=P <=N < Q <= Size => Arr(P) <= Arr(Q) )
M := Index’First;
N := Index’Last;

-- reduce middle part
loop
—-—-# assert true;

if M >= N then

exit;
end if;

110



—— M<=I &ForallP : (1<=P <=1 => Arr(P) <= R)

-- J <= Size & For all Q : ( J <= Q <= Size => R <= Arr(Q) )
R := Arr(F);

I :=MNM;

J = N;

loop

--# assert true;

if I > J then
exit;
end if;

—-- increase I and decrease J
loop
—-—-# assert true;

if Arr(I) >= R then
exit;
end if;

I =1+ 1;

loop
—--# assert true;

if R >= Arr(J) then

exit;
end if;
J =J-1;

-- Arr(J) <= R <= Arr(I)
if T <= J then
Temp := Arr(I);
Arr(I) := Arr(J);
Arr(J) Temp;

—— Arr(I) <= R <= Arr(J)

I:=1+1;
J :=J-1;
end if;
end loop;
end loop;
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if F <= J then

N := J;

elsif I <= F then
M :=T;

end if;

if F > J then
exit;
end if;

if I > F then

exit;
end if;
end loop;
end loop;
end H_Find;

-- ALGORITHMIC PROPERTIES

-- initial_val(’M’, integer(1)).

—-- initial_val(’N’, integer(100)).

-- initial_val(’R’, element(variable(’Arr’),variable(’F’))).

-- initial_val(’I’, variable(’M’)).

-- initial_val(’J’, variable(’N’)).

-- initial_val(’Temp’, element(variable(’Arr’),variable(’I’))).
-- count_var(’M’, 41).

-- count_var (°’N’, 41).

-- count_var(’I’, 55).

-- count_var(’J’, 55).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(63)).
-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(72)).
-- mono_dec(value(’J’,now), lessthan, value(’J’,previous), line(72)).
-- index_var(’I’, ’Arr’).

-- index_var(’J’, ’Arr’).
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- AUTOGAP OUTPUT
—— Sun Jun 1 15:41:21 BST 2003

-- File "insert.adb" - implements the insertion sort
-- algorithm.

-- Author: Tommy Ingulfsen, May 2003.
procedure Insertion_Sort(To_Sort : in out IntArray)
is

subtype Index is Integer range 1..100;

Idx : Index;

J : Index;
I : Index;
begin
I := Index’First;
loop

--# assert I1<=100;
exit when I = Index’Last;

Idx :

= To_Sort(I);
J = 1;

loop
--# assert J>=1;

if J = 1 then
exit;
end if;

if To_Sort(J-1) <= Idx then
exit;
end if;

To_Sort(J) := To_Sort(J-1);
J:=J-1;
end loop;
To_Sort(J) := Idx;
I :=1+1;
end loop;

end Insertion_Sort;
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ALGORITHMIC PROPERTIES

initial_val(’I’, integer(1)).

initial_val(’Idx’, element(variable(’To_Sort’),variable(’I’))).
initial_val(’J’, variable(’I’)).

count_var(’I’, 18).

count_var(’J’, 25).

mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(18)).
mono_dec(value(’J’ ,now), lessthan, value(’J’,previous), line(25)).
bound(’I’, 100, upper).

bound(’J’, 1, lower).

index_var(’J’, ’To_Sort’).

array_partition(’To_Sort’, ’J’, variable(’I’), 25).

invar(18, variable(’I’)<=integer(100)).

invar(25, variable(’J’)>=integer(1)).
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- AUTOGAP OUTPUT
—— Sun Jun 1 15:43:17 BST 2003

-- File "intseries.ads", specification file for the algorithm
-- that sums an integer series. Taken from "Programming in Ada"
-- by Richard Wiener and Richard Sincovec.Terms**2;

-- The problem is to determine how many terms are needed in the
-- series 1x1 + 2%2 + 3%3 + ... + N*N so that the sum just

-- exceeds 10000.

—-— Author: Tommy Ingulfsen, May 2003.

procedure Sum_Exceeds_10K(No_Terms: out Integer)

is
Sum : Integer; -- keeps track of running sum
Terms : Integer; -- keeps track of number of terms
begin
Sum := 0;
Terms := 1;
loop
——# assert true;
Sum := Sum + Terms*Terms;
exit when Sum >= 10000;
Terms := Terms + 1;
end loop;
No_Terms := Terms;

end Sum_Exceeds_10K;

-- ALGORITHMIC PROPERTIES

-- initial_val(’No_Terms’, variable(’Terms’)).

-- initial_val(’Sum’, integer(0)).

-- initial _val(’Terms’, integer(1)).

-- count_var(’Sum’, 21).

-- mono_inc(value(’Terms’ ,now), greaterthan, value(’Terms’,previous), line(21)).
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- AUTOGAP OUTPUT
—— Sun Jun 1 15:45:42 BST 2003

-- File "linearsearch.adb", implements a linear search of an array
-- of integers.

-- Author: Tommy Ingulfsen, May 2003.

procedure Search(A : in IntArray;
Find : in Integer;
Ans : out Integer)
is

subtype Index is Integer range 1..100;
begin
Ans := Index’First;

loop
-—# assert Ans<=100;

if A(Ans) = Find then
exit;
end if;

if Ans = Index’Last then
exit;
end if;

Ans := Ans + 1;
end loop;
end Search;

-- ALGORITHMIC PROPERTIES

-- initial_val(’Ans’, integer(1)).

-- count_var(’Ans’, 18).

-- mono_inc(value(’Ans’ ,now), greaterthan, value(’Ans’,previous), line(18)).
-- bound(’Ans’, 100, upper).

-- index_var(’Ans’, ’A’).

-- array_partition(’A’, integer(1), ’Ans’, 18).

-- invar(18, variable(’Ans’)<=integer(100)).
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AUTOGAP OUTPUT
Sun Jun 1 15:47:09 BST 2003

File "majority.adb". Implements the majority voting
algorithm.

Problem: Given n voters and n candidates, determine whether a
candidate "Winner" in the ballot receives more than half
the votes.

The problem is modelled using an array of Size items, say
bbcbddccccccdbae...and so on,

using the enumerated type Vote_List.

type Vote_List is array (Index) of Character;

Author: Tommy Ingulfsen, May 2003. The algorithm is taken from
Roland C. Backhouse’s "Program Construction and Verification".

package body Majority is
procedure Majority_Vote( All_Votes : in Vote_List;

Winner : out Character)
subtype Index is Integer range 1..100;

K : Index;
E : Index;

begin

K := Index’First;
Winner := All_Votes(Index’First);
E := Index’First;
loop
--# assert K<=100;

if K = Index’Last then
exit;
end if;

if All_Votes(K) = Winner then
E :=E + 1;

elsif 2*E = K then
Winner := All_Votes(K);
E :=E + 1;

end if;
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K :=K + 1;
end loop;

end Majority_Vote;
end Majority;

-- ALGORITHMIC PROPERTIES

-- initial_val(’K’, integer(1)).

-- initial_val(’E’, integer(1)).

-- initial_val(’Winner’, element(variable(’All_Votes’),tick(’Index’,’First?’))).
-- count_var (’K’, 31).

-- mono_inc(value(’K’,now), greaterthan, value(’K’,previous), line(31)).

-- mono_inc(value(’E’ ,now), greaterthan, value(’E’,previous), line(31)).

-- bound(’K’, 100, upper).

-- index_var(’K’, ’All_Votes’).

-- array_partition(’All_Votes’, integer(1), ’K’, 31).

-- invar(31, variable(’K’)<=integer(100)).
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- AUTOGAP OUTPUT
—— Sun Jun 1 15:50:31 BST 2003

-- File "maxvalue.adb", implementation file for the algorithm
-- that finds the largest value in an array of integers.

-- Author: Tommy Ingulfsen, May 2003.

procedure Max(Arr : in Int_Array;
Max_Value : out Integer)
is
subtype Index is Integer range 1..100;

I: Integer;
begin
Max_Value := Arr(Index’First); -- initialisation
I := Index’First;
loop

—--# assert true;

if I > Index’Last then
exit;
end if;

if Arr(I) >= Max_Value then
Max_Value := Arr(I);
end if;

I :=1+1;
end loop;
end Max;

-- ALGORITHMIC PROPERTIES

-- initial val(’I’, integer(1)).

-- initial_val(’Max_Value’, element(variable(’Arr’),tick(’Index’,’First’))).
-- count_var(’I’, 19).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(19)).

-- index_var(’I’, ’Arr’).

-- array_partition(’Arr’, integer(1), ’I’, 19).
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AUTOGAP OUTPUT
Sun Jun 1 15:54:02 BST 2003

File "merge.adb", the implementation file for the merge algorithm.
Taken from http://linux.wku.edu/~lamonml/algor/sort/.

The merge sort splits the list to be sorted into two equal
halves, and places them in separate arrays. Each array is recursively
sorted, and then merged back together to form the final sorted list.

The merge sort is by nature recursive, and so cannot be implemented

in SPARK. The non-recursive implementations all make use of subroutines,
which is not included in the subset of SPARK that we are working with.
However, the core algorithm in the merge sort is the actual merging
routine, and this is presented here.

Elementary implementations of the merge sort make use of three arrays,
one for each half of the data set and one to store the sorted

list in. The below algorithm merges the arrays in-place, so only

two arrays are required.

Author: Tommy Ingulfsen, May 2003.

procedure Merging(To_Sort : in out IntArray;

is

Temp : in out IntArray;
Left : in out Index;
Middle: in out Index;
Right : in out Index)

subtype Index is Integer range 1..100;

Left_End : Index;
No_Elements : Index;
Tmp_Pos : Index;

I : Index;

begin

Left_End := Middle - 1;
Tmp_Pos := Left;
No_Elements := Right - Left + 1;

loop
—--# assert true;

if Left > Left_End then

exit;
end if;

120



if Middle > Right then
exit;
end if;

if To_Sort(Left) <= To_Sort(Middle) then
Temp (Tmp_Pos) := To_Sort(Left);
Tmp_Pos := Tmp_Pos + 1;
Left Left + 1;

else
Temp (Tmp_Pos) := To_Sort(Middle);
Tmp_Pos := Tmp_Pos + 1;
Middle := Middle + 1;

end if;
end loop;

loop
—--# assert true;

if Left > Left_End then
exit;
end if;

Temp (Tmp_Pos) := To_Sort(Left);
Left := Left + 1;
Tmp_Pos := Tmp_Pos + 1;

end loop;

loop
-—# assert true;

if Middle > Right then
exit;
end if;

Temp(Tmp_Pos) := To_Sort(Middle);
Middle := Middle + 1;
Tmp_Pos := Tmp_Pos + 1;

end loop;
I:=1;
loop

—-—# assert true;
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if I > No_Elements then
exit;
end if;

To_Sort (Right) := Temp(Right);
Right := Right - 1;

I =1+ 1;
end loop;

end Merging;

ALGORITHMIC PROPERTIES

initial_val(’Left_End’, variable(’Middle’)-integer(1)).
initial_val(’No_Elements’, variable(’Right’)-variable(’Left’)+integer(1)).
initial_val(’Tmp_Pos’, variable(’Left’)).

initial_val(’I’, integer(1)).

count_var(’Left’, 41).

count_var (’Middle’, 41).

count_var(’Left’, 65).

count_var (’Middle’, 79).

count_var(’I’, 94).

mono_inc(value(’Left’ ,now), greaterthan, value(’Left’,previous), line(41)).
mono_inc(value(’Left’ ,now), greaterthan, value(’Left’,previous), line(65)).
mono_inc(value(’Middle’ ,now), greaterthan, value(’Middle’,previous), line(41)).
mono_inc(value(’Middle’ ,now), greaterthan, value(’Middle’,previous), 1ine(79)).
mono_inc(value(’Tmp_Pos’ ,now), greaterthan, value(’Tmp_Pos’,previous), line(41)).
mono_inc(value(’Tmp_Pos’ ,now), greaterthan, value(’Tmp_Pos’,previous), 1line(65)).
mono_inc(value(’Tmp_Pos’ ,now), greaterthan, value(’Tmp_Pos’,previous), 1ine(79)).
mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(94)).
mono_dec(value(’Right’ ,now), lessthan, value(’Right’,previous), 1line(94)).
index_var (’Left’, ’To_Sort’).

index_var (’Middle’, ’To_Sort’).

index_var (’Tmp_Pos’, ’Temp’).

index_var (’Right’, ’To_Sort’).

index_var (’Right’, ’Temp’).

122



- AUTOGAP OUTPUT
—— Sun Jun 1 16:35:16 BST 2003

-- File "minvalue.adb", implementation file for the algorithm
-- that finds the smallest value in an array of integers.

-- Author: Tommy Ingulfsen, May 2003.

procedure Min(Arr : in Int_Array;
Min_Value : out Integer)
is
subtype Index is Integer range 1..100;

I : Integer;
begin
Min_Value := Arr(Index’First); -- initialisation
I := Index’First;
loop

—--# assert true;

if I > Index’Last then
exit;

end if;

if Arr(I) <= Min_Value then
Min_Value := Arr(I);
end if;

I :=1+1;
end loop;
end Min;

-- ALGORITHMIC PROPERTIES

-- initial_val(’I’, integer(1)).

-- initial_val(’Min_Value’, element(variable(’Arr’),tick(’Index’,’First’))).
-- count_var(’I’, 18).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(18)).

-- index_var(’I’, ’Arr’).

-- array_partition(’Arr’, integer(1), ’I’, 18).
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- AUTOGAP OUTPUT
—-— Sun Jun 1 16:37:05 BST 2003

-- File "pivot.ads", the implementation of the algorithm
-- that quicksort uses to find the pivot element. Taken from
-- Michael B. Feldman’s "Data Structures with Ada".

-- Author: Tommy Ingulfsen, May 2003.

procedure Find Pivot(Arr : in Int_Array;
Pivot_El : out Integer)
is
subtype Index is Integer range 1..100;

Left : Index;
Right : Index;
First_Key : Integer;
Start_Left : Index;

Up : Index;
begin
Left := Index’First; -- Array starts at 1

Right := Index’Last;

First_Key := Arr(Left);

Pivot_El := 0; -- Initialise to error value
Start_Left := Left+1;

Up := Start_Left;
loop
—--# assert true;

if Up > Right then
exit;
end if;

if Arr(Up) > First_Key then
Pivot_El := Up;
end if;

if Arr(Up) < First_Key then
Pivot_El := Left;
exit;

end if;

Up :=Up + 1;
end loop;
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end Find_Pivot;

-- ALGORITHMIC PROPERTIES

—-- initial_val(’Left’, integer(1)).

-- initial_val(’Right’, integer(100)).

-- initial_val(’Pivot_El’, integer(0)).

-- initial_val(’First_Key’, element(variable(’Arr’),variable(’Left’))).

-- initial_val(’Start_Left’, variable(’Left’)+integer(1)).

-- initial_val(’Up’, variable(’Start_Left’)).

-- count_var(’Up’, 28).

-- mono_inc(value(’Up’ ,now), greaterthan, value(’Up’,previous), line(28)).
-- index_var(’Up’, ’Arr’).

-- array_partition(’Arr’, variable(’Start_Left’), ’Up’, 28).
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- AUTOGAP OUTPUT
—— Sun Jun 1 16:39:04 BST 2003

-- File "polishl.adb". This is an implementation of the
-- Polish Flag problem algorithm.

-- Problem: Given an array of colours (red or white), sort
-- it so that all the red elements precede all the
-- white ones. This is a simpler version of the

- Dutch flag problem.

-- Author: Bill James Ellis (the actual code),
-- Tommy Ingulfsen (the packaging)

-- Partition the colours of flag.
procedure Partition_Section(Flag: in out Array0fColours)
is

subtype Index is Integer range 1..100;

I: Index;
J: Integer;
T: Colour;
begin
I:= Index’First;
J:= Index’Last + 1;
loop
--# assert I<=J;
exit when I=J;
if Flag(I)=Red then
I:=I+1;
else
J:=J-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J) :=T;
end if;
end loop;

end Partition_Section;
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ALGORITHMIC PROPERTIES

initial_val(’I’, integer(1)).

initial_val(’J’, integer(101)).

initial_val(’T’, element(variable(’Flag’),variable(’I’))).
count_var(’I’, 25).

count_var(’J’, 25).

mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(25)).
mono_dec(value(’J’ ,now), lessthan, value(’J’,previous), line(25)).
index_var(’I’, ’Flag’).

index_var(’J’, ’Flag’).

array_partition(’Flag’, integer(1), ’I’, 25).
array_partition(’Flag’, ’J’, integer(101), 25).

invar(25, variable(’I’)<=variable(’J’)).

127



- AUTOGAP OUTPUT
—— Sun Jun 1 16:40:50 BST 2003

-- File "polish2.adb". This is the specification file
-- for the Polish Flag problem algorithm.

-- Problem: Given an array of colours (red or white), sort

-- it so that all the red elements precede all the
-- white ones. This is a simpler version of the

- Dutch flag problem.

-= The algorithm is taken from Roland C. Backhouse’s
- "Program Construction and Verification".

-- The loop invariant given in the book is
-— 0 <= M <= W <= Size and

-- For all elements I, 0 <
—-- For all elements I, M <

1]

H H
ASEA
nn

M: Flag(I) = Black
W: Flag(I) = White

—-— Author: Tommy Ingulfsen, May 2003.

procedure Partition_Section_2(Flag: in out ArrayOfColours)
is
subtype Index is Integer range 1..100;

M : Index;
W : Index;
Temp : Colour;

begin
M := Index’First;
W := Index’Last;
loop

—-# assert M<=W;

if M = W then
exit;
end if;

-- if the current element is red, no change
if Flag(M) = Red then
M :=M+ 1;

-- if it is white, it should be red, so swap
else

W:=W-1;

Temp := Flag(M);
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Flag(M) := Flag(W);
Flag(W) := Temp;
end if;
end loop;

end Partition_Section_2;

-- ALGORITHMIC PROPERTIES

-- initial _val(’M’, integer(1)).

—-- initial_val(’W’, integer(100)).

—-- initial_val(’Temp’, element(variable(’Flag’),variable(’M’))).
-- count_var(’M’, 32).

-- count_var(’W’, 32).

-- mono_inc(value(’M’ ,now), greaterthan, value(’M’,previous), line(32)).
-- mono_dec(value(’W’ ,now), lessthan, value(’W’,previous), 1line(32)).
-- index_var(’M’, ’Flag’).

-- index_var(’W’, ’Flag’).

-- array_partition(’Flag’, integer(1), ’M’, 32).

-- array_partition(’Flag’, ’W’, integer(100), 32).

-- invar(32, variable(’M’)<=variable(’W’)).
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AUTOGAP OUTPUT
Sun Jun 1 17:01:53 BST 2003

File "primes.ads", specification file for the prime number
series generator. The algorithm generates the prime
integers up to 1999. It is taken from Richard Wiener and
Richard Sincovec’s "Programming in Ada".

Author: Tommy Ingulfsen, May 2003.

procedure Make Primes(Arr : in out Int_Array;

is

Size : out Index) -- size of array
subtype Index is Integer range 1..2000;
Divisor : Integer;

Candidate : Integer; -- a possible prime
Prime : Boolean;

begin

Candidate := 3;

Arr(1) := 2; -- take care of 2,3 separately
Arr(2) := 3;

Size := 3;

loop

--# assert Candidate<=1999;

Divisor := 1;
Candidate := Candidate + 2; -- look at next candidate
Prime := True;

-- assume Candidate is innocent until proved
-- guilty (only need use odd Divisors up to square root
-- of Candidate)
loop
—-—# assert true;

if Divisor * Divisor > Candidate then
exit;

end if;

-- no need to keep testing

Divisor := Divisor + 2;

if Candidate mod Divisor = O then
Prime := False;
exit;
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end if;
end loop;

-— if no numbers where found for which

—-- Candidate mod Divisor = 0, then Candidate is
-- prime, so save it in array

if Prime = True then

Arr(Size) := Candidate;
Size := Size + 1;
end if;

exit when Candidate = 1999;
end loop;

end Make_Primes;

-- ALGORITHMIC PROPERTIES

—-- initial_val(’Size’, integer(3)).

-- initial_val(’Divisor’, integer(1)).

-- initial_val(’Candidate’, integer(3)).

-- initial_val(’Prime’, variable(’True’)).

-- count_var (’Divisor’, 35).

-- count_var(’Candidate’, 25).

-- mono_inc(value(’Size’ ,now), greaterthan, value(’Size’,previous), line(25)).

-- mono_inc(value(’Divisor’ ,now), greaterthan, value(’Divisor’,previous), line(35)).
-- mono_inc(value(’Candidate’ ,now), greaterthan, value(’Candidate’ ,previous), line(25)).
-- bound(’Candidate’, 1999, upper).

-- index_var(’Size’, ’Arr’).

-- invar(25, variable(’Candidate’)<=integer(1999)).
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- AUTOGAP OUTPUT
—— Sun Jun 1 17:05:48 BST 2003

-- File "selection.adb" - contains code to implement the selection
-- sort. Algorithm taken from http://linux.wku.edu/”lamonml/algor/sort/.
-- Author : Tommy Ingulfsen, May 2003.

procedure Selection_Sort(Sort_Array : in out IntArray)
is

subtype Index is Integer range 1..100;

Min : Integer;
Temp : Integer;

I : Index;
J : Index;
begin
I := Index’First;
loop

——# assert true;

if I > Index’Last - 1 then
exit;
end if;

Min := I;
J := Index’First+1;
loop
--# assert true;
if J > Index’Last then
exit;
end if;
if Sort_Array(J) < Sort_Array(Min) then
Min := J;

end if;

J::=J+ 1;
end loop;

Temp := Sort_Array(I);
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Sort_Array(I) := Sort_Array(Min);
Sort_Array(Min) := Temp;

I:=1+1;
end loop;
end Selection_Sort;

-- ALGORITHMIC PROPERTIES

-- initial_val(’I’, integer(1)).

-- initial_val(’J’, integer(2)).

-- initial_val(’Min’, variable(’I’)).

—-- initial_val(’Temp’, element(variable(’Sort_Array’) ,variable(’I’))).
-- count_var(’I’, 22).

-- count_var(’J’, 32).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(22)).
-- mono_inc(value(’J’,now), greaterthan, value(’J’,previous), line(32)).

-- index_var(’J’, ’Sort_Array’).
-- index_var(’Min’, ’Sort_Array’).
-- index_var(’I’, ’Sort_Array’).

-- array_partition(’Sort_Array’, integer(2), ’J’, 32).
-- array_partition(’Sort_Array’, integer (1), ’I’, 22).
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- AUTOGAP OUTPUT
—= Sun Jun 1 15:01:13 BST 2003

-- File "sqrt.ads", the implementation file for the algorithm
-- that finds the square root of a number. Taken from

-- "Programming in Ada" by Richard Wiener and Richard Sincovec.
-- It is an adaptation of Newtons algorithm.

-- Note that because we don’t support subprogram calls, the

-- calls to abs() in the book’s implementation are removed.

-- Author: Tommy Ingulfsen, May 2003.
-- Finds the square root of N

procedure Square_Root(N : in Float;
Sqrt: out Float)

is
Eps : Float; -- a very small number
-- used as sentinel
N_Max : Integer; -- max no of iteratioms
X0 : Float;
X_01d : Float;
I : Integer;
begin
Eps := 0.000001;
N_Max := 9;

if N >= 0.0 then

X0 := N/2.0; -- initial guess for square root
X_01d := X0; -- save old value

-- update X0 until it is close to the exact
-- value of the square root of N

I :=1;
loop
—-# assert I<=N_Max;
if I = N_Max then
exit;
end if;

exit when (X0*X0 - N) <= Eps*N;

X0 := (X0*X0 + N) / (2.0%X0);
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exit when (X0 - X_01d) <= Eps*X0;

X_01d := XO0;
I:=1+1;
end loop;
Sqrt := XO0;
end if;

end Square_Root;

-- ALGORITHMIC PROPERTIES

—-- initial_val(’Sqrt’, variable(’X0’)).

-- initial_val(’Eps’, integer(1.0E-06)).

-- initial_val(’N_Max’, integer(9)).

-- initial_val(’X0’, variable(’N’)/integer(2.0)).
-- initial_val(’X_01d’, variable(’X0’)).

—-- initial_val(’I’, integer(1)).

-- count_var(’I’, 36).

-- count_var(’X0’, 36).

-- count_var(’X_01d’, 36).

-- mono_inc(value(’I’,now), greaterthan, value(’I’,previous), line(36)).
-- invar(36, variable(’I’)<=variable(’N_Max’)).
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Appendix G

SPARK subset

This appendix contains the grammar for the subset of SPARK that AUTOGAP
uses. As a short summary, the constructs of full SPARK that have been left

out are:

o All of the library system. Full SPARK contains an elaborate system
that allows programmers to organise their code in a modular fashion.
Since AUTOGAP is only required to analyse a single program unit there

is never any need for more than one source file.

o Multi-dimensional arrays. We feel that although arrays of more than
one dimension are not unusual in SPARK, AUTOGAP will still be able
to analyse a useful subset of all SPARK programs if it only considers

arrays of one dimension.

o Subprogram calls. It would significantly complicate the analysis of
programs if we allowed calls to functions or procedures. We choose to

focus on self-contained programs instead.

e Advanced loop exit conditions. We assume that the loop exit conditions
will contain only a single comparison. That is, no more than one

operator is involved.
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o While-loops and for-loops. The parsing is complicated by the inclusion
of all possible loops. Since the SPARK Examiner translates all loops

into the basic 1oop ... endloop we chose to use only the basic loop.

G.1 Yacc grammar without actions

Items in capital letters denote lexemes, while a lower case item denotes a
rule. To save space we have omitted the C code that builds the parse tree,

as that code is very repetitive.

proper_body : subprogram_body
numeric_literal : decimal_literal

| based_literal

decimal_literal : INTEGER_NUMBER

| REAL_NUMBER

based_literal : BASED_INTEGER

| BASED_REAL

basic_declaration : object_declaration
| full_type_declaration

| subtype_declaration

object_declaration : constant_declaration

| variable_declaration

constant_declaration : identifier_list COLON RW_CONSTANT
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type_mark BECOMES expression SEMICOLON
| identifier_list COLON RW_CONSTANT
BECOMES expression SEMICOLON
variable_declaration : identifier_list COLON type_mark SEMICOLON
| identifier_list COLON type_mark BECOMES expression SEMICOLON
| identifier_list COLON RW_ALTIASED type_mark SEMICOLON

| identifier_list COLON RW_ALIASED type_mark
BECOMES expression SEMICOLON

identifier_list : identifier_list COMMA IDENTIFIER

| IDENTIFIER

full_type_declaration : RW_TYPE IDENTIFIER RW_IS type_definition SEMICOLON

type_definition : enumeration_type_definition
| integer_type_definition
| real_type_definition
| array_type_definition

subtype_declaration : RW_SUBTYPE IDENTIFIER RW_IS subtype_indication SEMICOLON

subtype_indication : type_mark constraint

| type_mark

type_mark : dotted_simple_name
constraint : range_constraint
| floating_point_constraint

| fixed_point_constraint
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| index_or_discriminant_constraint

range_constraint : RW_RANGE arange

arange : attribute
| simple_expression DOUBLE_DOT simple_expression
enumeration_type_definition : LEFT_PAREN
enumeration_literal_specification COMMA
enumeration_type_definition_rep RIGHT_PAREN
| LEFT_PAREN

enumeration_literal_specification
RIGHT _PAREN

integer_type_definition : range_constraint

real_type_definition : floating_point_constraint
| fixed_point_constraint
floating_point_constraint : floating_accuracy_definition

| floating_accuracy_definition range_constraint

floating_accuracy_definition : RW_DIGITS simple_expression

fixed_point_constraint : fixed_accuracy_definition

| fixed_accuracy_definition range_constraint

fixed_accuracy_definition : RW_DELTA simple_expression
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array_type_definition : constrained_array_definition

constrained_array_definition : RW_ARRAY index_constraint RW_OF type_mark

index_subtype_definition : type_mark RW_RANGE BOX

index_constraint : LEFT_PAREN index_constraint_rep RIGHT_PAREN

index_constraint_rep : index_constraint_rep COMMA type_mark

| type_mark

declarative_part : renaming_declaration_rep
initial_declarative_item_rep later_declarative_item_rep

| initial_declarative_item_rep later_declarative_item_rep
| renaming_declaration_rep initial_declarative_item_rep
| initial_declarative_item_rep
| renaming_declaration_rep later_declarative_item_rep
| later_declarative_item_rep
| renaming_declaration_rep

initial_declarative_item_rep :

initial_declarative_item_rep basic_declarative_item

| basic_declarative_item

basic_declarative_item : basic_declaration

| representation_clause

basic_proof_declaration : type_assertion
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later_declarative_item_rep :
later_declarative_item_rep later_declarative_item

| later_declarative_item_rep apragma

| later_declarative_item

name : simple_name

| name LEFT_PAREN name_argument_list RIGHT_PAREN

simple_name : IDENTIFIER

dotted_simple_name : dotted_simple_name POINT IDENTIFIER

| IDENTIFIER

prefix : name

name_argument_list : positional_argument_association

positional_argument_association : expression

attribute : prefix attribute_designator

attribute_designator : attribute_designator ATTRIBUTE_IDENT attribute_designator_opt
| ATTRIBUTE_IDENT attribute_designator_opt
attribute_designator_opt : LEFT_PAREN expression RIGHT_PAREN
| LEFT_PAREN expression COMMA expression RIGHT_PAREN
I

expression : relation

141



| relation RW_AND expression_repl

| relation RW_ANDTHEN expression_rep2
| relation RW_OR expression_rep3

| relation RW_ORELSE expression_rep4

| relation RW_XOR expression_reph

expression_repl : expression_repl RW_AND relation
| relation
expression_rep2 : expression_rep2 RW_ANDTHEN relation

| relation

expression_rep3 : expression_rep3 RW_OR relation

| relation

expression_rep4 : expression_rep4 RW_ORELSE relation

| relation

expression_repb : expression_repb5 RW_XOR relation

| relation

relation : simple_expression
| simple_expression relational_operator simple_expression
| simple_expression inside arange
| simple_expression outside arange
| simple_expression inside name

| simple_expression outside name

142



inside : RW_IN

outside : RW_NOTIN

simple_expression : simple_expression binary_adding_operator term

| simple_expression_opt

simple_expression_opt : term

| unary_adding_operator term

term : term multiplying_operator factor

| factor

factor : primary
| primary DOUBLE_STAR primary
| RW_ABS primary
| RW_NOT primary
primary : numeric_literal
| CHARACTER_LITERAL
| STRING_LITERAL
| name
| qualified_expression
| LEFT_PAREN expression RIGHT_PAREN

| attribute
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relational_operator :

EQUALS

NOT_EQUAL

LESS_THAN

LESS_OR_EQUAL

GREATER_THAN

GREATER_OR_EQUAL

binary_adding_operator : PLUS

unary_adding_operator :

multiplying_operator :

qualified_expression :

sequence_of_statements :

| MINUS

| AMPERSAND

PLUS

| MINUS

MULTIPLY
DIVIDE
RW_MOD

RW_REM

name APOSTROPHE aggregate

sequence_of_statements statement

| statement
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statement : simple_statement

| compound_statement

simple_statement : null_statement
| assignment_statement

| procedure_call_statement
| exit_statement

| return_statement

compound_statement : if_statement

| loop_statement

null_statement : RW_NULL SEMICOLON

assignment_statement : name BECOMES expression SEMICOLON

if_statement : RW_IF condition RW_THEN sequence_of_statements
elsif_part else_part RW_END RW_IF SEMICOLON

elsif_part: elsif_part RW_ELSIF condition RW_THEN sequence_of_statements

else_part: RW_ELSE sequence_of_statements
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condition : expression

loop_statement : loop_statement_opt RW_LOOP loop_invariant
sequence_of_statements end_of_loop RW_END
RW_LOOP SEMICOLON

| simple_name COLON loop_statement_opt RW_LOOP sequence_of_statements
end_of_loop RW_END RW_LOOP simple_name SEMICOLON

loop_statement_opt : iteration_scheme

| iteration_scheme loop_invariant

loop_parameter_specification : IDENTIFIER forward type_mark
| IDENTIFIER forward type_mark RW_RANGE arange
| IDENTIFIER backward type_mark

| IDENTIFIER backward type_mark RW_RANGE arange

forward : RW_IN

backward :RW_IN RW_REVERSE

loop_invariant : assert_statement

exit_statement : RW_EXIT SEMICOLON

| RW_EXIT RW_WHEN condition SEMICOLON
| RW_EXIT simple_name SEMICOLON

| RW_EXIT simple_name RW_WHEN condition SEMICOLON

146



return_statement : RW_RETURN expression SEMICOLON

assert_statement : ANNOTATION_START RW_ASSERT RW_TRUE SEMICOLON

subprogram_specification : procedure_specification

| function_specification

procedure_specification : RW_PROCEDURE IDENTIFIER

| RW_PROCEDURE IDENTIFIER formal_part

function_specification : RW_FUNCTION designator formal_part RW_RETURN type_mark

| RW_FUNCTION designator RW_RETURN type_mark

designator : IDENTIFIER

formal_part : LEFT_PAREN formal_part_rep RIGHT_PAREN

formal_part_rep : formal_part_rep SEMICOLON parameter_specification

| parameter_specification

parameter_specification : identifier_list COLON mode type_mark

mode : in_mode
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| inout_mode

| outmode

in_mode : RW_IN

inout_mode : RW_IN RW_0OUT

outmode : RW_0OUT
subprogram_body : procedure_specification RW_IS subprogram_implementation

| function_specification RW_IS subprogram_implementation

subprogram_implementation : pragma_rep declarative_part
RW_BEGIN sequence_of_statements
RW_END designator SEMICOLON

| pragma_rep RW_BEGIN
sequence_of_statements RW_END
designator SEMICOLON

| pragma_rep RW_BEGIN
code_insertion RW_END
designator SEMICOLON

hidden_part : HIDE_DIRECTIVE
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