
Automation for Exception Freedom Proofs

Bill J. Ellis and Andrew Ireland
School of Mathematical & Computer Sciences

Heriot-Watt University
Edinburgh, Scotland, UK

bill@macs.hw.ac.uk a.ireland@hw.ac.uk

Abstract

Run-time errors are typically seen as unacceptable
within safety and security critical software. The SPARK
approach to the development of high integrity software ad-
dresses the problem of run-time errors through the use of
formal verification. Proofs are constructed to show that
each run-time check will never raise an error, thus prov-
ing freedom from run-time exceptions. Here we build upon
the success of the SPARK approach by increasing the level
of automation that can be achieved in proving freedom from
exceptions. Our approach is based upon proof planning and
a form of abstract interpretation.

1 Introduction

Run-time errors may result in the catastrophic failure of
high integrity software. This includes safety critical appli-
cations, e.g. an integer overflow run-time error led to the
loss of Ariane 5 [14], and security critical applications, e.g.
“buffer overflows have been the most common form of se-
curity vulnerability in the last ten years” [12]. The ability
to statically prove that software applications are free from
run-time errors has obvious social and economic benefits.

The SPARK [5] programming language has been de-
signed for the development of high integrity software [22].
Here we present an automatic technique that supports the
process of formally proving that software written in SPARK
is free from run-time errors (exception freedom). SPARK is
defined as a subset of Ada and can therefore be compiled
using any Ada compiler. SPARK excludes all of the excep-
tions that can be raised within Ada except for index, range,
division and overflow checks. The SPARK toolset supports
the analysis of SPARK code. This includes static flow anal-
ysis and partial correctness proofs. In terms of guarding
against run-time errors, the key tools and their functions
are: EXAMINER - generates run-time check (RTC) verifi-
cation conditions (VCs) based on the Ada run-time checks,
consequently proving the RTC VCs guarantees exception
freedom ; SIMPLIFIER - automatically discharges relatively

simple VCs ; SPADE PROOF CHECKER - an interactive the-
orem prover.

There exists industrial strength evidence [4] showing that
the SPARK toolset can automatically prove around

�����
of

RTC VCs. While this performance is impressive, the re-
maining �

���
typically account for many hundreds of RTC

VCs, each requiring a user guided proof. We target this
� ��� using a hybrid approach, integrating theorem proving
and program analysis.

2 Run-time exceptions in SPARK

subtype R_Type is Integer;
subtype I_Type is Integer range 0..9;
type D_Type is array (I_Type) of Integer;
...
R:= 0;
for I in I_Type loop

--# assert true;
if D(I)>=0 and D(I)<=100 then

R:=R+D(I);
end if;

end loop;

Note that --# assert introduces a loop invari-
ant. The EXAMINER adds invariants where none are
present and strengthens all invariants to include lim-
ited type information.

Figure 1. A filter program written in SPARK

To illustrate the problems associated with proving RTC
VCs consider the SPARK code given in figure 1. In partic-
ular, consider the assignment statement within the then-
branch, i.e. R:=R+D(I), whose corresponding RTC VC
is given in figure 2. There are two aspects to proving that
this assignment cannot raise an exception. Firstly, we must
show that the value of I can never exceed the range of array
D, i.e. C1 and C2. Secondly, we must show that the value
of the expression R+D(I) lies within the legal bounds of R,
i.e. C3 and C4. While proving C1 and C2 is trivial (match
with H2 and H3 respectively), C3 and C4 are unprovable.
This problem arises as there is not sufficient proof context.



procedure_filter_6.
H1: for_all (i___1: integer, ((i___1 >= i_type__first) and (

i___1 <= i_type__last)) -> ((element(d, [i___1]) >=
integer__first) and (element(d, [i___1]) <= integer__last))) .

H2: loop__1__i >= i_type__first .
H3: loop__1__i <= i_type__last .
H4: element(d, [loop__1__i]) >= 0 .
H5: element(d, [loop__1__i]) <= 100 .

->
C1: loop__1__i >= i_type__first .
C2: loop__1__i <= i_type__last .
C3: r + element(d, [loop__1__i]) >= integer__first .
C4: r + element(d, [loop__1__i]) <= integer__last .

The EXAMINER generates eight VCs for the code given in figure 1. Three of these correspond to exception freedom, while
the rest correspond to any properties asserted by the programmer, in this case the invariant. The RTC VC above corresponds
to proving that the assignment within the then branch can never raise an exception. Note that element(A,[I]) denotes
accessing array A at index I.

Figure 2. A run-time check verification condition (RTC VC)

Currently, the SPARK approach to overcoming such fail-
ures requires user interaction, i.e.

1. user identifies the need for additional hypotheses relat-
ing to the bounds on variables.

2. user strengthens the default loop invariant to introduce
the required hypotheses.

3. user constructs proofs for the loop invariant VCs and
revised RTC VCs via the PROOF CHECKER1.

With a suitable invariant in place, the associated proofs
are relatively uncomplicated and exhibit common patterns
of reasoning. However, as an application typically requires
many hundreds of proof failures to be patched this task
presents a significant bottle-neck in practice.

3 Overview of our approach
Our approach combines the proof planning [6] theorem

proving technique with program analysis based upon a form
of abstract interpretation [11]. In particular, our approach
replaces the user interaction outlined above, i.e.

1. proof planning identifies the need for additional hy-
potheses relating to the bounds on variables.

2. program analysis strengthens the default loop invariant
to introduce the required hypotheses.

3. proof planning constructs proof tactics for the loop in-
variant VC and revised RTC VCs suitable for execu-
tion within the PROOF CHECKER.

Below we outline the proof planning and program analy-
sis aspects of our approach. Due to limited space, we give
prominence to the program analysis.

1The SIMPLIFIER is typically unable to discharge loop invariant VCs
and RTC VCs whose proof relies on user supplied lemmas.

3.1 Proof planning

Proof planning is an Artificial Intelligence technique for
guiding tactic based theorem provers. A proof plan is de-
fined in terms of a set of methods that express preconditions
for the applicability of a set of general purpose tactics. Each
method can be viewed as a partial specification of a general
purpose tactic. Given a particular proof obligation, methods
are used by a planning system to automatically construct a
customised tactic.

Our exception freedom proof plan contains five meth-
ods2. The failure of these methods is used to identify
the need for additional hypotheses. This role is achieved
through proof critics [18, 19]. Proof critics support the au-
tomatic analysis and patching of failed proof attempts. Here
we use proof critics to identify a schematic hypothesis that
is used to constrain our program analysis. Proof critics are
typically linked to methods. The triggering of a proof critic
is associated with a particular pattern of partial success of a
method. For our example (see figure 2), the critics suggest
a schematic hypothesis of the form:

�����������
	

This schema suggests that additional information on the
bounds of � needs to be introduced through the discovery
of a stronger loop invariant.

3.2 Program analysis

Abstract interpretation provides a theoretical framework
for the development of program analysis techniques. It op-
erates by approximating the semantics of a programming

2The methods exploit the common patterns seen in discharging RTC
VCs, focusing on the manipulation of inequalities, including the isolate
method originally seen in [9].

2



language, replacing concrete values with more general ab-
stract values. Abstract interpretation techniques are guaran-
teed to produce correct results. However, these guarantees
are often achieved through approximations.

The emphasis on correctness tends to restrict the com-
plexity of the heuristics used in abstract interpretation.
However, the discovery of interesting program properties
requires many and varied heuristics, as seen in [21, 17]. Our
solution is to follow the proof planning paradigm. Program
analysis is treated as an oracle, providing suggestions that
the planner attempts to proof plan. By removing the burden
of correctness, program analysis can flexibly operate using
various heuristics. The soundness of the entire approach is
ensured through the execution of the tactics generated by
the proof planner.

3.2.1 Recurrence relation heuristic
The use of recurrence relations plays a key role in our pro-
gram analysis heuristics. Significant tool support exists to
automatically solve certain classes of recurrence relations,
e.g. MATLAB [1]. We have focused on PURRS [3] for our
current work. However, as our technique requires the ser-
vices of a generic recurrence relation solver, we are not tied
to PURRS.

The transformations applied to program variables within
a loop can be expressed as a series of recurrence relations.
That is, the value of each variable on the � ���

iteration is
expressed in terms of variables on previous iterations, usu-
ally the

� ��� ��� ��� iteration. Solving these recurrence re-
lations produces an invariant equating the value of a vari-
able to an expression involving � . For example, in fig-
ure 1 I is implicitly initialised to

�
and the assignment

statement I:=I+1 is implicitly seen after each iteration
of the loop. This can be expressed as the recurrence rela-
tion 	�
����� ��� 	�
�������	�
���������� � , which can be solved as
	�
 ���!�"	�
���#�$� and reduced to 	%
 ���&�"� .

Often there is not sufficient information to solve a vari-
able’s recurrence relation. In such cases an approximation
is made, generalising the search of finding an equation for
the the � ���

iteration to finding an interval on the � ���
iter-

ation. The end points of these intervals are described us-
ing what we call extreme recurrence relations, giving the
extreme upper or lower limits of a variable on the � ���

it-
eration. In figure 1, R is initialised to

�
and the assignment

statement R:=R+D(I) is seen within the true branch of the
conditional test D(I)>=0 and D(I)<=100. The recur-
rence relation for the false path is � 
���'� �(� � 
����)� � 
����#�*� .
Note that � remains unchanged so can be solved as � 
��+�&� �

.
However, the recurrence relation for the true path 3, � 
����,��(� � 
����-� � 
����#�*�.�0/213/ �34 � 	�� , cannot be solved. The problem
is that /21�/ ��4 � 	�� is not expressed in terms of � . To eliminate
this problem term it is replaced by its extreme bounds, giv-
ing two extreme recurrence relations bounding the unsorted

interval 5�6 �27 �*8 � 
����9� � 
��:�#�*�-� ��� � 
 ���;� � 
 ���#�*�<� �
����= � .

These can be solved and subsequently sorted giving the in-
terval

8 �(� �?> �
� �@=

.

3.2.2 Extracting loop invariants
Once the abstract interpreter has terminated, a candidate in-
variant can be extracted from the solved recurrence rela-
tions. The form of this invariant is guided by the schematic
hypothesis discovered earlier. The solved recurrence rela-
tions can not be added directly as they may refer to the loop
iteration variable � , which does not exist within the code.
It is necessary to replace � with an expression in terms of
the known program variables. An expression for � is found
by isolating � in an equation relating a program variable
to an expression including � . For example, the abstract
value for the invariant of figure 1 includes 	+
 ���A�B� and
� 
��+�0� 8 ��� �C> �

����=
. The schematic hypothesis identifies

that the lower and upper bounds on � should be introduced.
The upper bound of � is in terms of � , however, exploiting
	�
����-�D� , � can be replaced with 	 giving the invariant:

--# assert R>=0 and R<=(I*100);

3.3 Planning the revised VCs

Adding the candidate invariant produces revised RTC
VCs with additional hypotheses. Further, the invariant VCs
have additional conclusions to prove the strengthened in-
variant. Although these VCs are provable, they are not dis-
charged by the SIMPLIFIER. With the added hypotheses our
exception freedom proof plan is now able to prove the RTC
VCs. The loop invariant VCs are tackled using the ripple
proof method [7]. Space precludes further discussion, how-
ever, the applicability of the ripple method to the verifica-
tion of loop invariants has been previously investigated [20].

4 Implementation and results

Our exception freedom proof plan has been implemented
within the CLAM proof planner [8]. The implementation of
the tactics is ongoing. A prototype of the program analyser
has been developed within Prolog. The proof planner and
program analyser will eventually be integrated within a new
system called NUSPADE. Evaluation of our approach is in
the early stages, but our initial results are encouraging. We
are about to embark on a more detailed testing and evalua-
tion phase using industrial strength examples.

5 Related work

Probably the first system to prove exception freedom is
the RUNCHECK verifier [17]. RUNCHECK operated on Pas-
cal programs, employing a number of heuristics to discover

3ele is an abbreviation of the array access function element.

3



invariants and tackling RTC VC proofs with an external the-
orem prover. One of its heuristics involved the calculation
of recurrence relations as change vectors, ignoring program
context and collecting transformations made to variables.
These change vectors were subsequently solved using a few
rewrite rules that targeted common patterns. Our approach
has a tighter integration between theorem proving and pro-
gram analysis. In addition, our program analyser solves
recurrence relations using a powerful recurrence relation
solver tool. Further, our program analysis exploits program
context and approximates to intervals where equality solu-
tions can not be found.

The use of recurrence relations in generating loop-
invariants was first reported by Elspas et al [13] and was
also used by Katz and Manna [21]. Although the limits of
recurrence relations as a basis for generating loop-invariants
are well known [10], they have proved to be very useful for
our niche application.

Recently there has been renewed interest in approaches
that employ theorem proving to strengthen program devel-
opment. The focus tends to be on finding errors rather than
proving correctness. For example, ESC/JAVA [16] is an ex-
tended static checker for Java. Like SPARK, ESC/JAVA re-
quires program annotations. HOUDINI [15] is able to au-
tomatically generate many of the annotations required by
ESC/JAVA using predicate abstraction. There also exist sys-
tems based purely on abstract interpretation that require no
program annotations. Most noteworthy are MERLE [23] and
POLYSPACE [2]. Although these recent systems do not tar-
get proof, there results may still be valuable for our ap-
proach. In particular, we intend to conduct an investigation
of POLYSPACE in the near future.

6 Conclusion

Building upon the SPARK approach, we have developed
a hybrid technique for increasing the automation of excep-
tion freedom proofs. Program analysis is used to generate
missing proof assertions. Proof planning provides the trig-
ger for this analysis and proof automation for the associ-
ated proof obligations. Encouraged by our initial results, we
believe that this approach will deliver significant improve-
ments in the automation of exception freedom proofs within
industrial strength applications.

Acknowledgements: In particular we would like to thank Peter
Amey and Rod Chapman for their support in our research. Thanks
also go to Alan Bundy, Jonathan Hammond, Ian O’Neill, Phil
Thornley, Benjamin Gorry, Tommy Ingulfsen, Julian Richardson
and Maria McCann for their feedback and encouragement. The
research reported in this paper is supported by EPSRC grant
GR/R24081 and is a collaboration with Praxis Critical Systems
Ltd.

References

[1] Matlab. http://www.mathworks.com/.
[2] Polyspace-technologies. http://www.polyspace.com/.
[3] Purrs: The parma university’s recurrence relation solver.

http://www.cs.unipr.it/purrs/.
[4] P. Amey and R. Chapman. Industrial strength exception free-

dom. In Proceedings of ACM SigAda. 2002.
[5] J. Barnes. High Integrity Software: The SPARK Approach to

Safety and Security. Addison-Wesley, 2003.
[6] A. Bundy. The use of explicit plans to guide inductive proofs.

In Proceedings of CADE-9. Springer-Verlag, 1988.
[7] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and

A. Smaill. Rippling: A heuristic for guiding inductive
proofs. Artificial Intelligence, 62, 1993.

[8] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The
Oyster-Clam system. In CADE-10. Springer-Verlag, 1990.

[9] A. Bundy and B. Welham. Using meta-level inference for se-
lective application of multiple rewrite rules in algebraic ma-
nipulation. Artificial Intelligence, 16(2), 1981.

[10] M. Caplain. Finding invariant assertions for proving pro-
grams. In Proceedings of the International Conference on
Reliable Software, Los Angeles, CA, 1975.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL-4. ACM Press, 1977.

[12] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer
overflows: Attacks and defenses for the vulnerability of the
decade. In DARPA Information Survivability Conference and
Expo (DISCEX). 2000.

[13] D. Elspas, M.W. Green, K.N. Levitt, and R.J. Waldinger. Re-
search in interactive program-proving techniques. In SRI,
Menlo Park, CA. 1972.

[14] ESA. Ariane 5 - flight 501 failure. Board of inquiry report,
European Space Agency, 1996.

[15] C. Flanagan, K. Rustan, and M. Leino. Houdini, an anno-
tation assistant for ESC/Java. In Proceedings of FME 2001.
LNCS 2021, Springer-Verlag, 2001.

[16] C. Flanagan, K. Rustan, M. Leino, M. Lillibridge, G. Nelson,
J. Saxe, and R. Stata. Extended static checking for Java. In
Proceedings of PLDI, 2002.

[17] S.M. German. Automating proof of the absence of common
runtime errors. In Proceedings of POPL-5. 1978.

[18] A. Ireland. The Use of Planning Critics in Mechanizing
Inductive Proofs. In Proceedings of LPAR‘92. LNAI 624,
Springer-Verlag, 1992.

[19] A. Ireland and A. Bundy. Productive use of failure in induc-
tive proof. Journal of Automated Reasoning, 16(1–2), 1996.

[20] A. Ireland and J. Stark. Proof planning for strategy devel-
opment. Annals of Mathematics and Artificial Intelligence,
29(1-4), 2001.

[21] S.M. Katz and Z. Manna. Logical analysis of programs.
Communications of the ACM, 19(4), 1976.

[22] S. King, J. Hammond, R. Chapman, and A. Pryor. Is proof
more cost effective than testing? IEEE Trans. on SE, 26(8),
2000.

[23] Liz Whiting and Mike Hill. Safety analysis of hawk in flight
monitor. In Workshop on Program Analysis For Software
Tools and Engineering, 1999.

4


