
Invariant Patterns for Program Reasoning

Andrew Ireland and Bill J. Ellis and Tommy Ingulfsen

School of Mathematical & Computer Sciences

Heriot-Watt University, Edinburgh, Scotland, UK

a.ireland@hw.ac.uk bill@macs.hw.ac.uk tommying@online.no

Abstract

We address the problem of integrating standard techniques for auto-
matic invariant generation within the context of program reasoning. We
propose the use of invariant patterns which enable us to associate com-
mon patterns of program code and specifications with invariant schemas.
This allows crucial decisions relating to the development of invariants to
be delayed until a proof is attempted. Moreover, it allows patterns within
the program to be exploited in patching failed proof attempts.

1 Introduction

Within the context of program reasoning, we address the problem of automat-
ing loop invariant generation. There are two basic kinds of invariant generation
techniques. Firstly, bottom-up analysis techniques generate inductive invariants
by analysing program code. Secondly, top-down analysis techniques use specifi-
cations (assertions) as the basis for generating inductive invariants. In practice,
a third kind of analysis, what we will call proof-failure analysis, also plays a
crucial role within invariant generation.

We propose the use of invariant patterns as a means of achieving a effective
integration of these three kinds of analyses. An invariant pattern represents
an invariant schema together with a selection criteria. We build upon proof
planning [3], a technique for automating theorem proving. In particular, we
use middle-out reasoning [4] which supports an incremental style of invariant
discovery and proof critics [9, 11] which supports proof-failure analysis. The
context for our work is the application of proof planning to the verification
of programs written in SPARK [1], a programming language designed for the
development of critical software systems. SPARK is derived from Ada and
includes an annotation language which supports flow analysis and formal proof.
In §2, §3, and §4 we outline our general approach, while in §5, we present a
detailed application.

1

mono dec(V, W): Means that V is a loop counter which monotonically
decreases during the execution of loop W .

mono inc(V, W): Means that V is a loop counter which monotonically
increases during the execution of loop W .

constant(V, W): Means that V is a loop counter which is constant during
the execution of loop W .

Figure 1: Meta predicates

2 Bottom-Up Analysis

Traditional bottom-up analysis techniques generate light-weight invariant prop-
erties, such as relationships between loop counter variables. Such invariants
are typically required in order to complete a proof. In addition to generating
invariants, our extended bottom-up analysis technique generates information
that supports both top-down and proof-failure analyses. This involves identify-
ing common patterns in terms of how program variables and data structures are
used within an algorithm. Such patterns can be used in guiding the discovery
of invariants. By way of illustration, invariant discovery involves identifying
the relationship between “work done” and “work still to do” during a compu-
tation. Within the context of array based programs, this relationship typically
corresponds to partitioning an array, where partition boundaries are defined in
terms of loop counter variables. Knowing how counter variables change during
a computation provides guidance in determining the structure of invariants. We
explicitly represent these changes by means of predicates as defined in figure 1.
Making these notions explicit means that the information can be exploited by
our top-down and failure-analysis techniques, as will be illustrated later. Note
that where loops are nested an outer-loop counter will typically remain un-
changed during the execution of an inner-loop. This notion is expressed by the
predicate constant. It is envisaged that this set of predicates will evolve as new
patterns between algorithms and invariants are identified.

3 Top-Down Analysis

Our top-down analysis technique is novel in that it generates schematic invari-
ants. To illustrate the general mechanism, consider the following pattern of
postcondition for an array based program:

(∀q : int. ((l ≤ q) ∧ (q ≤ u)) → P (q)) (1)

Note that l and u denote the lower and upper bounds on q respectively. Typi-
cally these bounds will correspond to the array bounds and the predicate P (q)
will define a property of the array. Weakening a postcondition corresponding to
(1) can be achieved by restricting the range of q. We call this pattern of invari-
ant range restriction. In order to tailor this pattern to a particular algorithm

2

we use the information generated via bottom-up analysis. Let us assume that
the predicate P specifies a property of an array t, moreover that t is partitioned
with respect to a loop counter i with accessible range l to i. If i is monotonically
increasing then this suggests that (1) should be weakened by replacing u, the
upper bound on q. Determining the identity of the replacement term is a key
problem. The conventional strategy involves generate and test, where test in-
volves a theorem prover. Here we propose the use of meta-variables, this allows
us to delay the choice until we plan the proof. In terms of (1), this gives an
invariant schema of the form:

(∀q : int. ((l ≤ q) ∧ (q ≤ F1(i))) → P (q))

Note that F1 denotes a second-order meta-variable. If the accessible range
associated with i was i to u and i was monotonically decreasing, then the l

would have been replaced by F1(i). Within the context of nested loops, invariant
schemas are generated for an outer-loop before its inner-loop. An inner-loop will
inherit the invariant schemas generated for its outer-loop.

4 Proof-Failure Analysis

Given a failed proof attempt, a common theorem proving strategy is to conjoin
the failed goal onto the original conjecture (invariant) and attempt the proof
again. We extend this strategy by introducing two alternative generalization
steps. We describe each generalization in terms of a proof critic.

4.1 Range Generalization Critic

Using a “picture” notation, consider the following array:

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

T1 T2L U

Note that the elements indexed by T1 and T2 are adjacent while L and U

denote the lower and upper bounds on the array respectively. When proving
a relationship between adjacent elements it is often the case that one needs to
consider a range of elements rather than just the individuals, i.e.

T1 T2L U

Considering a range of elements provides a stronger invariant (inductive) hy-
pothesis. Here we represent this observation as a proof critic. The preconditions
for what we call the range generalization critic are as follows1:

1Note that ele(X, [Y]) denotes the value of element Y within array X.

3

1. A goal is unprovable within the current proof context and matches the following
pattern:

ele(A, [T1]) Rel ele(A, [T2])
︸ ︷︷ ︸

blocked

where A denotes an array, terms T1 and T2 index adjacent elements within the
array A and Rel denotes a transitive relation.

2. Terms T1 and T2 contain a counter variable in common.

Note that precondition 2 exploits the meta predicates outlined in §2. The
associated patch involves generalizing with respect to both T1 and T2, i.e.

(∀X : int.((L ≤ X) ∧ (X ≤ T1)) →

(∀Y : int.((T1 < Y) ∧ (Y ≤ U)) → ele(A, [X]) Rel ele(A, [Y])))

This generalized goal represents an auxiliary invariant which is then conjoined
onto the original invariant. We envisage situations where a weaker generalization
may be appropriate. For instance, if T1 denotes a constant then only T2 would
be generalized, and vice versa.

4.2 Difference Generalization Critic

Our second generalization critic builds upon the rippling proof plan. Rippling
is a rewriting technique in which annotations are used to guide the selection
of rewrite rules. Selection is based upon a difference reduction heuristic. The
difference between a goal and a hypothesis are annotated, where the annotations
are called wave-fronts. Annotated rewrite rules, known as wave-rules, are used
to reduce the differences between goal and hypothesis. Rippling is successful if
a match between the goal and the hypothesis is made possible. This matching is
known as fertilization. A completely formal account of the ripple method can be
found in [2, 5]. Our second generalization critic is motivated by the observation
that an unproven goal resulting from a successful fertilization often requires
a subsequent ripple proof. This in turn involves annotating the differences
between the post-fertilization goal and another hypothesis (invariant) within
the proof context. This change of the “rippling focus” breaks down if the proof
context is missing the hypothesis (invariant) that is necessary for the ripple
proof to proceed. The patch uses the available wave-rules (background theory)
to guide the discovery of the missing hypothesis (invariant), i.e. we look for
wave-rule matches that fail because of missing wave-front annotations within
the goal. The preconditions to the critic are as follows:

1. A post-fertilization goal is unprovable within the current proof context, i.e.

f(g(c(a, b)))
︸ ︷︷ ︸

blocked

2. There exists a wave-rule that matches modulo missing wave-front annotations,
i.e.

g(c(a, b)
↑

) ⇒ h(g(a))
↑

4

3. Application of the wave-rule would progress the proof planning.

Note that shading is used to represent wave-front annotations. Here anno-
tations are missing from the goal, preventing the application of the wave-rule.
With regards to precondition 2, a criteria for evaluating the closeness of a near-
miss would be necessary in order to rank candidate wave-rules. Note that pre-
condition 3 is not essential, but further constrains the search for an auxiliary
invariant by looking ahead into the proof planning. The associated patch in-
volves eliminating the terms within the unproven goal that correspond to the
missing wave-front annotations. In the general case this gives f(g(a)). This
modified formula represents an auxiliary invariant that is then conjoined to the
original invariant. Where multiple sources for the missing wave-front annota-
tions exist then alternative schemas need to be considered. Using rippling in
reverse2 alternative sources for the missing annotations can be identified. Each
alternative gives rise to an unique candidate invariant schema. Again informa-
tion gathered during bottom-up analysis can be used to impose an ordering on
the schemas, as will be illustrated later.

5 Verification of a Bubble Sort Program

We now apply the ideas described above to the verification of bubble sort. The
SPARK version of bubble sort, which is verified, is given in figure 2. Note
that the code is annotated with preconditions and postconditions, but no loop
invariants are specified. Moreover, given that the code involves nested loops
then two loop invariants will be required in order to prove partial correctness.

5.1 Bottom-Up Analysis

In terms of proof construction, our bottom-up analysis of the bubble sort code
generates a couple of invariant properties. Firstly, the analysis identifies the
bounds on loop counter I: 1 ≤ i ∧ i ≤ last. Secondly, bounds on loop counter
J are also identified: i ≤ j ∧ j ≤ last. Note that the second invariant is
with respect to the inner-loop only. These are generated by analysing the initial
and final values of both loop counters. In terms of proof search, the following
properties are established:

mono inc(i, for loop i) (2)

mono dec(j, for loop j) (3)

constant(i, for loop j) (4)

Note that these meta predicates are defined in figure 1.

2This is analogous to the induction revision critic (see [11]) where rippling in reverse is
used to determine alternative induction schemas.

5

5.2 Top-Down Analysis

We now turn to the specification of bubble sort. The predicate Ordered, that
forms part of the postcondition, is defined as follows:

ordered(A,L, U) ↔ (∀P : int.(L ≤ P ∧ P < U) → ele(A, [P]) ≤ ele(A, [P + 1])) (5)

Unfolding using (5), the Ordered predicate becomes:

(∀p : int.((0 ≤ p) ∧ (p < last)) → ele(table, [p]) ≤ ele(table, [p + 1])) (6)

This is a candidate for the range restriction invariant pattern. From our bottom-
up analysis of the bubble sort code (see §5.1), we identify nested loops. The
outer-loop is associated with a single partition defined by (2), while the inner-
loop is associated with partitions defined by (3) and (4). As mentioned above,
we consider the outer most loop first, then the second outer most loop and so
on. So in weakening (6) we consider the partition defined by I. By (2), we know
that I monotonically increases during the execution of the outer-loop, which
suggests replacing last by F1(i) to give an outer-loop invariant schema of the
form:

(∀p : int.((0 ≤ p) ∧ (p < F1(i))) → ele(table, [p]) ≤ ele(table, [p + 1])) (7)

This invariant schema is inherited by the inner-loop. By (4) we known that
I remains constant within the inner-loop. As a consequence we only consider
a partition defined by (3) as the basis for a further weakening of (7). By (3),
we know that J monotonically decreases during the execution of the inner-loop,
which suggests replacing 0 by G1(j) within (7) to give:

(∀p : int.((G1(j) ≤ p) ∧ (p < F1(i))) → ele(table, [p]) ≤ ele(table, [p + 1])) (8)

Clearly the more meta-variables that appear within a schema, the greater the
search control problems. To minimize these problems we organize the search by
ordering schemas according to the number of meta-variables they contain. For
instance, schema (7) has less meta-variables than schema (8), so proof planning
with respect to (8) will only be undertaken if the proof planning for (7) is not
successful.

6

package BubbleSort is
subtype Index_Type is Integer range 0..9;
type Array_Type is array (Index_Type) of Integer;
...
procedure Bubble_Sort(Table: in out Array_Type);
--# derives Table from Table;
--# pre true;
--# post Ordered(Table, 0, Index_Type’Last) and
--# Perm(Table, Table~);
end BubbleSort;

package body BubbleSort is
procedure Bubble_Sort(Table: in out Array_Type) is

T: Integer;
begin

for I in Index_Type range 1..Index_Type’Last loop
for J in reverse Index_Type range I..Index_Type’Last loop

if Table(J-1) > Table(J) then
T:= Table(J-1); Table(J-1):= Table(J); Table(J):= T;

end if;
end loop;

end loop;
end Bubble_Sort;

end BubbleSort;

Figure 2: A SPARK implementation of Bubble Sort

(X + 1)
↑

− Y ⇒ (X − Y) + 1
↑

(9)

(∀X : int.((L ≤ X) ∧ (X < U + 1
↑

)) → P (X)) ⇒ (∀X : int.((L ≤ X) ∧ (X < U)) → P (X)) ∧ ((L ≤ U) → P (U))
↑

(10)

(∀X : int.((L − 1
↑

< X) ∧ (X ≤ U)) → P (X)) ⇒ (∀X : int.((L < X) ∧ (X ≤ U)) → P (X)) ∧ ((L ≤ U) → P (L))
↑

(11)

(∀X : int.((L ≤ X) ∧ (X ≤ M + 1
↑

)) →

(∀Y : int.((M + 1
↑

< Y) ∧ (Y ≤ U)) → P (X,Y))) ⇒ (∀X : int.((L ≤ X) ∧ (X ≤ M)) →

(∀Y : int.((M < Y) ∧ (Y ≤ U)) → P (X, Y))) ∧

(∀Z : int.((M + 1 < Z) ∧ (Z ≤ U)) → P (M + 1, Z))
↑

(12)

Figure 3: Wave-rules

7

5.3 Proof Planning and Proof-Failure Analysis

The proof planning requires a number of attempts, where each attempt refines
the candidate invariants. Success corresponds to the generation of a concrete set
of invariants (proof annotations) and proof tactics for the associated verification
conditions (VCs).

5.3.1 First Proof Planning Attempt:

The analysis outlined above gives rise to a set of schematic VCs. We focus on
the Ordered predicate. Following a rippling style of proof, we have schematic
hypothesis (7) and an annotated goal of the form:

(∀p : int.((0 ≤ p) ∧ (p < F1((i + 1)
↑

))) → ele(table, [p]) ≤ ele(table, [p + 1])) (13)

Using wave-rules (9) and (10) rippling rewrites (13) to give:

(∀p : int.((0 ≤ p) ∧ (p < i − F2(i + 1
↑

))) → ele(table, [p]) ≤ ele(table, [p + 1])) ∧

(0 ≤ (i − F2(i + 1))) → ele(table, [i − F2(i + 1)]) ≤ ele(table, [i − F2(i + 1) + 1])
↑

Note that as a side-effect, F1 is partially instantiated, i.e. F1 becomes λx.x −
F2(x). Fertilization with hypothesis (7) would leave a residue of the form:

(0 ≤ (i − F2(i + 1))) → ele(table, [i − F2(i + 1)]) ≤ ele(table, [i − F2(i + 1) + 1])

Decomposing the implication gives rise to a new hypothesis

0 ≤ (i − F2(i + 1)) (14)

and a goal of the form:

ele(table, [i − F2(i + 1)]) ≤ ele(table, [i − F2(i + 1) + 1])
︸ ︷︷ ︸

blocked

(15)

Note that this goal is blocked as no proof methods are applicable, i.e. rippling,
simplification or fertilization. Proof-failure analysis applies the range gener-
alization critic. The associated proof patch generates the following auxiliary
invariant schema:

(∀p : int.((0 ≤ p) ∧ (p ≤ i − F2(i + 1))) →

(∀q : int.((i − F2(i + 1) < q) ∧ (q ≤ last)) → ele(table, [p]) ≤ ele(table, [q]))) (16)

The proof patching process is completed by conjoining (16) onto the refined
outer-loop invariant schema, from which a revised set of VCs are generated.

8

5.3.2 Second Proof Planning Attempt:

With the refined outer-loop invariant, the proof context on the second proof at-
tempt contains (16). Proof proceeds initially, as described for the first attempt.
However, where the proof previously was blocked, hypothesis (16) can be spe-
cialized (using (14)) in order to prove (15). To complete the proof of goal (13)
we need to complete the instantiation of the schema. To achieve this we have
to exploit constraints imposed by other parts of the proof. Testing a candidate
invariant on loop entry will typically detect over generalizations3. For instance,
on entry to the outer-loop I has the value 1 and schema (16) becomes:

(∀p : int.((0 ≤ p) ∧ (p ≤ 1 − F2(2))) →

(∀q : int.((1 − F2(2) < q) ∧ (q ≤ last)) → ele(table, [p]) ≤ ele(table, [q])))

This schematic goal is trivial to prove if F2 is instantiated to be λx.2, We return
to the mechanization of such a step in §7. Note that the instantiated invariant
schema asserts that the array table is partitioned such that elements below i− 2
(inclusive) are less than or equal to the elements above i − 2.

5.3.3 Third Proof Planning Attempt:

We now consider the proof of the partitioned invariant discovered above. In
particular, we focus on the VC corresponding to the path from the inner-loop
invariant to the outer-loop invariant, i.e. where i is equal to j and we have a
hypothesis of the form

(∀p : int.((0 ≤ p) ∧ (p ≤ i − 2)) →

(∀q : int.((i − 2 < q) ∧ (q ≤ last)) → ele(table, [p]) ≤ ele(table, [q]))) (17)

and an annotated goal of the form:

(∀p : int.((0 ≤ p) ∧ (p ≤ (i + 1)
↑

− 2)) →

(∀q : int.(((i + 1)
↑

− 2 < q) ∧ (q ≤ last)) → ele(table, [p]) ≤ ele(table, [q]))) (18)

Using wave-rules (9) and (12) rippling rewrites (18) to give:

(∀p : int.((0 ≤ p) ∧ (p ≤ i − 2)) →

(∀q : int.((i − 2 < q) ∧ (q ≤ last)) → ele(table, [p]) ≤ ele(table, [q]))) ∧

(∀q′ : int.(((i − 2) + 1 < q′) ∧ (q′ ≤ last)) → ele(table, [i − 2 + 1]) ≤ ele(table, [q′]))
↑

Fertilization with hypothesis (17) leaves a residue which simplifies to give:

(∀q
′ : int.((i − 1 < q

′) ∧ (q′ ≤ last)) → ele(table, [i − 1]) ≤ ele(table, [q′]))
︸ ︷︷ ︸

blocked

(19)

3This is analogous to testing base cases within the context of proof by mathematical
induction in order to guard against an over generalization.

9

No proof methods are applicable so the goal is blocked. Motivated by a partial
match with wave-rule (11), proof-failure analysis applies the difference general-
ization critic. Given that i and j are equal, two alternative invariant schemas
can be generated. The first asserts a notion of minimum element based upon i:

(∀q
′ : int.((i < q

′) ∧ (q′ ≤ last)) → ele(table, [i]) ≤ ele(table, [q′]))

The second makes a similar assertion for j:

(∀q
′ : int.((j < q

′) ∧ (q′ ≤ last)) → ele(table, [j]) ≤ ele(table, [q′])) (20)

Note that from our bottom-up analysis we know that i denotes the upper bound-
ary of a partition (see (2)) while j denotes the lower boundary of a partition (see
(3)). Consequently, (20) is most closely aligned with the bubble sort algorithm.
By this combination of proof-failure and bottom-up analysis, (20) is selected as
a second auxiliary invariant. Note that (20) asserts that for the partition above
j, the element indexed by j is the minimum. The proof patching process is
completed by conjoining (20) onto the inner-loop invariant schema, from which
a revised set of VCs are generated.

5.3.4 Fourth and Fifth Proof Planning Attempts:

With the refined inner-loop invariant, the proof context on the fourth proof
attempt contains (20). Proof proceeds initially as described for the third at-
tempt. However, where the proof previously was blocked (see (19)), hypothesis
(20) provides the basis for a simple rippling proof. To complete the reason-
ing, (20) must be shown to be invariant with respect to the inner-loop, again a
relatively simple application of rippling is required.

5.4 Summary of Invariant Discovery Results

Bottom-up analysis generated counter variable properties which contributed to
both the outer-loop and inner-loop invariants. Top-down analysis, constrained
by bottom-up analysis, generated an invariant schema. Through proof-failure
analysis, this schema was refined to give the partitioned invariant, i.e. (17).
Proof-failure analysis also generated the minimum invariant, i.e. (20).

6 Comparison with Related Work
Research into heuristic rules for both bottom-up and top-down analysis have a
long history [15, 16, 18, 19]. The work of Wegbreit led to the development of a
prototype system called vista [7]. The vista system, and the later runcheck

[6] system used the strategy of conjoining failed goals onto a conjecture. The
vista system was also able to extract information from failed proofs. Our
proof critics extend theses ideas. In particular, there are two key differences
between our approach and previous approaches. Firstly, the use of schematic
invariants which allows an incremental style of generation (cf generate-and-test).
Secondly, the use of program knowledge in constraining proof patches during
proof planning.

10

7 Current Implementation and Future Work

Our bottom-up analysis techniques have been implemented and tested within a
prototype called AutoGap [8]. The application of rippling presented here is not
new and we have a proof planner that supports the incremental instantiation
of schematic conjectures and proof patching [10, 11, 12, 13, 17, 14]. The imple-
mentation of the proposed generalization proof critics is under-way. In terms of
future work, the style of proof planning outlined above requires the ability to
opportunistically switch between VCs. Moreover, the ability to exploit counter-
examples in instantiating invariant schemas (see second proof planning attempt
§5.3) is an area that requires further investigation.

8 Conclusion

We propose an integration of invariant discovery techniques. The approach relies
upon the incremental instantiation of invariant schemas and the use of program
patterns during the patching of failed proof attempts. Our implementation work
is ongoing, but we believe that this work will demonstrate the synergies that
can be achieved through the integration of static analysis techniques.

Acknowledgements: Thanks to Peter Amey, Alan Bundy, Rod Chapman,
Jonathan Hammond and Ian O’Neill for their feedback and support. The re-
search is funded by EPSRC grant GR/R24081 and is a collaboration with Praxis
Critical Systems Ltd.

References

[1] J. Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

[2] D. Basin and T. Walsh. A calculus for and termination of rippling. Journal
of Automated Reasoning, 16(1–2):147–180, 1996.

[3] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk
and R. Overbeek, editors, 9th International Conference on Automated De-
duction, pages 111–120. Springer-Verlag, 1988. Longer version available
from Edinburgh as DAI Research Paper No. 349.

[4] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations
in automatic program synthesis. In S. L.H. Clarke, editor, Proceedings of
UK IT 90, pages 221–6. IEE, 1990. Also available from Edinburgh as DAI
Research Paper 448.

[5] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-
pling: A heuristic for guiding inductive proofs. Artificial Intelligence,
62:185–253, 1993. Also available from Edinburgh as DAI Research Paper
No. 567.

11

[6] S.M. German. Automating proof of the absence of common runtime er-
rors. In Proceedings of 5th ACM Conference on Principles of Programming
Languages. 1978.

[7] S.M. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE
Trans. on Software Engineering, SE-1(1):68–75, 1975.

[8] T. Ingulfsen. Automatic Generation of Algorithmic Properties (AutoGAP).
Undergraduate bsc computer science project dissertation, School of Mathe-
matical and Computer Sciences, Heriot-Watt University, Edinburgh, 2003.

[9] A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs.
In A. Voronkov, editor, International Conference on Logic Programming
and Automated Reasoning – LPAR 92, St. Petersburg, Lecture Notes in
Artificial Intelligence No. 624, pages 178–189. Springer-Verlag, 1992. Also
available from Edinburgh as DAI Research Paper 592.

[10] A. Ireland and A. Bundy. Extensions to a Generalization Critic for Induc-
tive Proof. In M. A. McRobbie and J. K. Slaney, editors, 13th International
Conference on Automated Deduction, pages 47–61. Springer-Verlag, 1996.
Springer Lecture Notes in Artificial Intelligence No. 1104. Also available
from Edinburgh as DAI Research Paper 786.

[11] A. Ireland and A. Bundy. Productive use of failure in inductive proof.
Journal of Automated Reasoning, 16(1–2):79–111, 1996. Also available as
DAI Research Paper No 716, Dept. of Artificial Intelligence, Edinburgh.

[12] A. Ireland and A. Bundy. Automatic Verification of Functions with Ac-
cumulating Parameters. Journal of Functional Programming: Special Is-
sue on Theorem Proving & Functional Programming, 9(2):225–245, March
1999. A longer version is available from Dept. of Computing and Electrical
Engineering, Heriot-Watt University, Research Memo RM/97/11.

[13] A. Ireland and J. Stark. On the Automatic Discovery of Loop Invariants.
In Proceedings of the Fourth NASA Langley Formal Methods Workshop –
NASA Conference Publication 3356, 1997. Also available from Dept. of
Computing and Electrical Engineering, Heriot-Watt University, Research
Memo RM/97/1.

[14] A. Ireland and J. Stark. Proof planning for strategy development. Annals
of Mathematics and Artificial Intelligence, 29(1-4):65–97, February 2001.
An earlier version is available as Research Memo RM/00/3, Dept. of Com-
puting and Electrical Engineering, Heriot-Watt University.

[15] S.M. Katz and Z. Manna. A heuristic approach to program verification.
In Proceedings of IJCAI-73. International Joint Conference on Artificial
Intelligence, 1973.

[16] S.M. Katz and Z. Manna. Logical analysis of programs. Communications
of the ACM, 19(4):188–206, 1976.

12

[17] J. Stark and A. Ireland. Invariant discovery via failed proof attempts.
In P. Flener, editor, Logic-Based Program Synthesis and Transformation,
LNCS 1559, pages 271–288. Springer-Verlag, 1998. An earlier version is
available from the Dept. of Computing and Electrical Engineering, Heriot-
Watt University, Research Memo RM/98/2.

[18] B. Wegbreit. Heuristic methods for mechanically deriving inductive as-
sertions. In Proceedings of IJCAI-73. International Joint Conference on
Artificial Intelligence, 1973.

[19] B. Wegbreit. The synthesis of loop predicates. Comm. ACM, 17(2):102–
122, 1974.

13

