An Integration of Program Analysis and
Automated Theorem Proving

Bill J. Ellis and Andrew Ireland

School of Mathematical & Computer Sciences
Heriot-Watt University, Edinburgh, Scotland, UK
bill@macs.hw.ac.uk a.ireland@hw.ac.uk

Abstract. Finding tractable methods for program reasoning remains a
major research challenge. Here we address this challenge using an inte-
grated approach to tackle a niche program reasoning application. The
application is proving exception freedom, i.e. proving that a program is
free from run-time exceptions. Exception freedom proofs are a significant
task in the development of high integrity software, such as safety and se-
curity critical applications. The SPARK approach for the development
of high integrity software provides a significant degree of automation in
proving exception freedom. However, when the automation fails, user in-
teraction is required. We build upon the SPARK approach to increase the
amount of automation available. Our approach involves the integration
of two static analysis techniques. We extend the proof planning paradigm
with program analysis.

1 Introduction

Program reasoning has been an active area of research since the early days of
computer science, as demonstrated by a program proof by Alan Turing [36].
However, as highlighted in [27] the search for “tractable methods” has remained
a key research challenge. Here we address this challenge by considering the in-
tegration of two distinct static analysis techniques. The first is proof planning
[4], a theorem proving technique developed by the automated deduction com-
munity. The second is program analysis, a general technique for automatically
discovering interesting properties from a program’s source code.

For our program reasoning we have focused on the SPARK programming
language [1]. SPARK is designed for the development of high integrity software,
as seen in safety and security critical applications. Qur primary interest is in the
development of automatic methods for proving exception freedom in SPARK
programs, i.e. proving that a program is free from run-time exceptions. Such
program reasoning represents an important task in the development of high
integrity software. For instance, the loss of Ariane 5 was a result of an inte-
ger overflow run-time error [15], while buffer overflows are the most common
form of security vulnerability [12]. The SPARK toolset supports proof of ex-
ception freedom using formal verification. This reduces the task of guaranteeing

exception freedom to proving a number of theorems called verification condi-
tions (VCs). Industrial strength evidence [9] shows that the SPARK toolset can
typically prove around 90% of such VCs automactically. Our work targets the
remaining 10%. These typically account for hundreds of VCs, each requiring user
interaction to complete the proof.

Background material on SPARK and the nature of the verification problem
being addressed is presented in §2. In §3 we compare proof using the SPARK
toolset to proof following our approach. The details of our approach are presented
in §4, §5, §6 and §7. In §8 related work is discussed while in §9 progress and future
work are outlined. Our conclusions are presented in §10.

2 Background to the Problem

2.1 The SPARK Approach

The SPARK programming language is defined as a subset of Ada [26]. SPARK
excludes many Ada constructs, such as pointers, dynamic memory allocation
and recursion to make static analysis of SPARK feasible. SPARK includes an
annotation language that supports flow analysis and formal proof. In the case
of formal proof the annotations capture the program specification, asserting
properties that must be true at particular program points. The annotations are
supplied within regular Ada comments, allowing a SPARK compliant program
to be compiled using any Ada compiler.

Compliance to the SPARK language is enforced by a static analyser called the
EXAMINER. In addition, the EXAMINER performs data flow and information flow
analysis [3]. The EXAMINER supports formal verification by building directly
upon the Floyd/Hoare style of reasoning. VCs can be generated for proofs of
both partial correctness and exception freedom. Two additional tools called the
SPADE SIMPLIFIER and SPADE PROOF CHECKER are used to prove these VCs.
The SIMPLIFIER is a special purpose theorem prover designed to automatically
discharge relatively simple VCs while the PROOF CHECKER is an interactive proof
development environment.

2.2 SPARK Exception Freedom

By its definition, SPARK eliminates many of the run-time exceptions that can be
raised within Ada. However, index, range, division and overflow checks can still
raise exceptions in SPARK code. The EXAMINER generates run-time check (RTC)
VCs to statically guard against such exceptions. The RTC VCs are equivalent
to the Ada run-time checks, consequently proving every RTC VC guarantees
exception freedom. To generate VCs every loop must be annotated with an
invariant. To support proof of exception freedom for sparsely annotated SPARK
code, the EXAMINER automatically inserts invariants as will be described in §5.2.

To illustrate the problems associated with proving RTC VCs consider the
SPARK code given in Figure 1. Note that this is used as a running example

package body FilterPackage is
procedure Filter(A: in A_T;
package FilterPackage is R: out Integer)
subtype AR_T is Integer is
range 0..9; begin
type A_T is array (AR_T) R:=0;
of Integer; for I in AR_T loop
procedure Filter(A: in A_T; if A(I)>=0 and A(I)<=100 then
R: out Integer); R:=R+A(I);
-—#derives R from A; end if;
end FilterPackage; end loop;
end Filter;
end FilterPackage;

Note that while ——# represents an Ada comment it also denotes a SPARK
annotation. Here the annotation is describing the flow information that R is
derived from array A in subprogram Filter. This specification is checked au-
tomatically by the EXAMINER during its information flow analysis.

Fig. 1. Filter and sum values in an array

throughout the paper. Consider the assignment statement in the then-branch,
i.e. R:=R+A(I), whose corresponding RTC VC is given in Figure 2. There are two
aspects to proving that this assignment can not raise an exception. Firstly, we
must show that the value of I can never exceed the range of array A, i.e. C1 and
C2. Secondly, we must show that the value of the expression R+A(I) lies within
the legal bounds of R, i.e. C3 and C4. While proving C1 and C2 is trivial (match
with H2 and H3 respectively), C3 and C4 are unprovable. This problem arises as
there is insufficient proof context. Note that the RTC VCs involve proving that
variables lie inside legal bounds. This is the case for all RTC VCs, allowing us
to target our proof techniques and program analysis accordingly.

3 Comparing Proof in SPARK with Our Approach

3.1 Proof via the SPARK Toolset

Completing a program proof in the SPARK toolset typically requires several
steps of user interaction. The general proof process undertaken is summarised
below.

1. Incomplete proof: For each VC yet to be proved the user must determine
the reason for the failure, implement a suitable patch, and then repeat this
proof process. Three reasons for failure are considered.

(a) Insufficient proof context: The VC is unprovable as the proof context
is not sufficiently strong. The user must introduce the required proof
context by strengthening the program specification.

(i___1 <= ar_t__last)) -> ((element(a, [i___1]) >=

integer__first) and (element(a, [i___1]) <= integer__last)))

Hi: for_all (i___1: integer, ((i___1 >= ar_t__first) and

H2: loop__1__i >= ar_t__first .
H3: loop__1__i <= ar_t__last .
H4: element(a, [loop__1__i]) >= 0 .
H5: element(a, [loop__1__i]) <= 100 .
->
Ci: loop__1__i >= ar_t__first .
C2: loop__1__i <= ar_t__last .
C3: r + element(a, [loop__1__i]) >= integer__first .
Cca: r + element(a, [loop__1__i]) <= integer__last .

The EXAMINER generates eight VCs for the running example of Figure 1. Three
of these are RTC Vs, while the rest are proving properties asserted by the
EXAMINER. The RTC VC above corresponds to proving that the assignment
in the then-branch can never raise an exception. Here H1, H2 and H3 are a
result of the invariant automatically inserted by the EXAMINER. Note that
element(a, [7]) denotes accessing array a at index 3.

Fig. 2. A run-time check verification condition (RTC VC)

(b) Discovered a bug: The VC can be proved to be false. This indicates
the presence of a bug in the source code or specification. The VC will
typically give a strong clue as to the nature of the bug. The user must
modify the code or specification to eliminate the bug.

(c) Beyond the simplifier: The VC is provable however its proof is be-
yond the scope of the SIMPLIFIER. The user must prove the VC via an
interactive session with the PROOF CHECKER.

2. Complete proof: Every VC is discharged by the SIMPLIFIER and any user
guided proofs created in the PROOF CHECKER.

This process is rarely intellectually demanding. However, typically many hun-
dreds of proof failures need to be patched per application. Further, all interac-
tive proofs will be tuned to a particular version of a program. As the program is
changed these proofs may break and require refinement. Thus this task presents
a significant bottle-neck to the practical completion of exception freedom proofs.

3.2 Proof via Our Approach

Our approach reduces the amount of user interaction required to complete a
proof. We extend the existing SPARK toolset with a new tool called NUSPADE!.
NUSPADE is a proof planner that also incorporates program analysis. By using
NUSPADE aspects of the proof process outlined above can be automated.

1. Incomplete proof: Each VC yet to be proved is automatically tackled by
NUSPADE. If NUSPADE successfully finds a proof plan then this is exported as

! The name NUSPADE empbhasises that we are building upon SPADE.

a customised tactic for execution inside the PROOF CHECKER. If NUSPADE

fails to find a proof plan three situations are possible.

(a) Insufficient proof context: If NUSPADE is able to identify missing
proof context then it can exploit the services of a program analysis oracle
to enhance the program specification accordingly.

(b) Discovered a bug: If NUSPADE reduces a VC to false then it must
indicate a bug. Although not considered further in this paper, there is
scope for configuring NUSPADE to actively detect common programing
errors. This will involve targeting the forms of VCs that these errors
tend to produce with suitable disproving methods.

(c) Require user interaction: If the above cases do not apply, NUSPADE
is unable to progress. The user must pursue the interactive proof process
outlined above in §3.1.

2. Complete proof: Every VC is discharged by the SIMPLIFIER, any tac-
tics created by NUSPADE and any user guided proofs created in the PROOF

CHECKER.

4 Proof Planning

Proof planning is an artificial intelligence technique for guiding tactic based the-
orem provers. It has been extensively investigated within the context of proof
by mathematical induction [6]. A proof plan represents the pattern associated
with a family of proofs and is used to guide the search for the proof of a given
conjecture within the family. A successful search instantiates the proof plan for
the given conjecture. From the instantiated proof plan a tactic can be mechani-
cally extracted and automatically checked using an appropriate theorem prover.
Adopting this approach passes the burden of soundness to the theorem prover.
Free from the constraints of demonstrating soundness, greater flexibility is pos-
sible when planning a proof.

A proof plan corresponds to a set of methods. Each method expresses pre-
conditions for the applicability of a particular tactic. The methods are typically
less expensive to execute and more constrained than their corresponding tactics.
Another significant component of proof planning is the proof critics mechanism
[19,21]. Proof critics are associated with the partial success of proof methods
and provide a mechanism for patching failed proofs.

4.1 Exception Freedom Methods

Our exception freedom proof plan contains four methods as outlined below. Note
that these appear in the order used within the proof planner, i.e. the simpler
more immediate methods are tried first. Further, note that the details of these
methods will be described in more detail in §7.2.

1. elementary: Applicable to goals that are automatically discharged by the
PROOF CHECKER, modulo some minor simplifications.

Preconditions for transitivity method:

Preconditions for transitivity critic:

1. There exists a goal of the form:| 1. Precondition 1 of the transitivity
E Rel C. method holds, i.e. there exists a goal
2. For all variables V; that occur within F of the form: F Rel C.
there exists a hypothesis of the form:| 2. Precondition 2 of the transitivity
Vi Rel E;. method fails, i.e. there exists a vari-
able V; that occurs within E such that
there does not exist a hypothesis of
the form: V; Rel E;.
Note that E and C range over expressions and constants respectively, while
Rel denotes a transitive relation.
Fig. 3. Preconditions for the transitivity method and critic
2. fertilise: Applicable where part of a goal matches a hypothesis, producing a
simplified goal.
3. decomposition: Applicable to a transitive relation within a goal, decomposing
its term structure.
4. transitivity: Applicable to a goal involving a transitive relation, introducing

a transitive step into the proof.

4.2 Exception Freedom Critics

In our exception freedom proof plan a proof critic is associated with the transitiv-

ity method. The transitivity critic detects insufficient proof context. It describes

the missing proof context using hypotheses schemata. The preconditions for the
transitivity method and critic are presented in Figure 3. Note that the precondi-
tions of the transitivity critic are expressed in terms of the partial success of the
preconditions of the transitivity method.

4.3 Failed Proof Plan

To illustrate the behaviour of our exception freedom proof plan we return to our

running example of Figure 1 and its corresponding RTC VC for the then-branch
shown in Figure 2. We focus on the goal of proving C4,

r + element(a,i) < integer_last ,

noting that the proof context includes the hypothesis H5

element(a,i) < 100 .

All methods completely fail except the transitivity method which is partially

successful. In the following A, B, X and Y range over expressions. The goal
satisfies the first precondition of the transitivity method as there exists a goal of

the form E Rel C. However, the second precondition fails, as variable r exists
within r + element(a, i) yet there is no hypothesis matching r < B. Note that
element(a, i) does not cause the second precondition to fail as there does exist a
hypothesis of the form element(a,i) <Y . The proof plan for the lower bound of
r+ element(a, 1) similarly fails as there does not exist a hypothesis that matches
r > A and there does exist a hypothesis that matches element(a,i) > X. Each
of these failure patterns trigger the transitivity critic, suggesting the need for
additional hypotheses corresponding to the schema

(r=A)A(r<B).

This schema suggests that additional information on the bounds of r needs to
be introduced through the discovery of a stronger loop invariant. Below in §5 we
describe how this discovery is automated through program analysis.

5 Program Analysis

Program analysis involves automatically calculating interesting properties about
source code. Different program analysis techniques have been presented, includ-
ing flow analysis [3], performance analysis [14] and discovering constraints on
variables [11].

Although VCs are generated by combining source code with its specification
they typically reveal only a subset of this information. Thus, it is reasonable to
return to the source code and its corresponding specification. For example, in
[28] invariant discovery is tackled through top-down and bottom-up approaches,
exploiting the specification and source code respectively. Top-down approaches
are more applicable in the presence of a strong specification. As exception free-
dom proofs are typically performed on minimally annotated code the top-down
approach is less effective. However, we believe that top-down approaches have
a significant role to play in assisting partial correctness proofs [23]. Bottom-up
approaches are more applicable where low level implementation detail is desired.
This is especially suitable for exception freedom proofs, which involve reason-
ing about the low level details of an algorithm. Thus we focus on extracting
properties from the source code using program analysis.

5.1 Program Analysis Oracle

Program analysis for program verification typically involves the use of heuristic
based techniques, as seen in [28,18]. These techniques can be quite unstruc-
tured, with different techniques interacting in various ways and often targeting
a particular area of a program. In particular, these techniques often produce
candidate properties that require nontrivial reasoning in order to prove their
correctness. Thus it is not practical to capture such imprecise techniques in a
formal manner. Qur strategy is to view program analysis as an oracle. The sys-
tem produces candidate properties for use during proof planning. The soundness

of the entire approach is ensured by the execution of the tactics generated by
the proof planner.

We capture distinct program analysis heuristics as program analysis meth-
ods. Our program analysis begins by first translating the input source code into
a flowchart. The program analysis methods are then called in series to anno-
tate the flowchart with abstract values, i.e. approximate descriptions of program
variables. Each method employs a suitable representation to describe these ab-
stract values. Once all of the methods have completed, a collection of program
properties are extracted from the annotated flowchart. These properties may be
accessed during proof planning to assist in the verification effort.

5.2 Program Analysis Performed by the Examiner

As mentioned in §2.2, the EXAMINER automatically inserts invariants to enable
proof of exception freedom in minimally annotated SPARK. In addition to this
the EXAMINER also inserts preconditions to enrich the program specification.
This behaviour captures the spirit of our program analysis, i.e. exploiting infor-
mation in the source code to automatically discover useful properties.

The EXAMINER adds a precondition that every imported subprogram param-
eter is within its type. Further, the EXAMINER adds a default invariant of true for
each loop. This is strengthened by asserting that for loop iterators are within
their type. Further, any precondition is copied into the invariant adjusting all
variables to refer to their initial, rather than current, value.

5.3 Program Analysis Methods

Based on industrial strength examples and focusing on exception freedom proofs
a small collection of program analysis methods have been established. These are
presented in the following sections. For brevity the examples presented focus on
regular program variables. However, they can be naturally extended to deal with
arrays and records, the two main SPARK structures.

5.4 Method: Type

SPARK adopts the strong Ada type system, imposing some additional con-
straints to ease static analysis. As type information directly reveals a variables
legal bounds it is especially valuable in exception freedom proofs. For example,
consider the source code in Figure 4. The variables I and J are declared to be of
type ARPO_T. Thus the method will find abstract values for I and J which may
be expressed using the following candidate invariant. Note that SPARK code
assertions, including invariants, are annotated as --#assert.

--#assert (I>=ARPO_T’First and I<=ARP0_T’Last) and
-—# (J>=ARPO_T’First and J<=ARP0O_T’Last);

This invariant is required to prove exception freedom. Note that it is impossible
to prove that a variable is within its type until it has been assigned a value,
ruling out the candidate invariant property that T is inside its type AC_T.

package body PolishFlagPackage is
procedure PolishFlag(A: in out A_T)
is
subtype ARPO_T is Integer
range A’First..A’Last+1;

X . I,J: ARPO_T;
package PolishFlagPackage is T: AC.T:
subtype AR_T is Integer) -
range 1..4; begin
s .= IR . .= ’ .
type AC_T is (Red, White); i. ARPO_T’First; J:=ARP0_T’Last;
oop

type A_T is array (AR_T)

of AC_T;
procedure PolishFlag(A: in out A_T);
--# derives A from A;

exit when I=J;
if A(I)=Red then
I:=I+1;
else
J:=J-1; T:=A(I);
A(D) :=A(3); A(D):=T;
end if;
end loop;
end PolishFlag;
end PolishFlagPackage;

end PolishFlagPackage;

Fig. 4. Sort two value array

5.5 Method: For Loop Range

Each SPARK for loop iterator must have a declared type. This type may be
constrained by imposing an additional range restriction. For example, consider
the source code in Figure 5. The loop iterator I is declared to be of type AR_T
and is constrained to be inside a range from L to U. This inspires abstract values
which may be expressed as the following candidate invariant.

--#assert I>=L and I<=U;

Note that the property that loop iterators are within their type, as asserted by
the EXAMINER, is usually sufficient for exception freedom proofs. However, the
more constrained property found here would likely assist a partial correctness
proof.

5.6 Method: Non-looping Code

At the start of a SPARK subprogram an arbitrary variable X will either have its
initial value (™) or be undefined (undef). Following each assignment to X its
value will change accordingly. Essentially it is straight forward to propagate the
value of variables through non-looping code.

For example, consider the source code shown in Figure 6. At the start of
subprogram Clip v = v~ and r = undef. Entering the then branch of the
outermost if statement yields r = I _T'F'irst. Entering the else branch enters
the innermost if statement. The then branch yields r = I _T" Last while the else
branch yields r = v™. As either branch of the innermost if statement may be

package body FindPackage is

k FindPack i
package tindfackage 18 procedure Find(A: in A_T;

subtype AR_T is Integer

L,U: in AR_T;
range 1..10; F: in AC_T;
subtype ARMO_T is Integer : -
range 0. 10; N R: out ARMO_T)
type AC_T is begin
range -1000..1000; §,=0_

type AT is array (AR.T) for I in AR_T range L..U loop

of AC_T; R _
procedure Find(A: in A_T; if éEI?_F then
L,U: in AR_T; R:=I;
F: in AC_T; ex?t;
R: out ARMO_T); end if;
——#derives R from A,L,U,F; end.loop;
end Find;

end FindPackage; end FindPackage;
)

Fig. 5. Find first index in array, between bounds, containing target

taken a disjunction is required giving (r = I_T'Last)V (r = v™). This is repeated
for the outermost if statement giving (r = I . T'First)V ((r = [T'Last) V (r =
v™)). These abstract values may be expressed through the following candidate
assertion. Note that as V is an import variable of mode in it can not be changed
and thus implicitly refers to its initial value.

--#assert (R=I_T’First) or ((R=I_T’Last) or (R=V));

However, where variables are assigned expressions involving variables, as in
R:=V, it is often the case that conditional information can be exploited to con-
strain the abstract values. For example, consider the disjunct r = v™ generated
above. All that will be known about v is that it is inside its type. As v is declared
as an integer this provides a weak constraint on the value of r. Where R:=V is en-
countered it is known that ~(v < I_T'First)A—(v > I_T'Last). Using inequality
reasoning this can be simplified to (v > I_T'First) A (v < I_T'Last). Replacing
v~ with this gives a more constrained abstract value following the outermost if
r=I1T'FirstV(r =1.T'LastV ((r > I.T'First) A(r < I.T'Last))), which can
be simplified to (r > I_T"First) A (r < I_T'Last). This abstract value would be
expressed using the following candidate assertion.

--#assert (R>=I_T’First and R<=I_T’Last);

Consistently performing such reasoning for the general case would become diffi-
cult. However, reasonable progress can be made by targeting variables occurring
in assigned expressions and employing lightweight inequality reasoning.

5.7 Method: Looping Code

Looping code presents problems over non-looping code as the abstract values
found for variables within the loop should be general enough to describe every

10

package ClipPackage
is
subtype I_T is Integer

package body ClipPackage is
procedure Clip(V: in Integer;
R: out I_T)
is
begin
if VKI_T’First then
R:=I_T’First;

range 1..4; else
procedure Clip(V: in Integer; if V>I_T’Last then
R: out I_T); R:=I_T’Last;

——# derives R from V; else
end ClipPackage; R:=V;
end if;

end if;

end Clip;

end ClipPackage;

Fig. 6. Clip from integer to more constrained type

iteration. We use recurrence relations to describe the value of a variable on an
arbitrary iteration. Powerful tools exist to automatically solve certain classes of
recurrence relations, e.g. MATLAB [31]. Although we have focused on PURRS [33]
as we only require a generic recurrence relation solver we are not tied to PURRS.

The transformations applied to a program variable in a loop are expressed as
a recurrence relation, i.e. the value of a variable on the n** iteration is expressed
in terms of variables on previous iterations, usually the (n—1)!" iteration. Solving
these recurrence relations produces an invariant equating the value of a variable
on the nt” iteration to an expression involving n. To extract usable properties
from the solved recurrence relations it is necessary to eliminate this n.

Solving a variable’s recurrence relation may require solutions to other recur-
rence relations. For this reason the method is separated into sub-methods with
the more immediate sub-methods being applied first. Note that the sub-methods
are shown below in the order in which they are applied.

Sub-Method: Unchanged: This targets variables that are unchanged inside
a loop. Any import variables of mode in must remain unchanged throughout a
subprogram. These are identified by examining the subprogram’s parameter list.
Other variables must change inside the subprogram but may remain unchanged
inside a loop. These are identified by finding no assignments to the variable
inside the loop.

For example, consider the source code shown in Figure 5. By examining the
subprogram parameter list it is found that A, L, U and F are import variables of
mode in. Recurrence relations are calculated for the remaining variable R. The
initial value of r is 0 and no assignments are made to r inside the loop (the only
assignment to r takes place on the loop exit). Thus the recurrence relation found
for r is r(g) = 0,7(n) = r(n—1) which is solved as r(,) = 0. These abstract values
may be expressed as the following candidate invariant.

11

--#assert A=A and L=L and U=U and F=F and R=0;

Note that the only descriptive property is R=0. However, by successfully solving
all of the variables the loop analysis of this subprogram can now terminate.

Sub-Method: Constant Change: It is common to modify a variable by a
constant value in each iteration of a loop. These are identified by finding that
every assignment to a variable occurs outside conditional statements and the
assigned expressions only involve this variable and constant values.

For example, in the running example of Figure 1, I is implicitly initialised to
0 and the assignment statement I:=I+1 is implicitly seen after each iteration of
the loop. This is expressed as the recurrence relation i(g) = 0,%(,) = i(n—1) + 1,
which is solved as i(,) = i(g) +n and reduced to i(,) = n. As this abstract value
contains n it can not yet be presented as a candidate invariant.

Sub-Method: Variable Change: A variable may be modified by a variable
amount in each iteration of a loop. This can occur in several cases including
assigning to a variable inside a conditional statement and assigning a variable
an expression which takes different values from an array. In such cases there is
not sufficient information to describe the exact value of a variable on the n**
iteration. Thus an approximation is made, generalising the search to finding the
bounds of all possible values on the nt? iteration. We model the extreme end
points of these bounds using what we call extreme recurrence relations.

For example, in the running example of Figure 1, R is initialised to 0 and
the assignment statement R:=R+A(I) is seen within the then branch of the if
statement which is conditional on A(I)>=0 and A(I)<=100. The recurrence re-
lation for not entering the if statement is 7o) = 0,7(,) = T(n—1), Which is
solved as r(,) = 0. However, the recurrence relation for entering the if state-
ment, 79y = 0,7(n) = T(n—1) + element(a,i), cannot be solved. The problem
is that element(a,i) represents a variable change. This problem term is elim-
inated by generalising to its extreme bounds. Exploiting context information
reveals these bounds to be between r(,) = r(,—1) + 0 and r¢,) = r(,,—1) + 100.
Each of these can be solved and expressed as a range giving the abstract value
(T(n) 2 0) A (r(ny < (n%100)). Once again, as this abstract value contains n it
can not yet be presented as a candidate invariant.

Sub-Method: Counter Variables: During the execution of a loop the value
of variables may change. Those variables found to monotonically increase or
decrease by one are classified as counter variables. Counter variables are very
common and often key to understanding an algorithm, motivating their special
classification.

Counter variables can be identified by exploiting the abstract values found
by the constant change and variable change sub-methods. For example, in the
description of the constant change sub-method it was shown how the abstract
value i(,y = n would be found for variable I in the running example of Figure 1.

12

Although the presence of n prevents this from being presented as a candidate
invariant, it is straight forward to determine that I is an increasing counter vari-
able initialised at zero (as n can be thought of as an increasing counter variable
initialised at zero). There would be little benefit in expressing this property as a
program assertion. However, this information can be collected as program prop-
erties and be exploited during proof planning. For example, in [23] the counter
variable classification is instrumental in progressing an otherwise failed program
proof.

Sub-Method: Extracting Properties: Following the loop analysis it is neces-
sary to post-process the solved recurrence relations into new abstract values that
eliminate all references to n. This is achieved by replacing n with an expression
in terms of the known program variables.

For example, in the running example of Figure 1 the initial abstract values
are i(ny = n and (r(p) > 0)A(7(n) < (n*100)). The upper bound of r is expressed
in terms of n, however, exploiting i(,) = n, n is replaced by i giving the new
abstract value (r(m) > 0) A () < (i(n) * 100)) which may be expressed as the
following candidate invariant.

--#assert (R>=0) and (R<=(I*100));

Note that it is difficult to eliminate n in i¢,) = n as r is not described as an
equality with n. This failure means that if an invariant property describing I
is required then a suitable abstract value discovered from another method must
be used instead. Further note that although the loop analysis does not suggest
a candidate invariant property for I it does successfully classify it as a counter
variable.

5.8 Method: Loop Guards

The loop analysis involves recurrence relations, expressing constraints on vari-
ables on the n'" iteration. The loop exit could be modeled by constraining the
range of n and analysing the recurrence relations associated with variables. How-
ever, such an approach can be quite complicated and often unnecessary. Thus
we instead consider the loop exit as a special case distinct from the recurrence
relation analysis. We focus on finding properties that describe relationships be-
tween variables in the loop guard. In particular we check to see if an inequality
relationship holds between these variables.

The loop guard is significant as its negation becomes available in the loops
iteration VCs. This is the only property that constrains loop iterations and
thus must be exploited to show that monotonically increasing (or decreasing)
variables do not increase (or decrease) forever and exceed their legal bounds.

For example, in the running example of Figure 1 it must be proved that
I<=AR_T’Last is invariant, i.e. that I does not exceed the upper bound of its
type. This loop implicitly has a loop guard of the form I=AR_T’Last. Thus
the induction hypothesis, i < AR_T'Last, and the negation of the loop guard,

13

—(i = AR_T'Last), are hypotheses in the loop iteration VCs. Crucially, these
can be combined to provide a single inequality constraint ¢ < AR_T'Last. As i is
an increasing counter variable the induction conclusion will take the form ¢+1 <
AR_T'Last which is trivially true given the inequality constraint hypothesis.

However, cases exist where the negation of the loop guard is not sufficiently
strong to support such a proof. For example, consider the source code in Figure 4.
Assume the following loop invariant, discovered in §5.4, has been added to prove
that I and J do not exceed their type.

--#assert (I>=ARPO_T’First and I<=ARPO_T’Last) and
--# (J>=ARPO_T’First and J<=ARPO_T’Last);

The loop guard is I=J, introducing the hypothesis =(¢ = j) during loop iteration.
Knowing that ¢ and j have different values does not constrain the bounds of ¢
and j. The counter variable sub-method reveals that I is an increasing counter
variable, J is a decreasing counter variable and that I starts below J. As the loop
exits at I=J, I can never exceed J, discovering the candidate invariant property
1 < j. Adding this invariant property introduces the new hypothesis i < j into
the loop iteration VCs. This can now be combined with the negation of the loop
guard to introduce the inequality constraint hypothesis ¢ < j. This is sufficiently
strong to prove that both I and J remain within the bounds of their type.

6 Patching Proof Failure

We return to our running example of Figure 1 and proving the RTC VC for the
then-branch as shown in Figure 2. Our initial proof plan in §4.3 failed with the
transitivity critic requesting additional hypotheses corresponding to the schema

(r>A)AN(r<B).

This failure activates program analysis of the relevant subprogram generating
a collection of program properties. These properties are searched for a suitable
candidate invariant constraint on r, guided by the schema above. Such an in-
variant was discovered in §5.7 and is repeated below.

--#assert (R>=0) and (R<=(I*100));

Adding this invariant leads to revised RTC VCs, adding the following two hy-
potheses to the RTC VC shown in Figure 2.

H6: r >0 .
H7: r <= loop__1__1i * 100 .

7 Planning the Revised VCs

7.1 Loop Invariant Methods

As illustrated above, it is often the case that an invariant must be strengthened
before an exception freedom proof can be completed. The stronger invariant

14

properties must be proved. The proof planner tackles loop invariant VCs using
the ripple method [2, 6]. Although space precludes further discussion we note that
proving loop invariants via the ripple method has been previously investigated
and reported [24, 34, 25]. For example, in the running example of Figure 1 the
strengthened invariant results in two loop invariant VCs, neither of which are
automatically discharged by the SIMPLIFIER. However, by proof planning using
the ripple method these proofs can be automated.

7.2 Revisiting the Exception Freedom Methods

We now consider the methods introduced in §4.1 in more detail. Recall that
proving exception freedom involves showing that a variable does not violate its
legal upper and lower bounds. Let the general value of a variable be denoted by
the term T'(V4, ..., V,), where V;, 1 < i < n, denote variables. Further let L and
U denote the lower and upper constants of a bound. Thus a variable’s lower and
upper bound checks give rise to goals of the form in (1) and (2) respectively.

T(Vi,...,Va) 2 L (1)
T(Vi,...,Va) <U (2)

Although we focus on the upper bound case (2), the same general pattern of
proof is also applicable to the lower bound case (1). The proof context associated
with (2) should contain hypotheses expressing the upper bounds of V;

V, <U;. (3)

Note that the absence of such hypotheses triggers the transitivity critic which
aims to introduce the missing hypotheses by exploiting our program analysis.
The first step involves the transitivity method, reducing (2) to give

T(V1,..., Vo) < X)) A (X1 <T) . (4)

The introduction of the meta-variable X; prepares the way for the decomposition
of T(V4,...,Vy). The second step calls the decomposition method to decompose
T(Vi,...,V,). This draws upon a collection of substitution axioms for inequali-
ties. The aim of this method is to express the left hand side conjunct of (4) as
a conjunction of inequalities of the form

Vi<X;. (%)

Note that the complete decomposition of T'(V3, . .., V,,) may require the applica-
tion of multiple substitution axioms. The third step calls the fertilise method to
match the decomposed inequalities against the inequality hypotheses. Matching
(5) against (3) instantiates X; to U;. This has the effect of instantiating the right
hand side conjunct of (4) to give

T(Uy,...,U) <U. (6)

15

The fourth and final step involves the elementary method, simplifying (6) such
that it can be trivially discharged by the PROOF CHECKER.

The key to the proof plan is the transitivity method as described in Figure 3.
Note that the transitivity method introduces a first-order meta-variable into the
goal structure that is incrementally instantiated during subsequent proof plan-
ning steps. This use of meta-variables is known as middle-out reasoning [5] and
has been used effectively in guiding proof search within the context of program
synthesis [30, 35], proof patching [20-22] and loop invariant discovery [24, 34, 25].

7.3 Successful Proof Plan

We now return to proving the then-branch of the code in Figure 1 following the
patch of an invariant. Once again, we focus on the goal of proving C4

(r + element(a, 1)) < integer last , (7
noting that the proof context includes the two hypotheses H7 and H5,
(r <ix100) A (element(a,i) < 100) . (8)

The proof planning begins with an application of the transitivity method, rewrit-
ing (7) to a conjunction

((r + element(a,i)) < X1) A (X; < integer_last) . 9)

The decomposition method searches for a substitution axiom involving <, finding
the rewrite rule

W+X)<(Y+2Z)=>W<<Y)AN(X <L 2Z) (10)
which is applied to (9) giving
((r < X3) A (element(a,i) < X3)) A ((X2 + X3) < integerlast) . (11)

Note that as a side-effect of applying (10), X; has been instantiated to Xs+ X3 in
(11). Given (8), the fertilise method applies to the conjuncts on the left hand side
of (11) resulting in X, and X3 being instantiated to 4 * 100 and 100 respectively.
The remaining goal takes the form

((4 % 100) + 100) < integer_last .

Given that integer_last has a known concrete value this goal is trivial and can
be discharged by the elementary method.

8 Related Work

Probably the first system to prove exception freedom was the RUNCHECK verifier
[18]. RUNCHECK operated on Pascal programs, employing a number of heuristics

16

to discover invariants and tackling RTC VC proofs with an external theorem
prover. One of its heuristics involved the calculation of recurrence relations as
change vectors, ignoring program context and collecting transformations made
to variables. These change vectors were subsequently solved using a few rewrite
rules that targeted common patterns. Our approach has a tighter integration
between theorem proving and program analysis. In addition, our program anal-
yser solves recurrence relations using a powerful recurrence relation solver tool.
Further, our program analysis exploits program context and approximates to
ranges where equality solutions can not be found.

The use of recurrence relations in generating loop-invariants was first re-
ported by Elspas et al [13] and was also used by Katz and Manna [29]. Although
the limits of recurrence relations as a basis for generating loop-invariants are
well known [8], they have proved to be very useful for our niche application.

Recently there has been renewed interest in approaches that employ theorem
proving to strengthen program development. The focus tends to be on finding er-
rors rather than proving correctness. For example, ESC/JAVA [17] is an extended
static checker for Java. Like SPARK, ESC/JAVA requires program annotations.
HOoUDINI [16] is able to automatically generate many of the annotations required
by ESC/JAVA using predicate abstraction.

There exists systems that employ program analysis to pinpoint unfavourable
behaviour. These systems are typically formulated inside the abstract interpre-
tation framework [10]. By observing this framework the program analysis will
ensure correctness by allowing for approximate results. The most noteworthy sys-
tems are MERLE [38] and POLYSPACE [32]. Although these systems do not target
proof, their results might be used to assist a formal proof. Rather than use anno-
tations these systems gain constraints on variables by analysing a program in its
entirety. This process can be computationally expensive and requires a complete
program for input. As our program analysis targets individual subprograms it is
fairly cheap to perform and is applicable early in program development. Further,
by avoiding the abstract interpretation framework we have the flexibility to im-
plement heuristic based program analysis techniques. As we treat our program
analysis as an oracle that guides search for a formal proof, we can adopt this
approach without sacrificing correctness.

9 Progress & Future Work

Our NUSPADE tool has been prototyped as separate components. The proof plans
presented here have been implemented within the CLAM proof planner [7]. Note
that this prototype does not support the extraction of a customised tactic from
discovered proof plans. The program analysis has been prototyped in a system
with a limited SPARK parser. This is sufficient to explore the program analysis
methods. Work is underway on completing the NUSPADE system. Currently we
have developed a suitable proof planning infrastructure in Prolog and are build-
ing a stronger program analysis system, exploiting the STRATEGO [37] program
transformation tool.

17

Using our prototype systems we have successfully demonstrated the appli-
cability of our technique on a collection of isolated subprograms. These sub-
programs are representative of the kinds of subprograms that are seen within
a high integrity software system. The next step is to tackle proof of exception
freedom for an entire industrial strength high integrity software system. We also
envisage a comparative study between our approach and non-theorem proving
techniques, such as MERLE and POLYSPACE. It may be found that such systems
can be packaged as additional program analysis oracles for use in our approach.

10 Conclusion

Building upon the SPARK toolset, we have developed an approach for increas-
ing the automation of exception freedom proofs. Our approach is formulated
within the proof planning framework. Under certain patterns of failure, critics
are invoked which in turn appeal to a program analysis oracle. This oracle aims
to discover program properties that patch the failed proof, allowing the proof
planning to progress.

Our approach demonstrates that program verification can be tackled on more
than one front. By integrating the distinct static analysis techniques of proof
planning and program analysis a more capable automatic program verification
system can be can be constructed.

Acknowledgements

In particular we would like to thank Peter Amey and Rod Chapman for their support
in our research. Thanks also go to Alan Bundy, Jonathan Hammond, Ian O’Neill, Phil
Thornley, Benjamin Gorry, Tommy Ingulfsen, Julian Richardson and Maria McCann
for their feedback and encouragement. The research reported in this paper is supported
by EPSRC grant GR/R24081 and is a collaboration with Praxis Critical Systems Ltd.

References

1. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

2. D. Basin and T. Walsh. A calculus for and termination of rippling. Journal of
Automated Reasoning, 16(1-2), 1996.

3. J. Bergeretti and B.A. Carré. Information-flow and data-flow analysis of
while-programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(1), 1985.

4. A. Bundy. The use of explicit plans to guide inductive proofs. In CADE-9. Springer-
Verlag, 1988.

5. A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations in
automatic program synthesis. In Proceedings of UK IT, 1990.

6. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intelligence, 62, 1993.

18

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In
10" International Conference on Automated Deduction, 1990.

M. Caplain. Finding invariant assertions for proving programs. In Proceedings of
the International Conference on Reliable Software, 1975.

R. Chapman and P. Amey. Industrial strength exception freedom. In Proceedings
of ACM SigAda. Addison-Wesley, 2002.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL-/.
ACM, 1977.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL-5. ACM, 1978.

C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: Attacks
and defenses for the vulnerability of the decade. In DARPA Information Surviv-
ability Conference and Ezpo (DISCEX). IEEE Computer Society Press, 2000.

D. Elspas, M.W. Green, K.N. Levitt, and R.J. Waldinger. Research in interactive
program-proving techniques. In SRI. 1972.

A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of
execution time. In European Conference on Parallel Processing, 1997.

ESA. Ariane 5 - flight 501 failure. Board of inquiry report, European Space Agency,
1996.

C. Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. In Proceedings of FME. Springer-Verlag, 2001.

C. Flanagan, K. Rustan M. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of PLDI, 2002.

S.M. German. Automating proof of the absence of common runtime errors. In
POPL-5. ACM, 1978.

A. Treland. The use of planning critics in mechanizing inductive proofs. In Inter-
national Conference on Logic Programming and Automated Reasoning (LPAR’92),
LNATI No. 624. Springer-Verlag, 1992.

A. Ireland and A. Bundy. Extensions to a generalization critic for inductive proof.
In 13" Conference on Automated Deduction, 1996.

A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of
Automated Reasoning, 16(1-2), 1996.

A. Ireland and A. Bundy. Automatic verification of functions with accumulating
parameters. Journal of Functional Programming: Special Issue on Theorem Proving
& Functional Programming, 9(2), 1999.

A. Treland, B.J. Ellis, and T. Ingulfsen. Invariant patterns for program reasoning.
Technical Report HW-MACS-TR-0011, School of Mathematical and Computer
Sciences, Heriot-Watt University, 2004. Also to appear in the Proceedings of the
Mexican International Conference on Artificial Intelligence 2004 (MICAI-04).

A. Ireland and J. Stark. On the automatic discovery of loop invariants. In Pro-
ceedings of the 4" NASA Langley Formal Methods Workshop — NASA Conference
Publication 3356, 1997.

A. Ireland and J. Stark. Proof planning for strategy development. Annals of
Mathematics and Artificial Intelligence, 29(1-4), 2001.

ISO. Reference manual for the Ada programming language. ISO/IEC 8652, Inter-
national Standards Organization, 1995.

C.B. Jones. The early search for tractable ways of reasoning about programs. In
IEEE Annals of the History of Computing. IEEE Computer Society, 2003.

S.M. Katz and Z. Manna. A heuristic approach to program verification. In Pro-
ceedings of IJCAI-78. 1IJCAI, 1973.

19

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S.M. Katz and Z. Manna. Logical analysis of programs. Communications of the
ACM, 19(4), 1976.

I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program syn-
thesis. In Proceedings of the 10" International Conference on Logic Programming,
1993.

MatLab. http://www.mathworks.com/.

PolySpace-Technologies. http://www.polyspace.com/.

PURRS: The parma university’s recurrence relation solver.
http://www.cs.unipr.it/purrs/.

J. Stark and A. Ireland. Invariant discovery via failed proof attempts. In Logic-
Based Program Synthesis and Transformation, number 1559 in LNCS. Springer-
Verlag, 1998.

J. Stark and A. Ireland. Towards automatic imperative program synthesis through
proof planning. In 14** IEEE International Conference on Automated Software
Engineering. IEEE Computer Society, 1999.

AM. Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculating Machines. University Mathematical Laboratory, Cam-
bridge, UK, 1949.

E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In Rewriting Techniques and Appli-
cations (RTA), LNCS, 2001.

L. Whiting and M. Hill. Safety analysis of hawk in flight monitor. In Workshop
on Program Analysis For Software Tools and Engineering, 1999.

20

