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Abstract

A personal perspective of the verifying compiler proposal is presented. I outline what I see as

the key practical issues that need to be addressed. I focus in particular on theorem proving issues

and the role that proof planning can play in building the verifying compiler.

1 Introduction

The dream of being able to routinely verify programs has a long history dating back to 1947 when
Goldstine and von Neumann first recognised the potential for assertion based reasoning [22]. However,
it was Floyd’s inductive assertion method [19] and Hoare’s axiomatic basis for programming [30] that
popularised program verification research and laid the foundations for today’s verifying compiler
proposal. In this short paper I present a personal perspective on the verifying compiler proposal.
I begin with a historical survey of program verification systems and then go on to discuss current
research trends. Building upon this background material, I highlight practical issues that need to be
addressed. In particular I focus on theorem proving, outlining the role proof planning can play in
meeting the verifying compiler challenge.

2 A historical survey of program verification systems

Based upon Floyd’s inductive assertion method, King [46] was the first to build a program verifier.
Others followed [9, 24], but it was the Stanford Pascal Verifier project that produced the first veri-
fication system to target a real programming language [51]. A related system called Runcheck [20],
provided support in verifying the absence of common run-time errors in Pascal programs. Not sur-
prisingly, this property-based style of verification was more tractable than full verification, i.e. partial
and total correctness. During this early phase of the research, considerable effort was applied to the
problem of generating loop invariants [15, 65, 43, 44, 66, 21, 6]. However, although the generation
of loop invariants are a crucial bottle-neck for program verification, little of this work was carried
forward.

The early verification systems highlighted issues of complexity that arise when specifying nontrivial
programs. To address these issues, the Gypsy Verification Environment [23], AFFIRM [54] and the Hi-
erarchical Development Methodology (HDM) [48] all supported abstraction within their specification
languages to varying degrees. In terms of applications, Gypsy and HDM (later extended to EHDM
[12]) were two of the most prominent systems to come out of the 1970’s. Both systems were applied
to significant security projects. Gypsy was the first system to address concurrency issues while HDM
supported verification within a broader approach to the software development process. These projects
were relatively successful in academic terms. They showed, however, that the goal of being able to
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routinely verify programs was some way off. A key outcome from this early work was the realisation
that the effective integration of decision procedures was crucial to achieving large scale verifications.
Probably the most influential contribution was the work by Shostak [61] and Nelson-Oppen [55] on
combining decision procedures.

The 1980’s gave rise to systems that focused on Ada [50, 28, 2], however, the late 1980’s and
1990’s saw a decline in program verification research. This decline also marked increased emphasis
on design level verification, as popularised by theorem provers such as PVS [59] and ACL2 [45],
and model checkers like SMV [53] and SPIN [31]. A notable exception to this trend was SPARK
[2], an annotated subset of Ada. SPARK has achieved significant industrial success with safety and
security critical applications [47, 29]. The SPARK toolset supports static analysis, including formal
verification. Similar static analysis techniques can be found in MALPAS [64]. In terms of verification,
the SPARK toolset has been finely tunned for the task of verifying the absence of run-time errors, so
called “exception freedom proofs” [7].

3 Current trends in formally based program analysis

The success of model checking and constraint solving techniques has revitalised formal analysis of
program code. SLAM [1], Pathfinder [4], Bandera [8] and Alloy [40] are some of the key tools to have
emerged. The strength of these tools lies in their ability to find defects. Moreover, they typically
focus on pre-defined properties, e.g. in the case of SLAM, safety properties that express “API usage
rules”. As a consequence, programmers are insulated from assertion level specification. In terms of
theorem proving, the Extended Static Checker project, and ESC/Java in particular, is worth noting
[18]. ESC/Java provides annotations that support static analysis and makes use of a theorem prover
to find defects, rather than verify correctness.

Another significant trend is the increased use of commercial automatic code generation tools [3, 11,
52, 62]. While automatic code generation tools can significantly reduce “time to market” they also raise
issues of correctness. For commercial and practical reasons, the formal verification of code generation
tools is not usually an option. Instead, emphasis has been placed upon proving the correctness of
each individual run of the code generator. Pnueli calls this “translation validation” and has applied
it to the validation of reactive systems that are restricted to single loops [60]. QinetiQ’s Systems
Assurance Group, based at Malvern, follow a similar approach and have achieved a high degree of
proof automation in certifying Simulink generated code for advanced avionics systems [57]. These
successes can, in part, be attributed to the restricted nature of the programs and properties being
considered.

4 Practical issues relating to the verifying compiler proposal

The gap between current successes and the goal of building the verifying compiler is significant. Below
I focus on practical issues that need to be addressed if this gap is to be bridged.

4.1 Language issues

The choice of programming language(s) targeted by the verifying compiler will have a significant effect
on the chances of success. Some programming language features are well known as being problematic to
formal reasoning, e.g. the volatile keyword in C. The pragmatic approach of identifying useful subsets
of an existing languages that are amenable to formal analysis has many advantages, as demonstrated by
SPARK. Relatively recent developments in terms of a semantics for C [56] and methods for reasoning
about dynamic structures [58] may also prove useful in tackling this issue.

In terms of specifications, assertion based programming is a key feature of the verifying compiler
proposal. As noted above, verification that involves pre-defined properties means that programmers
are not required to write assertions. However, if the verifying compiler is to support full verification
then programmers will be required to provide assertions. In general, however, assertion based pro-
gramming is still not widely accepted. Testing may provide a handle on some aspects of the problem,
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i.e. unit tests may provide a basis for generating assertions. This may seem rather perverse, however,
from a practical stand point, programmers understand how to construct unit tests. A novel approach
to generating “likely invariants” from program traces has been implemented in a system called Daikon
[16]. Note that the quality of the invariants generated by Daikon is strongly dependent on the quality
of the unit tests used in generating the program traces. It is unclear whether or not this kind of
approach will scale-up. The issue of assertion generation has also been addressed to a limited extent
within Houdini [17], a tool based upon predicate abstraction for generating annotations within the
context of ESC/Java. More generally, as noted earlier, much work has already be done on the problem
of generating invariants. As the sophistication of assertions increases, so does the number of auxiliary
properties (lemmas) that need to be generated and proved. This has implications for the deductive
capabilities of the verifying compiler, as will be discussed below.

4.2 Deductive issues

Generating verification proofs is hard. Proof should been seen as the final step in building confidence
in a program and only attempted after conventional, light-weight, static analysis has been used to
eliminate as many defects as possible. Moreover, experience has shown that static analysis should be
applied routinely throughout program construction, and not left until unit testing [29]. Without this
pro-active approach to static analysis, I believe, the challenge of the verifying compiler may prove to
be too difficult. This raises questions about whether the verifying compiler should be developed with
particular light-weight static analysis techniques in mind. And whether these techniques should be
integrated within the verifying compiler.

Theorem proving techniques and strategies have advanced significantly since the early days of
program reasoning. However, theorem provers are still the tool of the specialist. Talk, for instance,
to any experienced ACL2 user and they will explain the failure-driven process that they engage with
during a verification effort. An interactive process that involves the user in generalising conjectures,
providing additional lemmas and identifying non-theorems. Programmers do not understand failed
proof attempts. Where the limits of current deductive techniques are reached, the verifying compiler
will have to provide meaningful feedback, i.e. an explanation that assists any follow-up debugging
activity and which is expressed in programming terms, and not in terms of deductive failures. To
achieve this, I believe a more integrated view of program reasoning is called for: one in which knowledge
of the program and its specification are used to provide heuristic guidance to the theorem prover.
Traditionally, such knowledge is distilled-out via the process of verification condition generation. This
is not a new observation. The potential benefits of having a closer relationship between heuristic
guidance and the theorem prover were anticipated early on [66].

As noted above, early experience in program verification also raised the importance of having an
effective integration of decision procedures. This directly effected the design of PVS and ESC/Java,
and has had an impact on the development of HOL [25]. Decision procedures will have a significant
role to play within the verifying compiler.

Finally, the evolution of dependable systems gives rise to an evolving verification task. Consider-
ation therefore needs to be given to how the verifying compiler can support this task, i.e. proof reuse
and transformation.

5 A proof planning perspective

Proof automation and support for debugging will have a significant impact on the acceptability of
the verifying compiler within the wider community. Here I outline the extent to which the theorem
proving technique known as proof planning [5] addresses these issues. Proof planning uses high-
level proof outlines, known as proof plans, to guide proof construction. Proof planning extends the
tactic-based theorem proving paradigm [26], i.e. while tactics guarantee soundness, proof plans guide
search. Decoupling these aspects of the theorem proving task allows for a schematic style of proof
construction. Access to an explicit proof plan coupled with this schematic style of proof has been
exploited with significant effect through the proof critics mechanism [32, 34]. Proof critics support
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failure-driven proof, i.e. the automatic analysis and patching of failed proofs. The critics mechanism
has been successfully used in patching proofs that require conjecture generalisation, lemma discovery,
induction rule revision and case analyses [33, 34, 35]. With regard to the verifying compiler proposal,
I believe there are a few key areas where proof planning has a valuable role to play:

Failure-driven proof: proof critics have also been applied to the problem of loop invariant discovery.
Many of the informal methods for developing loop invariants presented within the structured
programming literature [10, 27, 42] can be represented in terms of critic-based proof patching
[38, 63, 39]. More recently we have extended these ideas within the context of SPARK. In
particular we are integrating proof planning with program analysis techniques, thus making
progress towards the more integrated view of program reasoning mentioned above [13, 14, 36].

Programmer-oriented feedback: the hierarchical nature of proof plans makes them suitable for
communicating high-level proofs [49], while proof critics provide an opportunity to explain the
choices that arise when a proof fails [37]. Integrating proof plans with program and specification
knowledge, could provide a basis for explaining proof failures in terms familiar to programmers.

Decision procedures: proof planning has been used to develop a general framework for combining
and augmenting decision procedures [41]. Proof planning therefore provides a basis for integrat-
ing theorem proving and decision procedures.

6 Conclusion

By way of surveying the history of verification systems and current trends, I have set out what I feel
are some of the issues that will have to be addressed in building the verifying compiler. I believe
that broadening the definition of the verifying compiler to include light-weight static analysis will be
crucial. An integrated view of program reasoning is also called for in which both the program and
its specification provide guidance for proof discovery. I believe proof planning has a contribution to
make in achieving this integrated view. Building the verifying compiler will be challenging, however,
the time is ripe to attempt this challenge!
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