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Abstract

The structured programming literature provides methods and a wealth of heuristic knowl-
edge for guiding the construction of provably correct imperative programs. We investigate
these methods and heuristics as a basis for mechanizing program synthesis. Our approach
combines proof planning with conventional partial order planning. Proof planning is an au-
tomated theorem proving technique which uses high-level proof plans to guide the search for
proofs. Proof plans are structured in terms of proof methods, which encapsulate heuristics for
guiding proof search. We demonstrate that proof planning provides a local perspective on the
synthesis task. In particular, we show that proof methods can be extended to represent heuris-
tics for guiding program construction. Partial order planning complements proof planning by
providing a global perspective on the synthesis task. This means that it allows us to reason
about the order in which program fragments are composed. Our hybrid approach has been im-
plemented in a semi-automatic system called BERTHA. BERTHA supports partial correctness
and has been tested on a wide range of non-trivial programming examples.

1 Introduction

Within the context of constructing provably correct programs, Dijkstra [Dij72] identifies:

“... a number of patterns of abstraction that play a vital role in the whole process of
composing programs.”

Dijkstra argues that programming typically involves the use of a small number of these vital
patterns of abstraction. Dijkstra’s vision is reflected in [Gri81], where Gries advocates meth-
ods which support the development of a program and its proof hand-in-hand. The application
of such methods involves the use of heuristics. The structured programming literature [Bac86,
Dij76, Gri81, Kal90] provides a wealth of heuristic knowledge for guiding program construction.
While this literature focuses on programming as a manual activity, we are motivated by mecha-
nization. That is, we are interested in these methods and heuristics as a basis for mechanizing
program synthesis. Many alternative approaches to the synthesis task exist, e.g. transformation-
based approaches. Our motivation, however, is to investigate how structured programming can be
exploited directly in mechanizing imperative program synthesis.

Our starting point is proof planning, a theorem proving technique which uses high-level proof
outlines, known as proof plans, to provide heuristic guidance in the search for proofs. There
are strong similarities between Dijkstra’s “patterns of abstraction” and proof plans, i.e. they
both represent common patterns of reasoning. However, in order to apply proof planning to the
program synthesis task we extend the proof plan representation to include heuristics for guiding
program construction. This extension provides a local perspective on the synthesis task, i.e. the
ability to reason about the synthesis of program fragments for individual goals. The synthesis task



P → Q[E/V ]
{P}V := E{Q}

assign

{P}S1{R}, {R}S2{Q}
{P}S1; S2{Q}

seq

(I ∧ ¬B) → Q, {I ∧ B}S{I}
{I}while B begin invariant{I} S end {Q}

while

Figure 1: Example Proof Rules for Floyd/Hoare Style Program Reasoning.

also requires the ability to reason about the order in which such program fragments are composed.
This is important where interaction between goals is possible. We use partial order planning
to provide this global perspective. Our hybrid approach exploits, therefore, the complementary
nature of proof planning and partial order planning.

We see three key contributions to our work. Firstly, we have extended the proof planning
method schema to allow the representation of programming heuristics. Secondly, we have inte-
grated proof planning within a partial order refinement planning framework. Thirdly, we have
demonstrated how various structured programming and proof heuristics can be effectively rep-
resented within this hybrid approach. The approach has been implemented in a system called
BERTHA, which supports partial correctness, i.e. BERTHA plans functional correctness proofs for
the programs that it synthesizes. BERTHA is semi-automatic in that when it determines the need
for iteration, the user is prompted for a loop invariant and guard.

In §2 we review the logical basis for reasoning about imperative programs as well as proof
planning and partial order planning. The problems that arise during the synthesis of imperative
programs are discussed in §3, while §4 shows how proof planning can be extended to tackle these
problems. An overview of the synthesis methods is presented in §5, with particular emphasis on
the heuristics associated with the methods for assignment and while-loops. Implementation details
and a transcript of the BERTHA system are presented in §6. Experimental results are presented in
§7 while in §8 related work is discussed. Potential future avenues of research and conclusions are
given in §9 and §10 respectively.

2 Background

2.1 Reasoning about imperative programs

Based upon Floyd/Hoare logic [Flo67, Hoa69], we reason about a simple programming language,
containing assignments, conditionals and while-loops. We adopt the conventional notation for a
partial correctness specification:

{P}C{Q}

where P and Q are logical assertions while C denotes program code. P is known as the pre-
condition while Q is known as the postcondition. Partial correctness is defined as follows: if P
is true before C is executed and the execution of C terminates then Q is true after the execution
terminates.

We relate program variables to initial values using constants, e.g. x0, y0, etc. These constants
denote values that remain unchanged for a certain execution of the program, but may differ from
execution to execution. They do not appear in the program code. To illustrate, consider the
following specification:

{x = x0}C{x = x0 + 1}
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The postcondition here states that the program variable x is equal to its initial value plus one.
Hoare gives us a semantics for a simple programming language in the form of proof rules. Exam-
ples of these are given in Figure 1. It can be shown that this semantics is sound [Krz81]. Dijkstra’s
weakest liberal precondition predicate transformer wlp(C, Q) [Dij76] can be used to calculate the
weakest possible precondition of the code C given that it will achieve Q on termination.

2.2 Proof planning

Tactic-based reasoning [GMW79] involves the use of programs, known as proof tactics, which
control the application of inference rules. Proof construction corresponds to proof tactic compo-
sition. Within proof planning [Bun88] the process of composing parameterized proof tactics is
guided by high-level proof plans. A proof plan is structured in terms of proof methods. Heuristic
preconditions associated with proof methods provide the guidance for composing proof tactics.
Proof planning represents an extension to tactic-based reasoning, where proof tactics guarantee
soundness while proof methods guide proof search.

The Clam proof planner [BvHHS90] has been used for a number of applications, but the main
focus has been on proof by mathematical induction. The success of the proof plan for induction is
due to the rippling heuristic [BSvH+93]. Within rippling, syntactic differences between inductive
conclusion and hypothesis are automatically identified. A syntactic class of rewrite rules, called
wave-rules, are then used to manipulate the differences such that the hypothesis can be used to
simplify the conclusion. The use of a hypothesis to simplify a conclusion is known as fertilization.
Since rippling was developed for induction, it is not surprising that it is also applicable to the
verification of while-loop programs. For a full account of rippling see [BW96, BSvH+93].

A major strength of proof planning which we build upon is the notion of a proof critic
[Ire92, IB96b]. Proof critics support the automatic analysis and patching of failed proof at-
tempts. Previously, proof critics have been successfully applied to the automatic discovery of
what are often referred to as eureka steps during the construction of a proof. For instance,
proof critics are able to automatically generate auxiliary lemmas and conjecture generalizations
[IB96a, IB96b, IB99] as well as loop invariants [IS97, SI98, IS01, EI03, EI04, IEI04]. Such proof
patching steps are typically provided by the user of a theorem proving system. Proof patching
can be viewed as an application of a general technique known as middle-out reasoning [BSH90].
Within middle-out reasoning meta-variables are used to delay choice during a proof. The mo-
tivation is that the middle of a proof is typically more constrained than the start. Middle-out
reasoning has also been successfully applied to the synthesis of functional [ASG97, SG95] and
logic programs [KBB93]. As will be shown in §5.1.2, both middle-out reasoning and rippling
play a central role in our synthesis of while-loop programs. As a prelude to the presentation of
the actual synthesis mechanism, we illustrate below in §2.3 how rippling can be used within the
verification of a while-loop program.

2.3 Proof planning for while-loop verification

Consider the specification and program given in Figure 2, where the definition of
∑

is given as
follows:

0
∑

m=0

m = 0

X+1
∑

m=0

m = (X + 1) +

(

X
∑

m=0

m

)

(1)

As mentioned above, rippling restricts rewriting to a syntactic class of rewrite rules known as
wave-rules. Wave-rules are generated automatically from definitions and properties. For example,
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{x = x0 ∧ x0 ≥ 0}
i := 0;
r := i;
while not (i = x) do

begin
i := i + 1;
r := i + r

end
{r =

∑x0

m=0
m}

Figure 2: Specification and Program: Summing First x0 Natural Numbers

(1) gives rise to a set of wave-rules which includes:

X + 1
∑

m=0

m ⇒ (X + 1) +
(

∑X

m=0
m
)

(2)

Note that we use shading to denote the wave-fronts, i.e. the syntactic differences between the
left-hand side and right-hand side of the rule. The parts of the terms that are not shaded are known
as skeleton. A key property of rippling is that the skeleton terms are preserved. As will be shown
below, skeleton preservation is crucial to the proof strategy. The application of wave-rules requires
that a conjecture is first annotated with wave-fronts. In order to illustrate, consider r =

∑i
m=0

m
as a candidate loop invariant for the code given in Figure 2. The verification condition generated
from the while-loop takes the form:

(r =
i
∑

m=0

m ∧ i 6= x) → (i + 1) + r =
i+1
∑

m=0

m

Using wave-fronts to annotate the differences between hypothesis and conclusion gives:

(r =

i
∑

m=0

m ∧ i 6= x) → (i + 1) + r =

i + 1
∑

m=0

m

The goal of rippling is to manipulate the wave-fronts so that the hypothesis can be used to simplify
the conclusion. The associated ripple proof takes the form:

(r =
∑i

m=0
m ∧ i 6= x) → (i + 1) + r =

∑

(i + 1)
m=0 m

ripple using (2)

(r =
∑i

m=0
m ∧ i 6= x) → (i + 1) + r = (i + 1) + (

∑i

m=0
m)

fertilize

(r =
∑i

m=0
m ∧ i 6= x) → (i + 1) + r = (i + 1) + r

elementary
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Note that the fertilization step involves using the hypothesis to rewrite the conclusion. The ripple
proof is relatively trivial, requiring a single wave-rule (2) application: one could argue that the
meta-level overheads of rippling are not necessary in order to obtain a proof. Later we see that
these overheads are essential in order to constrain the search for synthesis proofs.

2.4 Partial order planning

Within proof planning, the ordering of individual steps within a plan corresponds to the order in
which goals are achieved. This approach to planning is known as total order planning. In contrast,
partial order planning allows for greater flexibility in the ordering of steps during the search for a
plan. That is, the ordering of individual steps within a plan is determined on a least commitment
basis. There are a number of planners that support partial order planning [Tat77, LW96, TDL00].
Starting with a null plan, a partial order planner incrementally selects actions to achieve individual
goals. Crucially, the position of each new action is not totally ordered with respect to the other
actions within the plan. However, during the planning process auxiliary constraints, i.e. ordering
relations, are maintained which ensure the consistency between the actions. Reasoning is then
required to order the goal achievements. Similarly, our planning approach to imperative program
synthesis requires the ability to reason about the order in which program fragments are composed.
The ability to reason about partially ordered plan steps means that the exponential search of all
possible orderings of plan steps can be avoided.

2.5 A unified planning framework

Instead of building our own partial order planner, we have instead exploited a unified planning
framework [KKY95]. This framework was developed to allow theoretical and empirical compar-
isons to be made between the various existing planning algorithms. At the core of the framework
is a generic refinement search algorithm. Refinement search is a process by which a set of par-
tial solutions (plans) are incrementally transformed until a complete solution is obtained. There
are two parts to the transformation process. Firstly, detail is added to the partial solutions, and
secondly, partial solutions that are found to be inconsistent with the overall constraints of the
planning task are pruned. Nearly all classical planning systems, including partial order planners,
use refinement search. As a consequence, the unified planning framework provided an ideal basis
upon which to combine proof and partial order planning.

We now describe the essential details of refinement search with the unified planning frame-
work. Within the unified planning framework, a planning problem is represented in terms of an
initial world state I and a desired world state G. Search nodes within the framework are repre-
sented as a 5-tuple:

〈T ,O,B,ST ,L〉

where:

• T denotes the set of actions within the plan.

• O denotes a partial ordering relation over the actions in T .

• B denotes a set of binding constraints on the variables that appears within the precondition
and postconditions of actions.

• ST denotes a mapping between action names and operators.

• L denotes a set of auxiliary constraints on the actions that appear within the plan.

An initial search node takes the following form:

〈{tI , tG}, {tI ≺ tG}, {}, {tI 7→ start, tG 7→ finish}, {}〉
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where start and finish denote dummy actions. Refinement search is specified by a set of
refinement strategies R and a solution constructor function sol, where sol(P ,G) determines
whether or not plan P achieves the desired world state G. From the initial node, the search for a
plan progresses by the application of a refinements, chosen from R. This process generates child
nodes, i.e. refined partial plans. Partial plans that are shown to be inconsistent are pruned while
the set of consistent partial plans is further refined. The generic refinement planning algorithm is
given in Figure 3.

Algorithm: Find-Plan(I, G)
Parameters: sol: solution constructor function.

1. Construct the null plan P0.

2. Initialize search queue with P0.

3. Begin loop

(a) Nondeterministically pick a node N , with partial plan P from the search queue.

(b) If sol(P ,G) returns a solution then success (terminate).

(c) If sol(P ,G) returns *fail* then skip to step 3a.

(d) Call Refine-Plan(P) to generates refinements to P .

(e) Add all refinements to the search queue.

End loop

Figure 3: Kambhampati’s Generic Refinement Planning Algorithm.

The process of applying refinements is controlled by a routine called Refine-Plan, the
details of which are given in Figure 4. Refine-Plan has essentially three roles. Firstly it
selects goals within the plan to work on. Secondly it attempts to achieve the selected goals via plan
refinements. Lastly, it records the consequences of the plan refinements via constraints and checks
for plan consistency with respect to the constraints. The unified planning framework supports two
primitive types of constraints. These are interval preservation constraints (IPCs) and point truth
constraints (PTCs):

• An IPC takes the form 〈ti, c, tj〉 where c denotes a condition that is to be preserved at all
points between steps ti and tj within the plan.

• A PTC takes the form 〈c@t〉 where c denotes a condition that is to be true immediately
before step t within the plan.

Kambhampati et al [KKY95] claim that these constraint types, correspond to the use of constraints
used within the majority of planners. Note that in §4 we consider the instantiation of the unified
planning framework for our synthesis problem.

3 The synthesis problem

It is recognized that the activity of programming not only concerns the satisfaction of goals but
also requires the management of interactions between the achievement of several goals:

“Often the specification of a program will require the simultaneous satisfaction of
more than one goal. ..., the special interest of this problem lies in the interrelatedness

6



Algorithm: Refine-Plan(P)
Parameters: pick-open: a routine for picking open goals.

pre-order: a routine which adds orderings to the plan to make conflict
resolution tractable.
conflict-resolve: a routine which resolves conflicts with auxiliary
constraints.

1. Goal selection: Using pick-open, choose an open-goal from the agenda associated with
plan P, i.e. 〈C@t〉 where C is the precondition associated with step t of plan P . Not a
backtrack point.

2. Goal establishment: Non-deterministically select a new or existing plan step t′ to achieve
〈C@t〉. Introduce constraints that record i) t′ ≺ t, ii) t′ has the effect C, and iii) C is
preserved by all steps between t′ and t. Backtrack point.

3. Book keeping: Add auxiliary constraints to ensure that goal establishment steps are pro-
tected by later refinements.

4. Tractability refinements: (Optional)

(a) Pre-ordering: impose additional orderings between every pair of steps of the partial
plan (pre-order).

(b) Conflict resolution: add orderings and bindings to resolve conflicts between plan
steps and auxiliary constraints (conflict-resolve).

5. Consistency check: If the refinement of plan P is consistent then return the refined plan
else prune the refined plan.

Note that the order in which goals are selected does not determine the order in which
goals are achieved, i.e. does not affect the ordering of actions within the plan. Con-
sequently, goal selection is not a backtrack point within the algorithm. Kambhampati
et al [KKY95] identify two types of pre-ordering strategies, total ordering and unam-
biguous ordering. The total ordering strategy orders every pair of steps in the plan,
while unambiguous ordering strategy only orders pairs when two steps interact. Dur-
ing conflict resolution the plan is refined until all conflicts are resolved.

Figure 4: Kambhampati’s Generic Refinement Algorithm.
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of the goals.”
Manna and Waldinger [MW77, Chapter 3]

As a consequence, the synthesis problem becomes two problems: Firstly, the goal satisfaction
problem, which is concerned with how to achieve a goal; secondly, the simultaneous goal problem,
which is concerned with how to interleave the achievement of one goal with the achievement of
other goals in such a way as to preserve the original achievement. Below we analyze each problem
separately.

3.1 The goal satisfaction problem

Satisfying a goal in deductive program synthesis involves finding a sequence of operators which
achieve the desired result. Gries [Gri81, Principle 14.4] observes that Programming is a goal-
oriented activity. By this he means the best place to start, when trying to satisfy a goal, is the goal
itself. Since we are concerned with finding not only a program, but also a proof of its correctness,
we use the Floyd/Hoare proof rules in a backward manner to transform the goal. The key problem,
however, is in deciding which proof rule to use and how it should be applied. For instance, we
may decide to choose an assignment over a conditional statement and then choose what expression
to assign to which variable. Such search is not feasible without the use of declarative heuristics
to control the application of the proof rules and procedural heuristics to order which declarative
heuristics to try before others.

In terms of declarative heuristics, we exploit common problem-solving heuristics, such as: Did
you use all the data? [Pol45]. Within the context of satisfying a postcondition, this corresponds
to bridging the gap between pre- and postconditions. This can be achieved by exploring the
knowledge encoded within the preconditions about the initial values of variables. We can also
use other postconditions to give the values of variables and then arrange it so that the planning
mechanism protects values at the right point. Other declarative heuristics may involve reasoning
directly about object-level terms. For instance, can we express a term in the target programming
language? Examples of procedural heuristics include attempting the least expensive program
operators first, and arranging that certain problems are only attempted using certain declarative
heuristics.

3.2 The simultaneous goal problem

In [Wal77], the simultaneous goal problem is expressed succinctly as follows:

“It is often easier to achieve either of two goals than it is to achieve both at the same
time. In the course of achieving the second goal we may undo the effects of achieving
the first.”

Ernst and Newell’s GPS system [EN69] was unable to find a solution for swapping the contents
of two registers without help. Its failure was due to its search heuristic (means end analysis),
which reduced differences one by one, i.e. it tried to achieve goals independently. Sussman’s
anomaly [Sus75] is another example of a problem which requires a solution to interleave goal
achievement, i.e. constructing an ordered stack of blocks can lead to problems if the individual
stacking operations are planned in isolation. The problem of swapping the value of two registers
is easily represented in a Floyd/Hoare style. It corresponds to the problem of swapping the values
of two program variables, e.g.

{x = x0 ∧ y = y0}C{x = y0 ∧ y = x0}

Where C is a meta-variable, a place-holder for the program we wish to synthesize. As a conse-
quence, we must take account of the potential for interaction between goals, i.e. conjuncts in the
program’s postcondition. To deal with this problem, we have to use a search procedure which
opens up the space of solutions to include a solution to the problem, i.e. one that does not achieve
goals independently.
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4 Overall approach

To integrate program synthesis and program proof our approach combines the existing proof plan-
ning mechanism (see §2.2) with a partial order planning capability. This is achieved by instantiat-
ing the unified planning framework presented in §2.5. The details of the instantiation are described
below.

4.1 Proof tactics

Gordon [Gor89] shows how it is possible to embed the semantics of a simple programming
language into a higher order logic using Floyd/Hoare axiomatic semantics. Gordon uses HOL
[Gor88a], a tactic-based theorem prover, to do this. By embedding the proof rules and axioms
into a theorem prover he has shown that not only are the semantics sound, but that any proof de-
veloped using these rules is guaranteed to be correct. Gordon shows how it is possible to construct
interactive verification proofs of programs by mechanizing these proof rules as tactics. It is these
tactics which our meta-level partially describes.

4.2 Planning methods

Within our combined approach, a planning action corresponds to an extension of the proof plan-
ning method given in §2.2. The method schema is extended to include program statements and
specifications. The details of the extended method schema are presented in Figure 5. Note that
within proof planning a precondition describes the heuristic constraints on the applicability of
tactics. To avoid confusion we call these heuristic preconditions and use state preconditions to
refer to constraints on program specifications. A method is selected if both the associated state
and heuristic preconditions hold for a given goal condition. Once selected, the method’s effects
are executed to generate the add and delete list elements which are used in the construct of the
state postconditions. An example method is given in Figure 6.

4.3 Planning critics

In tackling the synthesis task we use both proof critics and planning critics. While proof crit-
ics are used to patch failed proof attempts, planning critics are applied in order to resolve plan
inconsistencies. We delay further discussion until §5.2, after the details on the overall planning
mechanism have been described.

4.4 Planning process

While the structured programming literature [Dij76, Gri81, Kal90] is full of heuristics for achiev-
ing isolated goals, it provides little guidance as to how to treat simultaneous goals. This is where
we exploit partial order planning techniques. As mentioned above, we use a generic refinement
search algorithm. In particular, we build upon a partial order planner generated from this generic
search algorithm and described in [KKY95]. This provides a foundation for combining proof
planning with partial order planning.

We now consider the instantiation of the unified planning framework for the program synthesis
task. Given a partial correctness specification of the form:

{P}C{Q}

then the initial planning state I corresponds to {P}C{Q} while G, the desired final state, corre-
sponds to {P}{P}. Note that C denotes a meta-variable, a place-holder for the program that is to
be synthesized. Each step within a plan corresponds to a method instance. To initialise the plan
we introduce method instances corresponding to the dummy operators start and finish. These
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method( Name(Args),
State Preconditions,
Heuristic Preconditions,
Effects,
State Postconditions)

Where:

• Name: Method identifier.

• Args: A pair, where the first component is a program statement and the second component
is a proof tactic. Note that if a method corresponds to a purely logical deduction then the
program component will be empty, where empty is denoted by noop.

• State Preconditions: Preconditions relating to the partial correctness specification
of the program being synthesized.

• Heuristic Preconditions: Auxiliary preconditions, often referred to as filter con-
ditions in the planning literature.

• Effects: Code which is used to calculate the effects of applying the method within the
current planning context.

• State Postconditions: An description of how the application of the method
changes the partial correctness specification of the program being synthesized. The descrip-
tion is represented as an add-delete list, i.e. conditions that are being adding are prefixed by
the ⊕ operator while conditions that are being deleted are prefixed by the 	 operator.

Note that the program component of Args, State Preconditions and the
State Postconditions represent extensions to the original proof method
schema.

Figure 5: Extended Proof Method Schema
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method( assign(V := E, ASS TAC(V, E),
[post(V = E)],
[prog var(V ),
expressible(E)],
[find wlp ass(V = E, V, E, WLP )],
[⊕(post(WLP )),	(post(V = E))]

).

Where:

• V := E: Program assignment statement, i.e. the variable V is assigned the value of the
expression E.

• ASS TAC(V, E): Tactic corresponding to the assignment axiom.

• post(C): C is a condition that occurs within the postcondition of a partial correctness
specification.

• prog var(V ): is true if V denotes a program variable.

• expressible(E): is true if E denotes an expression that can be expressed directly within
the programming language (see §5.1).

• find wlp ass(Q, V, Exp, WLP ): Weakest liberal precondition calculation, i.e. replace
every V in Q with Exp to give WLP .

Figure 6: An assign Method.

are used to introduce the initial and final states into the plan, i.e. the start method introduces the
initial state through its associated state postcondition slot:

{⊕(pre(P )),⊕(post(Q))}

The finish method introduces the final state through its state precondition slot:

{⊕(pre(P )),⊕(post(P ))}

For each plan, an agenda of open-goals is maintained, i.e. a set of terms of the form post(G)@t
where G denotes a goal condition and t is the step within the plan at which the condition appears.
The initial planning node corresponds to the 5-tuple described in §2.5, with the exception that
initial values are assigned to B, the binding constraints, and L, the auxiliary constraints. In the
case of B, the initial value is the meta-variable C, a place-holder for the program that is to be
synthesized. The auxiliary constraints L are initialized with PTCs corresponding to the state
preconditions associated with the finish method.

In terms of the generic algorithms, the instantiation of the Refine-Plan routine (see Fig-
ure 4) requires the most work. Below we highlight how Refine-Plan is instantiated for the
program synthesis task:

1. Goal selection: a goal is selected from the plan agenda, i.e. 〈post(g)@t〉.

2. Goal establishment: Select a method m such that:

(a) post(g) is described in m’s state preconditions P .

(b) P (partially) describes the state after t.
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Check the heuristic preconditions associated with m (backtrack point). If the heuristic pre-
conditions fail then apply proof critics associated with m (backtrack point). If the heuristic
preconditions are true then execute the corresponding effects to construct the add and delete
list elements for the state postconditions (not a backtrack point). Add a new step tnew to
the plan (corresponding to the instance of m) such that t ≺ tnew.

3. Book keeping: For every state precondition P of the new method m add the IPC 〈t, P, tnew〉
and the PTC 〈P@tnew〉. For every state postcondition Q of method m, such that there exists
an auxiliary PTC 〈Q@tafter〉 and tnew ≺ tafter, then add the IPC 〈tnew, Q, tafter〉.

4. Tractability refinements:

(a) Pre-ordering: impose a total ordering on plan steps that is consistent with the order-
ing and auxiliary constraints.

(b) Conflict resolution: if no consistent total ordering exists, but there exists an applica-
ble planning critic, then use the critic weaken method m. Undo and rerun the book
keeping and tractability refinements.

5. Consistency check: If a consistent total ordering exists then return the refined partial plan
else prune the refined partial plan.

Method selection is based upon a waterfall approach, similar to that used within the Boyer-Moore
theorem prover [BM79]. The methods are ordered so that simpler, more immediate, methods
proceed the more complex methods. Where only partial success of a method is achieved then
proof critics are used to guide proof patching. The details of method ordering and proof critics
are presented in §5.

To illustrate the instantiation of the planning algorithm, consider the following specification:

{true}C{x = 0 ∧ y = 0}

This corresponds to the initial planning state and is represented by the start method’s state post-
conditions as follows:

{

⊕(post(x = 0)),⊕(post(y = 0))
}

The final state corresponds to:
{true}{true}

and is represented by {} through the state preconditions associated with the finish method. As a
consequence, the set of auxiliary constraints is also empty. The plan agenda records programming
goals and is initialized with the specification postconditions, i.e.

A : {〈goal(x = 0)@tI〉, 〈goal(y = 0)@tI〉}

Now suppose the planner selects the goal on the agenda, i.e. x = 0 at step tI . The planner will
then search for a method M such that i) post(x = 0) is contained within the state preconditions of
M , and ii) the state preconditions of M (partially) describe the state postcondition corresponding
to tI . The assignmethod given in Figure 6 meets these conditions and results in the introduction
of the assignment x := 0. The planner then adds ordering constraints:

tI ≺ t1 ≺ tG

and a binding constraint:
C = (C1; x := 0; C2)

where C1 and C2 denote new meta-variables. In addition, auxiliary constraints are introduced,
i.e. 〈post(x = 0)@t1〉 and 〈tI , post(x = 0), t1〉. These ensure that the goal condition x = 0 is
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preserved until its achievement, i.e. no step in between tI and t1 can affect the postcondition
x = 0. Then new plan agenda becomes:

A : {〈goal(y = 0)@tI〉, 〈goal(0 = 0)@t1〉}

Note that the first goal on the agenda is achieved by the assignment y := 0 while the remaining
goals are trivial and are achieved without the introduction of additional program constructs. The
complete plan gives rise to the following program:

{true} y := 0; x := 0 {x = 0 ∧ y = 0}

5 Overview of the proof methods and critics

Below we give a brief description of the methods developed for imperative program synthesis
together with how they are organized:

elementary: attempts to prove that a postcondition can be derived from the preconditions
and other postconditions using basic properties and axioms, e.g. odd(x) ≡ ¬even(x), and
simple equality/inequality reasoning.

trans: controls the rewriting of a postcondition by ensuring a decrease in the number of expres-
sions in the postcondition which cannot be expressed within the programming language.

assign: introduces an assignment, where the variable and expression are chosen using the
values of variables in the pre- and postconditions.

eval: assigns values to variables using definitions of properties. To do this we have to be sure
that the variable is not constrained to take a conflicting value at that point in the plan.

if: introduces a conditional statement by exploiting a disjunction in the postcondition if a guard
can be chosen and both auxiliary branches of the proof rule can be proof-planned.

while: a loop construct is introduced after asking the user to supply an invariant and guard, and
after three heuristic preconditions are satisfied. These heuristic preconditions are discussed
in §5.1.2.

The following three methods are used as sub-methods to the while method:

wave: provides the basis for rippling within postconditions.

fertilize: guides the application of hypotheses.

casesplit: guides case splitting.

The ordering of methods presented above reflects the ordering in which methods are selected. This
means that simpler program constructs are explored before the more complex ones. For instance,
we only attempt to construct a loop if we cannot find a sequence of assignments or conditional
statements which satisfies a goal condition. Note that both the if and while methods have
auxiliary calls to the planner, enabling the system to synthesize nested constructs.

5.1 Synthesis heuristics

Below we give examples of the kinds of heuristic preconditions which are embodied within our
methods:
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Expressibility: An important meta-logical concept within our work is the expressibility of a term.
We say that a term is expressible if we can use it in the programming language. It is inex-
pressible if we cannot. For example, x+1 and r∗y are expressible since x, r, y are program
variables and addition and multiplication are allowed in our programming language. How-
ever

∑x0

m=0
m is inexpressible since neither

∑

nor x0 are allowed in our programming
language. The notion of expressibility allows the heuristics a degree of generality and ob-
ject language independence.

Positive effects: As programmers we are interested in both efficiency and conciseness. A pro-
gram can be made both more efficient and more concise by making use of variables to hold
previous calculations. This corresponds to using already established goals. Unfortunately,
the planning algorithm only reasons about the harmful effects of simultaneous goal achieve-
ment. To make use of already established goals we must reason about the potential positive
effects that an operation may have on a goal. By defining the positive effects, which one
goal may have on other goals, we use the meta-level to reason about notions of conciseness
and efficiency. Such a definition can only ever describe heuristically the kinds of programs
which are preferred. The intuition behind our definition is as follows: Achieving a goal g
with other simultaneous goals can sometimes be made easier if one of these simultaneous
goals was achieved before g. Achieving this goal first may achieve a part of g, so we only
have to achieve the remaining unachieved parts of g.

At the meta-level we cannot reason directly about the order of goal achievement. This is
the job of the planner. We use a rewriting strategy, changing the goal we wish to achieve
by replacing the already achieved parts. For example, consider the goals i = i0 + 1 and
r = (i0+1)+r0. The planner allows the achievement of these two goals separately, forcing
the assignment of r to occur before the assignment to i, yielding the possible solution:

{i = i0 ∧ r = r0}
r := (i + 1) + r;
i := i + 1
{i = i0 + 1 ∧ r = (i0 + 1) + r0}

However, there is a subtle interaction between the two goals. Both goals share the value
i0 + 1 and furthermore i is equal to it. We say that the goal i = i0 + 1 has a positive effect
on the goal r = (i0 + 1) + r0. If we firstly choose to achieve i = i0 + 1 then we make use
of it when achieving r = (i0 + 1) + r0, using the value of i. This means that instead of
achieving r = (i0+1)+r0, we choose to achieve r = i+r0 and indicate to the planner the
preference that i = i0 +1 should be achieved first. In doing so we have used our structured
programming knowledge of how a goal can be affected by an assignment. In this example,
by observing the positive effect, we gain the solution:

{i = i0 ∧ r = r0}
i := i + 1;
r := i + r
{i = i0 + 1 ∧ r = (i0 + 1) + r0}

Such a solution is clearly preferred.

We now consider in more detail the heuristics associated with the assignment and while
methods.

5.1.1 The assignment method

Given a postcondition of the form V = Exp the assign method has two cases. The first case is
applicable when Exp is expressible in the programming language. If Exp is expressible and V is
a program variable then the assignment of Exp to V is introduced. This corresponds to Figure 6
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and was illustrated in §4.4. The second case is applicable when Exp cannot be expressed in the
programming language. The assignment method attempts to find subexpressions of Exp which
are equal to variables in the pre- and postconditions. Then the method introduces a new variable
to any (proper) subexpression, which is still inexpressible, adding an extra subgoal that equates
this new variable to the inexpressible subexpression. For example, consider the specification:

{x = x0}C{r = x0 +
∑x0

m=0
m}

Note that x0 and
∑x0

m=0
m are both inexpressible in the programming language. Since x =

x0 appears in the precondition we can replace the first x0 with x. Because
∑x0

m=0
m is still

inexpressible we replace it with a new variable v. This gives the following sub-specification:

{x = x0}
C ′;

{x + v = x0 +
∑x0

m=0
m ∧ v =

∑x0

m=0
m}

r := x + v

{r = x0 +
∑x0

m=0
m}

The aim of this heuristic is to reduce the complexity of such equational conditions, a kind of divide
and conquer strategy.

5.1.2 The while-loop method

The most complex method is the while method. Recall that the proof rule for a while-loop is:

(I ∧ ¬B) → Q {I ∧ B}S{I}

{I}while B do invariant(I) S end{Q}

Gries provides an abstraction pattern for developing a loop [Gri81, Strategy 15.1.4]1:

Strategy for developing a loop: Given an invariant (I) and a guard (B) such that
the invariant and the negated guard imply the postcondition (Q), i.e. (I ∧ ¬B) → Q;
then develop the loop body (S) so that it reestablishes the loop invariant.

We represent Gries’ strategy as heuristic preconditions to the while method. Note that middle-
out reasoning plays a crucial role in the evaluation of these preconditions as described below:
Heuristic preconditions to the while method:

1. Given an invariant I and negated guard ¬B we can establish (I ∧ ¬B) → Q.

2. There exists a weakest liberal precondition WLP of the loop body such that verification
condition (I ∧ B) → WLP holds.

3. There exists a loop body S which satisfies {WLP}S{I}.

The first heuristic precondition uses the elementary and trans methods to provide a proof
that the invariant and negated guard imply the postcondition. The second heuristic precondition
builds upon rippling and middle-out reasoning. A middle-out version of the proof illustrated in
§2.3 is attempted. If the attempt is successful then we are left in the paradoxical situation of know-
ing the weakest liberal precondition of a loop body, and an invariant, without knowing the structure
of the loop body. However, using the weakest liberal precondition, an auxiliary specification of
the loop body can be generated. The third precondition succeeds if the auxiliary specification can
be achieved. We now explore the details of the second and third heuristic preconditions.

In the domain of imperative program synthesis, we are unable to prove the verification condi-
tions without the weakest liberal precondition of the invariant and the loop body. We would like,
however, to apply Gries’ strategy where the proof leads the way. As mentioned above, to achieve

1Here we focus on a partial-correctness version.
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this we use middle-out reasoning to determine the weakest liberal precondition of the loop body.
This involves creating a schematic goal known as the synthesis condition which represents the
counterpart of a verification condition. They share the same hypothesis, i.e. the loop invariant
and guard, but the conclusion of a synthesis condition comprises the invariant with every program
variable replaced by a first order meta-variable. Such a conclusion speculates the structure of the
loop’s weakest liberal precondition. For example, consider the invariant r =

∑i

m=0
m and the

guard i 6= x. The corresponding synthesis condition is:

(r =

i
∑

m=0

m ∧ i 6= x) → R =

I
∑

m=0

m

where I and R are first-order meta-variables. We use an extended version of the verification con-
dition proof plan to guide the search for instantiations for I and R. The proof plan consists of the
waterfall of methods: elementary, casesplit, fertilize and wave. The casesplit
method deals with disjunctive postconditions. Disjunctions suggest that a conditional construct
may be needed in the body of the loop. We treat each disjunct separately by standardizing the
first-order meta-variables apart. This means that we give new names to the variables so that the
disjuncts are treated separately. Conditional rewrite rules suggest the need for a disjunction and
we use a proof critic mechanism [IB96b] to transform the plan in a similar manner to Smaill and
Green [SG95]. The ripple proof of the above synthesis condition is as follows:

(r =
∑i

m=0
m ∧ i 6= x) → R =

∑I

m=0
m

ripple using (2)
where {I 7→ I ′ + 1}

(r =
∑i

m=0
m ∧ i 6= x) → R = (I ′ + 1) + (

∑I′

m=0
m)

fertilize
where {I ′ 7→ i}

(r =
∑i

m=0
m ∧ i 6= x) → R = (i + 1) + r

elementary
where {R 7→ (i + 1) + r}

(r =
∑i

m=0
m ∧ i 6= x) → (i + 1) + r = (i + 1) + r

Note that I and R are instantiated to be i+1 and (i+1)+r respectively. Note also that this proof
is similar to the verification condition proof in §2.3, i.e. we have proved the verification condition
resulting from the loop body. From this we extract the differences added to each variable in order
to engineer an auxiliary specification. The program synthesized using this auxiliary specification
is used for the loop body. We have made certain assumptions which may lose us correctness
at the meta-level. Tactic execution, however, which involves no search, provides an object-level
correctness check. This property of proof planning is very appealing as it allows us to experiment
with heuristics while still having a guarantee of correctness.

The auxiliary specification is constructed by equating all the program variables within the
invariant to initial values in the precondition. The postcondition equates the program variables
to terms derived from differences extracted from the weakest liberal precondition calculation.
These terms are derived by replacing every program variable appearing in the difference with its
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corresponding initial value. For example, the auxiliary specification for the example above is:

{i = i0 ∧ r = r0}C{i = i0 + 1 ∧ r = (i0 + 1) + r0}

This auxiliary specification is passed to the planning mechanism using the top-level-waterfall.
The planner then constructs a program for the loop body. For example, the auxiliary specification
above can be achieved by the two assignments:

{i = i0 ∧ r = r0}
i := i + 1;
r := i + r
{i = i0 + 1 ∧ r = (i0 + 1) + r0}

The program synthesized so far is:

{x = x0}
C ′;

{r =
∑i

m=0
m}

while not (i = x)
begin

i := i + 1;
r := i + r

end
{r =

∑x0

m=0
m}

We finish the synthesis by initializing the loop invariant using the eval, assign andelementary
methods. The final program is:

{x = x0}
i := 0;
r := i;

{r =
∑i

m=0
m}

while not (i = x)
begin

i := i + 1;
r := i + r

end
{r =

∑x0

m=0
m}

Note that the while method makes use of heuristics developed for loop invariant verification. It
uses the space of possible verification condition proofs to constrain the synthesis of the code. The
above synthesis example is semi-automatic. The user has to supply an invariant and guard when
prompted to do so by the system. However, the system decides when a loop is needed. When
asked to supply an invariant, the user is always given the postcondition which is being weakened
as a guide, i.e. the user does not have to specify an invariant with the original specification.
Note that alternative invariants may cause different code to be synthesized. Although the search
problem is much more difficult than its verification counterpart, proof planning and the constraints
of rippling make synthesis feasible.

5.2 Proof and planning critics

As mentioned earlier, proof critics are used to patch failed proof attempts while planning critics
resolve conflicts with respect to the plan’s constraint set. Our synthesis approach uses two proof
critics and one planning critic as described below:

trans: a proof critic motivated by Gries’ strategy for developing an alternative command
[Gri81, (14.7)]. Failure to prove a condition attached to a rewrite rule is used to trans-
form the associated postcondition into a disjunction. Note that a disjunctive postcondition
allows for a casesplit using the if method.
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wave: a proof critic which introduces casesplits based upon failure within the context of a ripple
proof. While triggered by the failure of the wave method, it has strong similarities with the
trans casesplit critic.

assign: a planning critic which triggers when a step threatens a property introduced by an
assign method relying on the value of a program precondition. The assign method is
weakened by assigning the same variable to a temporary variable, rather than the expression
to which it was previously assigned.

In order to illustrate the assign planning critic, we return to the swap example discussed in §3.2.
Recall that the specification takes the form:

{x = x0 ∧ y = y0}C{x = y0 ∧ y = x0}

The agenda corresponding to the initial plan node takes the form:

A : {〈goal(x = y0)@tI〉, 〈goal(y = x0)@tI〉}

Assuming the first goal condition is selected, i.e. x = y0, then the assign method would
introduce the assignment x := y (see §5.1.1). The achievement of this goal condition would
introduce auxiliary constraints that include the following IPCs:

{〈tI , pre(x = x0), t1〉, 〈tI , pre(y = y0), t1〉, 〈tI , post(x = y0), t1〉, 〈t1, post(y = y0), tG〉}

where t1 denotes the node corresponding to the application of the assign method. In terms of
ordering constraints, the following is recorded:

tI ≺ t1 ≺ tG

and the binding constraint becomes:

C = (C1; x := y; C2)

The updated plan agenda is now:

A : {〈goal(y = x0)@tI〉, 〈goal(y = y0)@t1〉}

Again assuming the first goal condition is selected then the assign method would introduce the
assignment y := x, and give rise to the following auxiliary constraints:

{〈tI , pre(x = x0), t2〉, 〈tI , pre(y = y0), t2〉, 〈tI , post(y = x0), t2〉, 〈t2, post(x = x0), tG〉}

where t2 denotes the node corresponding to the second application of the assign method. The
corresponding ordering and binding constraints take the form:

tI ≺ t2 ≺ tG

and
C = (C3; y := x; C4)

respectively. Now the planner attempts to impose a total order on the plan steps. There are two
possible orderings to consider. Each ordering needs to be checked for consistency:

• tI ≺ t1 ≺ t2 ≺ tG: To check whether this ordering is consistent the planner checks that no
IPCs are violated. Since t2 updates y the IPC 〈t1, post(y = y0), tG〉 would be violated by
this ordering.

• tI ≺ t2 ≺ t1 ≺ tG: To check whether this ordering is consistent the planner checks that no
IPCs are violated. Since t1 updates x the IPC 〈t2, post(x = x0), tG〉 would be violated by
this ordering.
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Note that the consistency checking relies upon the weakest liberal precondition calculation [Dij76],
and the method state postconditions, i.e. the add-delete lists.

Although a consistent ordering is not possible, the planner forces an ordering and then attempts
to resolve the conflict. Let us suppose that its chooses ordering tI ≺ t2 ≺ t1 ≺ tG. Since
t1 violates the property x = x0 which is required for t2, a planning critic weakens the form of
assignment so that y is not assigned directly to x. That is, the critic introduces an auxiliary variable
into the goal condition with the expectation that we can drag this new goal condition back through
the conflicting assignment, and so make use of the precondition as required. After the critic has
executed the binding constraint becomes:

C = (C1; y := x; y := temp)

and 〈goal(temp = x0)@t2〉 is added to the plan agenda. The achievement of this goal condition
results in the following binding constraint:

C = (temp := x; y := x; y := temp)

This completes the synthesis for the swap example.

6 Implementation

The ideas described above are implemented within a Prolog-based system called BERTHA. The
BERTHA system consists of a planning mechanism, pretty printing utilities, definitions of meta-
logical terms and a library containing a set of methods, critics, definitions, lemmas and exam-
ple specifications. BERTHA is built directly on the shell of the Clam proof planning system
[BvHHS90]. However, BERTHA is a significant extension to the Clam proof planner. Only the
core of Clam is used to provide a representation for terms and other meta-level constructs. Method
and critic data structures have been extended to deal with partial descriptions of state. Our meth-
ods are general enough to allow arbitrary combinations and nesting of constructs. BERTHA shows
the success of the meta-level heuristics and planning mechanism. It is easy enough to replace the
heuristics by writing new methods. Therefore, given new methods we would be able to compare
the benefits of different heuristics.

To illustrate BERTHA, a session is given below. The output presented is taken directly from
BERTHA, with only certain details abstracted for a clearer presentation. Note that in BERTHA a
wave-front x + 1 is expressed as ‘‘{x}+1’’<out> while conjunction and disjunction are

denoted by # and / respectively. In addition, we use sum(X) to denote
∑X

m=0
m. In this

example, BERTHA is required to synthesize a program which sums the first x0 natural numbers.
Initially BERTHA is given the specification:

{x = x0}C{r =
∑x0

m=0
m}

We assume that any definitions and lemmas, which are required to complete the proof, are included
in a background theory, which has already been loaded into BERTHA. We start the synthesis
attempt:

|-? poplan(sum).

BERTHA then shows the specification of the problem.

Specification:
{x=x0}
{r=sum(x0)}
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BERTHA searches for methods which are applicable. As no other methods are applicable BERTHA attempts
the while method. Next BERTHA shows the current goal r =

∑x0

m=0
m and asks the user to sup-

ply an invariant and guard to use when synthesizing a loop.

Postcondition: r=sum(x0)
Choose Invariant:
|: r=sum(i).

Choose Guard:
|: not(i=x).

In this case the user supplies the invariant r =
∑i

m=0
m and the guard i 6= x. If the user does not

want to apply the while method they can cause this precondition to fail by typing fail when
asked to supply an invariant. The heuristic preconditions associated with the while method are
then evaluated. The first precondition attempts to show that the given invariant and guard provide
a valid weakening, i.e.

(r =

i
∑

m=0

m ∧ i = x ∧ x = x0) → r =

x0
∑

m=0

m

This is achieved by BERTHA using the elementary method:

Planning Weakening
Last method fired: elementary(...)

PROGRAM:
{r=sum(i)#not(not(i=x))#x=x0}
{r=sum(x0)}
--------Solution Found--------

Note that the elementary method makes use of the precondition x = x0. Since the precondition is
used it is passed to the planning mechanism to be used as a constraint; i.e. x must take the value
x0 at all times between the precondition and the end of the loop being synthesized. The planning
mechanism is responsible for the reasoning required to keep this constraint.

The second heuristic precondition of the whilemethod involves synthesizing the verification
condition proof involving the loop invariant. This is done by setting up an appropriate synthesis
condition, which is achieved using the ripple method:

Planning Synthesis Condition
Last method fired: wave(sum1)

PROGRAM:
{ r=sum(i)# not(i=x)}
{R=sum(‘‘{I}+1’’<out>)}
Last method fired: fertilize(...)

PROGRAM:
{r=sum(i)# not(i=x)}
{R=sum(‘‘{i}+1’’<out>)}
Last method fired: elementary(...)

PROGRAM:
{r=sum(i)# not(i=x)}
{( i+1)+r=sum(‘‘{i}+1’’<out>)}
--------Solution Found--------

The above transcript from BERTHA shows how the original postcondition is incrementally instan-
tiated as a side-effect of the ripple guided proof. The associated ripple proof is given in §5.1.2.
Note that sum1 corresponds to wave-rule (2).
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Next an auxiliary specification to the loop body is generated using information from the proof
of the synthesis condition. The third heuristic precondition succeeds if the auxiliary specification
can be achieved. Here the auxiliary specification is achieved using two assignments:

Planning Body
Last method fired: ass1(i,i+1)

PROGRAM:
{x=x0#i=iv1temp0#r=rv2temp0}

i:=i+1
{i=iv1temp0+1#r=(iv1temp0+1)+rv2temp0}
Last method fired: elementary(...)

PROGRAM:
{x=x0#i=iv1temp0#r=rv2temp0}

i:=i+1
{i=iv1temp0+1#r=(iv1temp0+1)+rv2temp0)}
Last method fired: ass1(r,i+r)

PROGRAM:
{x=x0#i=iv1temp0#r=rv2temp0}

i:=i+1;
r:=i+r

{i=iv1temp0+1#r=(iv1temp0+1)+rv2temp0}
Last method fired: elementary(...)

PROGRAM:
{x=x0#i=iv1temp0#r=rv2temp0}

i:=i+1;
r:=i+r

{i=iv1temp0+1#r=(iv1temp0+1)+rv2temp0}
--------Solution Found--------

Note that the goal:
i = iv1temp0 + 1

has a positive effect on the goal:

r = (iv1temp0 + 1) + rv2temp0

The assignment method reasons about the appropriate assignment needed and leaves the planner to
reason about the order in which they should be attempted to achieve the conjunctive goal. Having
satisfied these three preconditions, BERTHA is able to fire the whilemethod, synthesizing a loop:

Planning Termination
Last method fired: while(...)

PROGRAM:
{x=x0}

while(not i=x) do
begin
{r=sum(i)}
i:=i+1;
r:=i+r

end
{r=sum(x0)}

After the loop there remains a subgoal to prove:

{x = x0}C ′{r = sum(i)}
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i.e. we must initialize the loop invariant. Doing so will synthesize the code which will initialize
the loop. BERTHA chooses to evaluate this goal, by choosing values for i and r. It first uses the
definition of

∑

to do this.

Last method fired: eval(sum0)
PROGRAM:
{x=x0}

while(not i=x) do
begin
{r=sum(i)}
i:=i+1;
r:=i+r

end
{r=sum(x0)}

This results in assigning values of 0 and i to the program variables i and r.

Last method fired: ass1(r,i)
PROGRAM:
{x=x0}

r:=i;
while(not i=x) do
begin
{r=sum(i)}
i:=i+1;
r:=i+r

end
{r=sum(x0)}
Last method fired: elementary(...)

...
Last method fired: ass1(i,0)

PROGRAM:
{x=x0}

i:=0;
r:=i;
while(not i=x) do
begin
{r=sum(i)}
i:=i+1;
r:=i+r

end
{r=sum(x0)}
Last method fired: elementary(...)

...
--------Solution Found--------

Having completed the synthesis, BERTHA reports success by displaying the completed program:
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PROGRAM:
{x=x0}

i:=0;
r:=i;
while(not i=x) do
begin
{r=sum(i)}
i:=i+1;
r:=i+r

end
{r=sum(x0)}

and presents the proof found in the form of a compound tactic:

TACTIC:
SEQ_TAC THENL [
WHILE_TAC(not(i=x),r=sum(i)) THENL

WEAKEN_TAC THENL [
ELEMENTARY_TAC(...),
SKIP_TAC],

SEQ_TAC THENL [
ASS_TAC(r,i+r),
SEQ_TAC THENL [
ASS_TAC(i,i+1),
WEAKEN_TAC THENL [

REWRITE_TAC(sum1,[2]),
WEAKEN_TAC THENL [

FERTILIZE_TAC,
WEAKEN_TAC THENL [
ELEMENTARY_TAC(...),
SKIP_TAC]]]]],

PARTIAL_CORRECTNESS_TAC]
WEAKEN_TAC THENL [

EVAL_TAC(sum0),
SEQ_TAC THENL [

ASS_TAC(r,i),
SEQ_TAC THENL [
ASS_TAC(i,0),
WEAKEN_TAC THENL [

ELEMENTARY_TAC(...),
WEAKEN_TAC THENL [

ELEMENTARY_TAC(...),
SKIP_TAC]]]]]]

This example highlights three important properties of the BERTHA system and the synthesis proof
plan:

1. Apart from asking the user to supply an invariant and guard, the synthesis attempt shown
above is fully automatic. BERTHA chooses which methods to apply, how the achievement
of goals is ordered, which wave-rules to apply, etc.

2. The synthesis proof plan is designed to be very prescriptive. There was no search in the
example above and little search required in general. The search strategy is a simple depth-
first backtracking algorithm.

3. Rippling successfully constrains middle-out reasoning in the presence of first-order meta-
variables. The only change required was the generalization of method preconditions to
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allow first-order meta-variables as wave-terms. Eager fertilization provides control over the
potentially non-terminating rewriting.

7 Results

Experimental results with BERTHA are presented in the appendices. In appendix A, specifications
and the associated synthesized programs are presented. Appendix B provides all the information
from which BERTHA synthesized each program, e.g., specification, definitions, lemmata and in-
variants. Below the results of the experiments are divided into four classes: each class is discussed
in detail.

Simple programs: Examples requiring the synthesis of programs involving either no program
constructs or only one assignment are shown in Table 2. Examples easy1 and easy2 re-
quire no program constructs to be synthesized. Their proofs rely on the elementary method.
Examples one, incx, xoplusxo and xplusy all involve simple reasoning about the
values of variables in the pre- and postcondition. The programs synthesized are simple
assignments. Examples dble, square and cubed involve the transformation of the
postcondition into an equivalent form using the trans method and so rely on a property
in the postcondition and various lemmata to find a weaker, but more amenable, specifica-
tion. The notions of more “expressible” and “embeddedness” enable the postcondition to
be transformed until the assignment method can be applied.

Sequences of assignments: Examples requiring the synthesis of programs involving sequences
of assignments are presented in Table 3. The first three examples require no temporary vari-
ables, since the conjunctive goals can be dealt with separately. The remaining six examples
require the use of a temporary variable. BERTHA uses the assignment planning critic when it
discovers that it cannot order the achievement of the conjunctive goals. This critic weakens
an existing assignment by introducing a temporary variable, so as to delay the conflicting
assignment.

Conditionals: Examples requiring the synthesis of programs involving conditionals are presented
in Table 4. Note again the use of temporary variables. This highlights that BERTHA can rea-
son about conflicting goals with program constructs other than assignments. The examples
max and ifdblecubed require the transformation of goals. For max this transformation
process fails since the conditions on the rewrite rules cannot be met. This failure causes the
trans critic to fire, which introduces a disjunctive goal, which in turn suggests the applica-
tion of the if method.

While-loops: Examples requiring the synthesis of programs involving loops are presented in Ta-
ble 5. Note that the examples exp1 and exp2 have exactly the same specification. The
use of different invariants and the use of the background theory in a different way gives
rise to different algorithms, one with an increasing iterator and the other with a decreas-
ing one. The example sumexp shows that BERTHA can generate loops within conditional
branches, and the sumodd example shows that BERTHA can generate conditionals within
loops. This example involves the use of the wave casesplit critic to introduce a disjunctive
goal. Examples sumfexp1 and sumfsum1 introduce nested loops. The user is asked
to supply invariants for the loops on two separate occasions. The inner loop is generated
when BERTHA attempts to synthesize the auxiliary specification of the outer loop. Exam-
ple sumfsum2 has the same specification as sumfsum1, but the user supplies a stronger
invariant using the principle advocated by Gries in [Gri76]. This results in the synthesis of
a more efficient algorithm, i.e. by exploiting the relationship between loop variables i and
j, the nested loop structure of sumfsum1 can be replaced by a single loop, as shown in
sumfsum2.
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8 Related work

Manna and Waldinger [MW80] introduce a deductive approach to recursive program synthesis.
Proof planning enables us to use a similar approach, but allows us to identify the various types of
knowledge needed for such a task. Proof planning has been used for logic [KBB93] and functional
program [ASG97, SG95] synthesis. This work extended an established proof plan for induction.
For imperative program synthesis we could no longer rely on induction directly and needed to
develop a new proof plan and search procedure.

Dershowitz [Der85] gives a set of synthesis rules for the top-down transformation of spec-
ification into code. These rules mix planning, heuristic and proof knowledge together, making
them hard to understand. There is no deductive component and search issues are ignored. Cheng
[Che94] extends Dershowitz’s ideas and couples them with a theorem prover. Small pieces of code
are synthesized then verified to ensure correctness. Christensen’s system [Chr93] first attempts to
break a specification down using program constructs, and then proves any verification conditions.
Dependencies between variables are reasoned about using an equational reasoning tool. If there
are still assignments to be chosen, these are then guessed by the system.

Our approach to imperative program synthesis differs from those highlighted above in that we
are able to couple the deductive and heuristic components within the proof planning framework.
Middle-out reasoning enables us to prove the program correct while it is being synthesized. This
provides a powerful, yet understandable approach, which gives provably correct programs.

A distinctive feature of our approach is that we are tackling synthesis from first principles. This
raises the issue of scalability. Scalability might be achieved by using our approach to combine
software components, e.g. iterating over pre-specified library components. This is essentially
how AMPHION [LPPU94] achieves scalability, i.e. building upon powerful subroutine libraries.
AMPHION, however, only supports straight-line code.

An alternative and more semantic approach to program synthesis is achieved through program
schemas [FZH98, Smi90, Smi96]. Each program schema provides a template that is filled out
during synthesis. Correctness is partially dealt with off-line, once for each program schema.
In contrast our approach selects program constructs based on heuristic choice and builds up a
correctness argument as the program is synthesized. In [RF03] a unification of proof planning and
schema-based synthesis is outlined. This hybrid approach potentially provides greater flexibility
compared with conventional schema-based synthesis approaches. In particular, they extend the
use proof methods to represent heuristics for guiding the application of program schemas. This is
similar to our use of proof methods in representing heuristics for guiding program construction.
It would be interesting to investigate how schema-based techniques could be exploited within our
approach, in particular to support reuse.

Schema-based approaches typically support the development of functional programs. In terms
of the synthesis of imperative programs, the Evolving Specifications (ESPECS) framework [PS01]
supports the composition of behavioural specifications and their refinement to imperative code.
Specifications within ESPECS are represented as state machines. Building upon the Specware-
Designware framework [Smi96], composition and refinement of specifications are achieved via
colimit and diagram morphism respectively. BERTHA is not refinement based in the formal sense
of Dromey [Dro89] and Morgan [Mor94]. However, the partial order planner upon which BERTHA is
development supports refinement in the AI planning sense. Like BERTHA, ESPECS requires aux-
iliary specification, such as loop invariants, to be provided as input. A potential advantage of the
BERTHA approach is that the system prompts the user when such input is required. A key dif-
ference between the ESPECS and BERTHA approaches is that while BERTHA guides the synthesis
process ESPECS relies upon external assistance, e.g. in [PS01] reference is made to a design tactic
as providing the algorithmic details.
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9 Limitations and future work

Like all heuristic techniques, our approach is incomplete. Potential avenues for future investiga-
tion include:

• By relying on the rippling heuristic, we are restricting the loop body to be, in some sense,
structure preserving. Exploring ways in which rippling can be relaxed, e.g. to allow renam-
ing of variables, would increase the range of programs which could be synthesized.

• Building upon our invariant discovery work [IS97, SI98, IS01, EI03, EI04, IEI04] we be-
lieve that progress can be made in terms of automating synthesis without user-supplied loop
invariants.

• Building upon the meta-level notion of expressibility, we believe automating the reuse of
previously synthesized code is possible.

• The link to the object-level is unimplemented. Currently we check the tactics by hand.
However, we do not perceive this to be a problem since the tactics are already implemented
in HOL [Gor89] and there exists a link between HOL and Clam [BSBG98].

• The proof plan currently deals with partial correctness; termination has not been addressed.
To show total correctness, the while method needs to be extended to find a decreasing and
bounded property of the loop.

• Our synthesis ideas are demonstrated using a simple programming language, similar to the
language used in [Gor88b]. Recently we have been investigating the use of proof planning
[EI03, EI04, IEI04] in terms of the SPARK approach to high integrity software development
[Bar03]. SPARK is an Ada subset which supports Floyd/Hoare style program development.
The simplicity of the language definition was a key factor in the design of SPARK, e.g.
functions are not permitted to have side-effects, and recursion and dynamic storage alloca-
tion are prohibited. This simplicity would also make SPARK an ideal language for us to
further test and extend our synthesis work. One such extension would be to include arrays
and records within BERTHA.

• As mentioned in §8, the scalability of our approach may be achieved through component
based synthesis, i.e. synthesis based upon pre-specified subprograms rather than primitive
program constructs. We plan to investigate component based synthesis within the context
of SPARK.

10 Conclusion

We have presented an approach to imperative program synthesis which combines proof planning
with partial order planning. The approach has been implemented within the BERTHA system and
has been used to synthesize a wide range of programs. Using a hybrid approach has enabled us to
combine structured programming and proof heuristics within a single framework. We believe that
our approach makes progress towards mechanizing Gries’ vision of developing “a program and
its proof hand-in-hand, with the proof ideas leading the way!” [Gri81].
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A Program Synthesis Examples

easy1 :
` {x = 0}

{x = 0}

easy2 :
` {x = x0 ∧ y = y0}

{x + y = x0 + y0}

one :
` {true}

x := 1
{x = 1}

incx :
` {x = x0}

x := x + 1
{x = x0 + 1}

xoplusxo :
` {x = x0}

x := x + x

{x = x0 + x0}

xplusy :
` {x = x0 ∧ y = y0}

x := x + y

{x = x0 + y0}

dble :
` {x = x0}

x := x + x

{x = dble(x0)}

square :
` {x = x0}

x := x ∗ x

{x = exp(x0, 2)}

cubed :
` {x = x0}

x := x ∗ (x ∗ x)
{x = exp(x0, 3)}

incxy :
` {x = x0 ∧ y = y0}

y := y + 1;
x := x + 1
{x = x0 + 1 ∧ y = y0 + 1}

rename :
` {x = x0 ∧ y = y0}

p := x;
q := y

{q = y0 ∧ p = x0}

xplusyincy :
` {x = x0 ∧ y = y0}

x := x + y;
y := x + 1
{x = x0 + y0 ∧ y = x + 1}

swap :
` {x = x0 ∧ y = y0}

temp := x;
x := y;
y := temp

{x = y0 ∧ y = x0}

swap3 :
` {x = x0 ∧ y = y0 ∧ z = z0}

temp := x;
x := y;
y := z;
z := temp

{x = y0 ∧ y = z0 ∧ z = x0}

dble swap :

`



V x = x0 ∧ y = y0
z = z0 ∧ w = w0

ff

temp := x;
x := y;
y := temp;
temp := z;
z := w;
w := temp


V x = y0 ∧ y = x0
z = w0 ∧ w = z0

ff

dble swap2 :

`



V x = x0 ∧ y = y0
z = z0 ∧ w = w0

ff

temp := x;
x := y;
y := temp;
temp := z;
z := x + (y + w);
w := temp
8

<

:

V

x = y0 ∧ y = x0
z = x0 + (y0 + w0)
w = z0

9

=

;

xplusy1 :
` {x = x0 ∧ y = y0}

temp := x;
x := x + y;
y := temp

{x = x0 + y0 ∧ y = x0}

xplusyincy1 :
` {x = x0 ∧ y = y0}

temp := x + 1;
x := x + y;
y := temp

{x = x0 + y0 ∧ y = x0 + 1}
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ifdblecubed :
` {x = x0 ∧ y = y0}

if x = y + y then
x := y ∗ (y ∗ y)

8

<

:

W

„

V x0 = dble(y0)
x = exp(y0,3)

«

(x0 6= dble(y0))

9

=

;

ifswap :
` {x = x0 ∧ y = y0}

if x ≥ y then
temp := x;
x := y;
y := temp



W (x0 ≥ y0 ∧ y = x0 ∧ x = y0)
(x0 < y0 ∧ x = x0 ∧ y = y0)

ff

max :
` {x = x0 ∧ y = y0}

if x ≥ y then
r := x

else
r := y

{r = max(x0, y0)}

not :
` {x = x0}

if x = 0 then
x := 1

else
x := 0



W (x0 = 0 ∧ x = 1)
(x0 6= 0 ∧ x = 0)

ff

notandy :
` {x = x0}

y := x;
if x = 0 then

x := 1
else

x := 0
8

<

:

V

„

W (x0 = 0 ∧ x = 1)
(x0 6= 0 ∧ x = 0)

«

(y = x0)

9

=

;

swapandnot :
` {x = x0 ∧ y = y0}

temp := x;
if y = 0 then

x := 1
else

x := 0; y := temp;
8

<

:

V

„

W (y0 = 0 ∧ x = 1)
(y0 6= 0 ∧ x = 0)

«

(y = x0)

9

=

;

exp1 :
` {x = x0 ∧ y = y0}

r := 1;
while not (y = 0) do

begin
r := r ∗ x;
y := y − 1

end
{r = exp(x0, y0)}

exp2 :
` {x = x0 ∧ y = y0}

r := 1;
i := 0;
while not (i = y) do

begin
r := r ∗ x;
i := i + 1

end
{r = exp(x0, y0)}

sum2 :
` {x = x0}

i := 0;
r := 0;
while not (i = x) do

begin
i := i + 1;
r := i + r

end
{r =

P

x0

m=0
m}

fac2 :
` {x = x0}

i := 0;
r := 1;
while not (i = x) do

begin
i := i + 1;
r := r ∗ i

end
{r = fac(x0)}

sumodd :
` {x = x0}

i := 0;
r := i;
while not (i = x) do

begin
i := i + 1
if not even(i) then

r := i + r

end
{r =

P

x0

m=0
(m|odd(m))}
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sumfsum1 :
` {x = x0}

i := 0;
r := 0;
while not (i = x) do

begin
i := i + 1;
j := 0;
v := 0;
while not (j = i) do

begin
j := j + 1;
v := j + v

end
r := v + r

end
{r =

P

x0

m=0

P

m

n=0
n}

sumfsum2 :
` {x = x0}

i := 0;
r := 0;
z := i;
while not (i = x) do

begin
i := i + 1;
z := i + z;
r := z + r

end
{r =

P

x0

m=0

P

m

n=0
n}

sumexp :
` {x = x0 ∧ y = y0}

if x < y then
i := 0;
r := i;
while not (i = x) do

begin
i := i + 1;
r := i + r

end
else

i := 0;
r := i + 1;
while not (i = y) do

begin
i := i + 1;
r := x ∗ r

end


W(x0 < y0 ∧ r =
P

x0

m=0
m)

(x0 ≥ y0 ∧ r = exp(x0, y0))

ff

sumfexp1 :
` {x = x0 ∧ y = y0}

i := 0;
r := i;
while not (i = x) do

begin
i := i + 1;
k := 0;
v := k + 1;
while not (k = y) do

begin
k := k + 1;
v := i ∗ v

end
r := v + r

end
{r =

P

x0

m=0
exp(m,y0)}
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B Synthesis Results

B.1 Definitions & Lemmas

No Definitions & Lemmas
L1 X − X = 0
L2 X − (Y − Z) = (X − Y ) + Z
L3 X ∗ 1 = X
L4 exp(X, 0) = 1
L5 exp(X, Y + 1) = X ∗ exp(X, Y )
L6 X ∗ exp(X, Y − 1) = exp(X, Y )
L7 fac(0) = 1
L8 fac(X + 1) = (X + 1) ∗ fac(X)

L9
∑0

m=0
m = 0

L10
∑X+1

m=0
m = (X + 1) +

∑X

m=0
m

L11 X +
∑X−1

m=0
m =

∑X

m=0
m

L12
∑

0 = 0

L13
∑X+1

m=0
f(m) = f(X + 1) +

∑X
m=0

f(m)

L14
∑X+1

m=0
f(m, Y ) = f(X + 1, Y ) +

∑X

m=0
f(m, Y )

L15
∑0

m=0
(m|odd(m)) = 0

L16 even(X + 1) →
∑X+1

m=0
(m|odd(m)) =

∑X

m=0
(m|odd(m))

L17 odd(X + 1) →
∑X+1

m=0
(m|odd(m)) = (X + 1) +

∑X

m=0
(m|odd(m))

L18 X ≥ Y → max(X, Y ) = X
L19 X < Y → max(X, Y ) = Y
L20 dble(X) = X + X

Table 1: Definitions & Lemmas Used For Program Synthesis.

B.2 Program Specifications

Algorithm Specification Lemmas
easy1 {x = 0}C{x = 0} –
easy2 {x = x0 ∧ y = y0}C{x + y = x0 + y0} –
one {true}C{x = 1} –
incx {x = x0}C{x = x0 + 1} –

xoplusxo {x = x0}C{x = x0 + x0} –
xplusy {x = x0 ∧ y = y0}C{x = x0 + y0} –
dble {x = x0}C{x = dble(x0)} L20

square {x = x0}C{x = exp(x0, 2)} L3,L4,L5
cubed {x = x0}C{x = exp(x0, 3)} L3,L4,L5

Table 2: Simple Programs Successfully Synthesized.
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Algorithm Specification

incxy {x = x0 ∧ y = y0}C{x = x0 + 1 ∧ y = y0 + 1}

rename {x = x0 ∧ y = y0}C{q = y0 ∧ p = x0}

xplusyincy {x = x0 ∧ y = y0}C{x = x0 + y0 ∧ y = x + 1}

swap {x = x0 ∧ y = y0}C{x = y0 ∧ y = x0}

swap3 {x = x0 ∧ y = y0 ∧ z = z0}C{x = y0 ∧ y = z0 ∧ z = x0}

dble swap {x = x0 ∧ y = y0 ∧ z = z0 ∧ w = w0}C{x = y0 ∧ y = x0 ∧ w = z0 ∧ z = w0}

dble swap2 {x = x0 ∧ y = y0 ∧ z = z0 ∧ w = w0}C{x = y0 ∧ y = x0 ∧ w = z0 ∧ z = x0 + (y0 + w0)}

xplusy1 {x = x0 ∧ y = y0}C{x = x0 + y0 ∧ y = x0}

xplusyincy1 {x = x0 ∧ y = y0}C{x = x0 + y0 ∧ y = x0 + 1}

Table 3: Programs Involving Assignment Sequences Successfully Synthesized.

Algorithm Specification Lemmas

ifdblecubed {x = x0 ∧ y = y0}C{
∨ (x0 = dble(y0) ∧ x = exp(y0, 3))

(x0 6= dble(y0))
}

L20,L4,
L5,L3

ifswap {x = x0 ∧ y = y0}C{
∨ (x0 ≥ y0 ∧ y = x0 ∧ x = y0)

(x0 < y0 ∧ x = x0 ∧ y = y0)
} –

max {x = x0 ∧ y = y0}C{r = max(x0, y0)} L18,L19

not {x = x0}C{
∨ (x0 = 0 ∧ x = 1)

(x0 6= 0 ∧ x = 0)
} –

notandy {x = x0}C{
∧

(

∨ (x0 = 0 ∧ x = 1)
(x0 6= 0 ∧ x = 0)

)

(y = x0)
} –

swapandnot {x = x0 ∧ y = y0}C{
∧

(

∨ (y0 = 0 ∧ x = 1)
(y0 6= 0 ∧ x = 0)

)

(y = x0)
} –

Table 4: Programs Involving Conditionals Successfully Synthesized.
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Algorithm Specification
Invariants
supplied

Lemmas

exp1 {x = x0 ∧ y = y0}C{r = exp(x0, y0)} r = exp(x0, y0 − i)
L1, L2,
L4,L5

exp2 {x = x0 ∧ y = y0}C{r = exp(x0, y0)} r = exp(x0, i) L4,L5
fac2 {x = x0}C{r = fac(x0)} r = fac(i) L7,L8
sum2 {x = x0}C{r =

∑x0

m=0
m} r =

∑i
m=0

m L10,L11

sumexp {x = x0 ∧ y = y0}C{
∨

(

∧(x0 < y0)

(r =
∑x0

m=0
m)

)

(

∧(x0 ≥ y0)
(r = exp(x0, y0))

)}

then loop:
r =

∑i
m=0

m
else loop:
r = exp(x0, i)

L4, L5
L9,L10

sumodd {x = x0}C{r =
∑x0

m=0
(m|odd(m))} r =

∑i

m=0
(m|odd(m))

L15, L16
L17

sumfexp1 {x = x0 ∧ y = y0}C{r =
∑x0

m=0
exp(m, y0)}

Outer loop:
r =

∑i

m=0
exp(m, y0)

Inner loop:
r = exp(i, k)

L4,L5,
L12, L14

sumfsum1 {x = x0}C{r =
∑x0

m=0

∑m

n=0
n}

Outer loop:
r =

∑i
m=0

∑m
n=0

n
Inner loop:
∑j

n=0
n

L9,L10,
L12, L13

sumfsum2 {x = x0}C{r =
∑x0

m=0

∑m

n=0
n}

∧(r =
∑i

m=0

∑m
n=0

n)

(z =
∑i

m=0
n)

L9,L10,
L12,L13

Table 5: Programs Involving Loops Successfully Synthesized.
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