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Abstract. Using automated reasoning techniques, we tackle the niche
activity of proving that a program is free from run-time exceptions. Such
a property is particularly valuable in high integrity software, e.g. safety
or security critical applications. The context for our work is the SPARK
Approach for the development of high integrity software. The SPARK
Approach provides a significant degree of automation in proving excep-
tion freedom. However, where this automation fails, the programmer is
burdened with the task of interactively constructing a proof and possi-
bly also having to supply auxiliary program annotations. We minimise
this burden by increasing the automation, via an integration of proof
planning and a program analysis oracle. We advocate a “co-operative”
integration, where proof-failure analysis directly constrains the search
for auxiliary program annotations. The approach has been successfully
tested on industrial data.

1 Introduction

There is renewed interest in the formal verification of computer software. Var-
ious tools are emerging that use verification techniques to automatically reveal
useful properties about software [1, 4, 25]. Such advances are supported through
two key factors. Firstly, there is a shift away from full functional verification
toward property based verification. By accepting more conservative verification
the automation task becomes more tractable. Secondly, there exists a wealth of
diverse automated reasoning tools. By exploiting and integrating these existing
tools, a significant degree of automation can be realised. Thus, viable verifica-
tion systems can be produced by matching the right kind of property verification
with the right kind of automated tool support.

Here we follow this trend, applying automated reasoning techniques to the
SPARK Approach [2], as developed by Praxis High Integrity Systems Ltd (hence-
forth Praxis). The SPARK Approach is designed for the development of high in-
tegrity software, as seen in safety and security critical applications. The SPARK



Approach advocates “correctness by construction”, where the focus is on bug pre-
vention rather than bug detection. SPARK has been applied successfully across
a wide range of applications including railway signalling, smartcard security and
avionics systems such as the Lockheed C130J and Eurofighter projects. The
approach has been recognised by the US National Cyber Security Partnership
as one of only three software development processes that can deliver sufficient
assurance for security critical systems [44].

The formal verification capabilities of the SPARK Approach are most com-
monly used for exception freedom proofs, i.e. proving that a system is free from
run-time exceptions. Such program reasoning represents an important task in
the development of high integrity software. For instance, Ariane 5 was lost due
to an integer overflow at run-time [22], and buffer overflows are the most common
form of security vulnerability [18]. Industrial strength evidence [15] shows that
the SPARK toolset can typically automate around 90% of the verification task
for proving exception freedom. The remaining 10% must be manually discharged
by the programmer. This task will involve interactively constructing proofs in-
side the SPARK proof tools and manually discovering any necessary program
properties. For large systems, discharging the remaining 10% can present a sig-
nificant challenge.

Our primary interest is in addressing this verification challenge by increasing
the level of automation. Central to our approach is an integration of automated
reasoning and program analysis. In particular, we use proof planning [8] in order
to control the search for proofs and a program analysis oracle in order to generate
auxiliary program properties. The novelty of our approach lies in the nature of
our integration. We have developed a “co-operative” style of integration, where
partial success during proof planning constrains subsequent program analysis.

Background material is presented in §2. In §3 we compare proof inside the
SPARK Approach with our approach. The details of our approach are presented
in §4, §5, §6, §7, and §8. Implementation details and our results are presented
in §9 and §10 respectively. Related work is discussed in §11. The feasibility of
transferring our approach into an industrial tool is explored in §12, while in §13
limitations of our approach and future work are outlined. Our conclusions are
presented in §14.

2 Background

2.1 The SPARK Approach

At the heart of the SPARK Approach is the SPARK programming language.
The SPARK programming language is defined as a subset of Ada [36]. To make
static analysis feasible SPARK excludes many Ada constructs, such as pointers,
dynamic memory allocation and recursion. SPARK includes an annotation lan-
guage that supports flow analysis and formal verification. The annotations are
supplied within regular Ada comments, allowing a SPARK compliant program
to be compiled using any Ada compiler. An example SPARK subprogram called
Filter is shown in Figure 1.
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package FilterPackage is

subtype AR_T is Integer range 0..9;

type A_T is array (AR_T) of Integer;

procedure Filter(A: in A_T; R: out Integer);

--# derives R from A;

end FilterPackage;

package body FilterPackage is

procedure Filter(A: in A_T; R: out Integer)

is

begin

R:=0;

for I in AR_T loop

--# assert true;

if A(I)>=0 and A(I)<=100 then

R:=R+A(I);

end if;

end loop;

end Filter;

end FilterPackage;

Note that SPARK annotations are inserted inside Ada comments via the spe-
cial prefix --#. The annotation --# derives R from A; conveys that the value
of R is derived from array A. The Examiner checks this specification automat-
ically via information flow analysis. The annotation --# assert true; repre-
sents an invariant. Explicit invariants are not mandatory as the Examiner will
automatically insert default invariants in their absence. However, to facilitate
understanding, we use trivially true invariants to highlight the location of the
default invariant within the loop.

Fig. 1. SPARK code: Filter subprogram
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Fig. 2. The SPARK Approach

The SPARK Approach is supported through a collection of interacting tools,
as shown in Figure 2. The Examiner performs the analysis of SPARK code. It
ensures that the submitted code conforms to the SPARK language. Further, it
conducts data flow and information flow analysis [5]. The Examiner also sup-
ports formal verification by building directly upon the Floyd/Hoare [26, 28] style
of reasoning. Annotations may be inserted to supply a functional specification,
in the form of preconditions and postconditions. The Examiner implicitly inserts
an invariant at each loop, conveying limited type information. These default in-
variants may be strengthened by providing explicit invariant annotations. The
Examiner includes a verification condition generator (VCG), reducing the task
of verifying that a program meets its specification to proving a number of con-
jectures, called verification conditions (VCs). The Examiner can generate VCs
stating both partial correctness and exception freedom.

Two additional tools support the proof of VCs. Firstly, there is the SPADE
Simplifier (henceforth Simplifier), a special purpose theorem prover that au-
tomatically simplifies or discharges VCs. Secondly, the SPADE Proof Checker
(henceforth Proof Checker) provides an interactive proof development environ-
ment. Where the Simplifier fails to prove a VC, the user must intervene. For
each VC the Simplifier fails to discharge the user may attempt to:

– Perform Proof - Interactively prove the VC using the Proof Checker.
– Strengthen Specification - Strengthen the program specification, thereby

enriching the properties in the VC, so that its proof can be found.
– Identify Inconsistency - Show that there is an inconsistency between the

program and the specification by identifying a counter-example to the VC.

Note that the soundness of the SPARK Approach depends entirely on the sound-
ness of the the SPARK toolset, i.e. the Examiner, the Simplifier and the Proof
Checker.

Unsurprisingly, the VCs not discharged by the Simplifier tend to be the more
difficult proof problems. Further, a typical high integrity system will generate
thousands of VCs. Despite the success of the Simplifier, typically hundreds of
proof failures need to be addressed per application. Additionally, interactive
proofs will be tuned to a particular VC and hence a particular version of the
system. As the system is changed these interactive proofs may break and require
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refinement. Taken together, these factors present a significant bottle-neck to the
practical completion of exception freedom proofs.

2.2 Proving Exception Freedom

By definition, SPARK eliminates many of the run-time exceptions that can be
raised within Ada. However, index, range, overflow and division checks can still
raise exceptions in SPARK code. The Examiner generates exception freedom

VCs (EFVCs) that faithfully reflect the behaviour of these run-time checks. The
index check ensures that an array access occurs within the bounds of the array.
The range and overflow checks ensure that variables remain within their de-
clared bounds. Finally, the division check prevents a division by zero, essentially
restricting the denominator to bounds that exclude zero.

To illustrate the task of proving exception freedom we return to the Filter
subprogram shown in Figure 1. Consider the assignment statement in the then-
branch, i.e. R:=R+A(I), whose corresponding EFVC is given in Figure 3. This
particular statement generates two run-time checks within SPARK. Firstly, there
is an index check to ensure that the value of I does not exceed the range of
array A. This corresponds to proving conclusions C1 and C2. Secondly, there is
an overflow check to ensure that the expression R+A(I) assigned to R is within
the type of R, i.e. Integer. This corresponds to proving conclusions C3 and C4.
While proving C1 and C2 is trivial (match with H2 and H3 respectively), C3 and
C4 are unprovable. This problem arises as the default invariant is not sufficiently
strong.

2.3 Proof Planning

Central to our work is an automated reasoning paradigm called proof planning

[8]. Proof planning automates the search for proofs through the use of high-
level proof outlines, known as proof plans. A proof plan is defined by a set of
methods. Each method expresses preconditions for the applicability of a generic
proof tactic. A method represents a partial specification of a generic tactic.
For a given conjecture, method preconditions are used to control the selection
and instantiation of generic tactics during proof planning. Once generated, an
instantiated tactic can then be used to control proof construction within an
appropriate tactic based proof checker.

Within proof planning, methods are complemented by proof critics [29]. Crit-
ics are associated with the partial success of proof methods and support the
automatic analysis and patching of failed proof attempts. Applications of proof-
failure analysis and proof patching include conjecture generalization and lemma
discovery [30, 31], loop invariant discovery [34, 49], and refining faulty conjectures
[43]. A key feature of most critics is the use of meta-variables in delaying choice
during proof search, known as middle-out reasoning [10]. Middle-out reasoning
is not restricted to proof patching, for instance is has been used in guiding proof
search within the context of program synthesis [35, 40].
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H1: for_all (i___1: integer, ((i___1 >= ar_t__first) and

(i___1 <= ar_t__last)) -> ((element(a, [i___1]) >=

integer__first) and (element(a, [i___1]) <=

integer__last))) .

H2: loop__1__i >= ar_t__first .

H3: loop__1__i <= ar_t__last .

H4: element(a, [loop__1__i]) >= 0 .

H5: element(a, [loop__1__i]) <= 100 .

H6: r >= integer__first .

H7: r <= integer__last .

->

C1: loop__1__i >= ar_t__first .

C2: loop__1__i <= ar_t__last .

C3: r + element(a, [loop__1__i]) >= integer__first .

C4: r + element(a, [loop__1__i]) <= integer__last .

The Examiner generates eight VCs for the Filter subprogram in Fig-
ure 1, three of which are EFVCs. The EFVC above corresponds to prov-
ing that the assignment R:=R+A(I) can never raise an exception. Note that
element(a, [loop__1__i]) denotes accessing array a at index loop__1__i.
Note also that the EFVC is presented in the format generated by the Exam-
iner. The VC contains four implicitly conjoined conclusions, i.e. C1 through to
C4. We consider each conclusion individually, thus this VC corresponds to four
distinct goals, with each goal sharing the same hypotheses. In this EFVC, H1,
H2 and H3 are a consequence of the default invariant automatically inserted by
the Examiner.

Fig. 3. An exception freedom verification condition (EFVC)
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Fig. 4. NuSPADE and the SPARK Approach

2.4 Program Analysis

Program analysis involves automatically generating program properties via code
level analysis. The field covers a diverse range of techniques, e.g. data flow
analysis, information flow analysis, constraint based analysis and abstract in-
terpretation [45]. For our application we are focusing on proving exception free-
dom within SPARK. This task reduces to proving that variables lie within legal
bounds. In general, the SPARK type system reveals strong constraints on vari-
ables, supporting exception freedom proofs. However, more sophisticated con-
straints are often required when variables are modified within a loop. Conse-
quently, we are primarily interested in program analysis techniques that auto-
matically discover loop invariants.

The Runcheck verifier [27] was probably the first system to tackle exception
freedom verification. The system included program analysis, building on recur-
rence relations, to automatically discover loop invariants. The technique was first
introduced by Elspas et al [21] as the “difference equations method”. A similar
approach was adopted by Katz and Manna [38]. As noted by Cousot [17], the
use of recurrence relations in this manner fits within the general methodology
of abstract interpretation. The limitation of using recurrence relations as a basis
for generating loop invariants are well known [14]. However, in special purpose
applications, such as proving exception freedom, the technique has proved very
useful in practice.

3 NuSPADE and the SPARK Approach

NuSPADE1 aims to increase automation within the SPARK Approach. It fits
directly inside the SPARK Approach, automating the tasks currently undertaken
by the programmer, as illustrated in Figure 4.

The two key components in NuSPADE are a proof planner and a program
analysis oracle. The proof planner provides overall control, exploiting the services

1 The name ‘NuSPADE’ emphasises that we are extending the capabilities of the
SPADE proof tools.
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of the program analysis oracle where necessary. Each VC not proved by the Sim-
plifier is sent to the proof planner. Where proof planning successfully produces
a tactic, a proof script is automatically generated from the tactic and used to
construct a proof within the Proof Checker. If proof planning fails, proof-failure
analysis may identify missing proof context. The form of this proof context is
described via abstract predicates, i.e. simple patterns that describe the structure
of desired program properties. These abstract predicates are provided to the pro-
gram analysis oracle. The program analyser examines the code corresponding to
the targeted VC, searching for properties which match the abstract predicates.
Where successful, the discovered properties are used to revise the program spec-
ification. The overall process is iterative, i.e. once a specification is revised the
process of VC generation and proof planning is repeated. The expectation is that
on each iteration progress will be made towards completing the verification. If
NuSPADE fails, the programmer will still need to intervene.

As NuSPADE aims to emulate the activity of the programmer, its behaviour
can be summarised in this context. For each VC that the Simplifier fails to
discharge NuSPADE will attempt to:

– Perform Proof - Prove the VC using proof planning. Where a proof plan
is found it is translated into a proof script and checked within the Proof
Checker.

– Strengthen Specification - Where a proof planning attempt fails, proof-
failure analysis combined with program analysis is used to strengthen a pro-
gram specification.

– Identify Inconsistency - Proof planning searches to identify the VC as
being trivially false.

Note that every NuSPADE action occurs inside the context of the SPARK
toolset. Thus, where employing NuSPADE, the soundness of the SPARK Ap-
proach remains entirely dependent on the soundness of the SPARK toolset.

Below we explain in detail the relationship between proof planning, proof-
failure analysis and program analysis. Our techniques are illustrated using the
Filter subprogram shown in Figure 1.

4 Proof Planning

Here we describe two proof plans used to control proof search within NuSPADE.
The first deals with exception freedom VCs while the second deals with the VCs
associated with loop invariants.

4.1 Exception Freedom Proof Plan

Proving exception freedom typically involves reasoning about inequalities. Our
exception freedom proof plan defines a strategy for decomposing inequality con-
clusions so that the available hypotheses can be applied. The decomposition of
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inequalities requires the discovery of an intermediate bound. Our proof plan ex-
ploits middle-out reasoning to find a suitable intermediate bound. The methods
that define the exception freedom proof plan are described below, in the order
in which they are used within proof planning.

Elementary Method The elementary method is applicable to trivial goals that
will be automatically discharged by the Proof Checker. The method closes the
current goal.

Simplify Method The simplify method is applicable to goals whose complexity
can be reduced through an available substitution law. For example, the simplify

method may replace constants with explicit values. In particular, simplify aims
to transform goals so that the elementary method becomes applicable.

Fertilise Method Any occurrence of a hypothesis within the conclusion may be
replaced with true. The fertilise method (preconditions given in Figure 5) seeks
to perform this simplification by finding such a match. To extend applicability
the matching process may involve elementary forward chaining and hypothesis
instantiation.

Preconditions for fertilise method:

1. There exists a hypothesis H that matches a subterm of conclusion C, modulo
elementary forward chaining and hypothesis instantiation.

Fig. 5. Preconditions for the fertilise method

Transitivity Method The transitivity method (preconditions given in Figure 6)
begins a sequence of reasoning aimed at discharging conclusions that specify
bounds on an expression. Key to the success of this reasoning is having explicit
bounds on all variables in the expression. Consider, for example, C4 in Figure 3

r + element(a, [i]) ≤ integer last . (1)

An application of the transitivity method to (1) gives

(r + element(a, [i]) ≤ X1) ∧ (X1 ≤ integer last) . (2)

Note that the introduction of meta-variable X1 prepares the way for the decom-
position of r + element(a, [i]), i.e. an application of the decomposition method.
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Preconditions for transitivity method:

1. There exists a conclusion of the form E Rel C.
2. For all variables Vi that occur within E there exists hypotheses of the form

Vi Rel Ei and Ei Rel Vi.

Note that E and Ei range over expressions, while C denotes a constant. Rel denotes a
transitive relation.

Fig. 6. Preconditions for the transitivity method

Decomposition Method The decomposition method (preconditions given in
Figure 7) is applicable to a conclusion subterm that involves a transitive relation.
The aim of the decomposition method is to reduce this transitive relation into
a number of simpler relations. For example, the left conjunct of (2) can be
decomposed, giving

(r ≤ X2) ∧ (element(a, [i]) ≤ X3) ∧ (X2 + X3 ≤ integer last) .

The decompositions considered by the decomposition method are supported
through suitable substitution laws, i.e. equivalence or implication. Note that
a proof plan may require multiple applications of the decomposition method.

Preconditions for decomposition method:

1. There exists a conclusion of the form E1 Rel E2.
2. There exists a substitution law for Rel justifying the decomposition of the conclu-

sion.

Note that E1 and E2 denote expressions, while Rel denotes a transitive relation.

Fig. 7. Preconditions for the decomposition method

4.2 Loop Invariant and Inductive Proof Plans

Our loop invariant proof plan contains three methods in addition to those de-
scribed above. These focus on verifying loop invariants and any auxiliary sub-
goals that arise.

Rippling Methods The rewriting strategy called rippling was originally devel-
oped to automate proof by mathematical induction [11, 12]. However, rippling
has been shown to be applicable to a wider class of problems. In particular, rip-
pling can be applied to the verification of loop invariants, as initially proposed
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in [33, 34, 49]. Rippling works by identifying and reducing syntactic differences
between formulae. We exploit the rippling strategy in our loop invariant proof
plan. Below we provide a short description of rippling. For a full account see [3,
9, 11].

We implement rippling via an annotate method and a wave method. The
annotate method automatically introduces meta-level annotations into a conclu-
sion, identifying the syntactic differences between the conclusion and a given
hypothesis. For example, given a hypothesis f(i) and a conclusion f(i + 1), the
annotate method will annotate the conclusion as

f( i + 1
↑

) . (3)

The annotated portion of the term, represented by shading, is know as the
wave-front. This denotes the syntactic mismatch between the conclusion and
the hypothesis. The arrow is used to indicate the direction in which the wave-
front is moving, i.e. either outward or inward. Directed wave-fronts are used to
guarantee termination of the method.

Wave-fronts are manipulated via annotated rewrite rules called wave-rules.
Wave-rules are annotated in the same manner as the conclusion. For example,
the rewrite rule2

f(X + 1) ⇒ f(X) ∧ g(X)

may be annotated as

f( X + 1
↑

) ⇒ f(X) ∧ g(X)
↑

. (4)

Wave-rules target syntactic differences by only manipulating annotated terms
in the conclusion. The wave method controls the application of wave-rules. For
example, applying wave-rule (4) to (3) gives

f(i) ∧ g(i)
↑

. (5)

In general, rippling will involve an arbitrary number of wave-rule applica-
tions. Eventually, the unannotated part of the conclusion will match the given
hypothesis. For example, (5) now matches with the given hypothesis. At this
stage, our fertilise method applies, leaving the simplified conclusion g(i).

Induction Method Like rippling, the induction method is reused from pre-
vious work on proof by mathematical induction [11, 12]. Although rare within
the application domain, the need for inductive proof arises where an additional
lemma is required in order to complete a proof, i.e. situations where none of the
SPADE axioms or rules are applicable.

2 We use ⇒ to denote rewrite rules and → to denote logical implication.
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Generalise Method The generalise method is strongly linked with the induction

method, since a generalisation step may be required in order to obtain a stronger
induction hypothesis. Our generalise method uses the relatively simple heuristic
of replacing common subterms by a universally quantified variable, as found in
Nqthm [7].

5 Proof-Failure Analysis

Within NuSPADE, we have extended the role of proof planning critics. We use
critics to provide an interface between our proof planner and our program analy-
sis oracle. This interface enables critics to request additional program properties.
Below we outline the four critics that were developed to support the automation
of exception freedom proof.

5.1 Elementary Critic

The elementary critic (preconditions given in Figure 8) identifies unprovable goals
by discovering counter-examples, i.e. values for variables that satisfy the hy-
potheses but not the conclusion. Patching the proof requires imposing tighter
constraints on at least one of these variables. Constraint solving is used to find
counter-examples. To illustrate, consider again C4 in Figure 3

r + element(a, [i]) ≤ integer last . (6)

The elementary method fails to prove conclusion (6), leading to an invocation
of the elementary critic. Note that integer last is a constant, whose value is set
by the programmer depending on the behaviour of their target compiler. Here
we assume that integer first and integer last have the values −32768 and 32767
respectively. By inspecting the hypotheses associated with the goal (see Figure 3)
we know that

element(a, [i]) ≥ 0 ∧ element(a, [i]) ≤ 100

and that

r ≥ integer first ∧ r ≤ integer last .

It then follows that r + element(a, [i]) can raise an overflow exception if r is in
the range integer last − 99 . . . integer last , i.e. 32668 . . .32767. This reasoning is
achieved automatically by the constraint solver. The counter-example identifies
that r or element(a, [i]) must be constrained to complete a proof. In general,
array constraints are unusual and, where they do exist, are difficult to find. Thus,
the elementary critic guides the program analysis toward finding constraints on
r by generating abstract predicates of the form

(r ≥ A) ∧ (r ≤ B) .
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Preconditions for elementary critic:

– All preconditions for the elementary method fail.
– There exists a top-level conclusion of the form E Rel C.

Patch: Search for a counter-example to show that the given hypotheses are insufficient
to prove exception freedom. If a counter-example is identified then abstract predicates
are used to request tighter bounds from the program analysis oracle.

Note that E ranges over expressions, while C denotes a constant. Rel denotes a tran-
sitive relation.

Fig. 8. Preconditions for the elementary critic

While our constraint solving system works well in practise, it fails in the
presence of large integers, i.e. numbers that lie beyond −(225) . . . 225 − 1. In
these cases the elementary critic is not applied. Instead, the proof search pro-
gresses as normal, decomposing the goal into simpler subgoals. This can admit
the application of the elementary critic or allow for false to be trivially derived.

5.2 Transitivity Critic

The transitivity critic (preconditions given in Figure 9) identifies missing hy-
potheses. The goal is patched by requesting that the program analysis oracle
introduces the missing hypotheses.

Preconditions for transitivity critic:

– Precondition 1 of the transitivity method holds, i.e.
. There exists a conclusion of the form E Rel C.

– Precondition 2 of the transitivity method fails, i.e.
. There exists at least one variable Vi that occurs within E such that there does
not exist a hypothesis within the proof context of the form Vi Rel Ei or Ei Rel Vi.

Patch: Generate abstract predicates which specify the missing hypotheses and send
them to the program analysis oracle.

Note that E and Ei range over expressions, while C denotes a constant. Rel denotes a
transitive relation.

Fig. 9. Preconditions for the transitivity critic
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5.3 Fertilise Critic

The fertilise critic (preconditions given in Figure 10) extends the applicability
of the fertilise method by recognising a near match and transforming the goal
accordingly. In particular, we focus on strengthening an inequality hypothesis
to match a strict inequality conclusion. The fertilise critic has two alternative
patches. The first works strictly at the proof planning level, modifying the goal
to allow the fertilise method to succeed. This is possible where a property exists
allowing the nearly matching hypothesis to be be strengthened and achieve an
exact match with the conclusion. The second patch involves the program analysis
oracle searching for the required property.

Preconditions for fertilise critic:

– All preconditions for the fertilise method fail, i.e.
– There does not exist a hypothesis H that matches a subterm of conclusion C.

– There exists a hypothesis H of the form A ≤ B or A ≥ B and the conclusion C is
strictly stronger, taking the form A < B or A > B respectively.

Patch: Conditional on a hypothesis H
′ of the form ¬(A = B):

– Where H
′ exists: Combine H

′ with H to infer a strict inequality, supporting a
match with the conclusion.

– Where H
′ does not exist: Generate a predicate to introduce a property of the form

H
′.

Fig. 10. Preconditions for the fertilise critic

5.4 Decomposition Critic

The decomposition critic (preconditions given in Figure 11) identifies a missing
substitution law. Where this occurs, the user is informed of the problem, and
asked to supply additional properties.

6 Program Analysis

6.1 Program Analysis Oracle

Our program analysis offers no soundness guarantees. To emphasise this point,
we refer to our system as a program analysis oracle. The soundness of our overall
approach is guaranteed, i.e. it relies upon the soundness of VC generator and
Proof Checker. The program analysis oracle has strong similarities with abstract
interpretation. The source code is translated into a flowgraph. Each variable at
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Preconditions for decomposition critic:

– Precondition 1 of the decomposition method holds, i.e.
. There exists a conclusion of the form E1 Rel E2.

– Precondition 2 of the decomposition method fails, i.e.
. There exists no substitution law for Rel justifying the decomposition of the con-
clusion.

Patch: Report the need for additional properties.

Note that E1 and E2 denote expressions, while Rel denotes a transitive relation.

Fig. 11. Preconditions for the decomposition critic

each program point is associated with an abstract state. This state aims to de-
scribe the possible values that its corresponding variable may take. Operations
on the abstract states are defined, allowing the flowgraph to be symbolically ex-
ecuted. Once the symbolic execution is complete, the final values of the abstract
states define constraints on the program variables. We represent our program
analysis heuristics as program analysis methods. Each method describes an ab-
stract state and corresponding operations on this abstract state. Most methods
build upon the results of earlier methods. Thus, methods are executed in order
of complexity, gradually discovering increasingly rich abstract states. Once all of
the methods have executed the strongest abstract states satisfying the abstract
predicates are exported as the final result.

Our adoption of a program analysis oracle brings several key benefits. Pri-
marily, we avoid having to formalise and prove the soundness of our program
analysis heuristics. This enables the rapid development and reconfiguration of
sophisticated heuristics. Further, external tools may be exploited during pro-
gram analysis without having to justify their correctness. In particular, given
our domain of exception freedom, we require equational reasoning services. This
is achieved by exporting conjectures to our proof planner. The resulting plans
are not explicitly checked, as our oracle does not require such guarantees.

6.2 Method: Type

Type information directly reveals the legal bounds of every variable. Such bounds
are valuable in exception freedom proofs. This is particularly the case for high
integrity software, which tends to adopt tightly constrained types wherever pos-
sible. A variable is only within its type once it has been assigned to. Thus this
method involves retrieving the type of variables and identifying the code points
where variables must have been assigned to.

For example, consider the PolishFlag subprogram in Figure 12. The variables
I and J are declared to be of type ARPO_T and variable T is declared to be of type
AC_T. While I and J are always assigned values prior to reaching the invariant
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the same is not true of T. Thus, at the invariant, the abstract states will only
reveal the type of I and J. This information can be expressed via the following
candidate invariant.

--#assert (I>=ARPO_T’First and I<=ARPO_T’Last) and

--# (J>=ARPO_T’First and J<=ARPO_T’Last);

package PolishFlagPackage is

subtype AR_T is Integer range 1..4;

type AC_T is (Red, White);

type A_T is array (AR_T) of AC_T;

procedure PolishFlag(A: in out A_T);

--# derives A from A;

end PolishFlagPackage;

package body PolishFlagPackage is

procedure PolishFlag(A: in out A_T)

is

subtype ARPO_T is Integer range A’First..A’Last+1;

I,J: ARPO_T;

T: AC_T;

begin

I:=ARPO_T’First; J:=ARPO_T’Last+1;

loop

--# assert true;

exit when I=J;

if A(I)=Red then

I:=I+1;

else

J:=J-1; T:=A(I); A(I):=A(J); A(J):=T;

end if;

end loop;

end PolishFlag;

end PolishFlagPackage;

Fig. 12. SPARK code: PolishFlag subprogram

6.3 Method: For Loop Range

Every SPARK for loop counter variable has a declared type. Further, this type
may be constrained by imposing an additional range restriction. Similar to type
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information, this range directly reveals the bounds of the variable and is valuable
in exception freedom proofs.

For example, consider the Search subprogram in Figure 13. The loop counter
variable I is declared to be of type AR_T and is constrained to be inside the range
L to U. This inspires abstract states which can be expressed with the following
candidate invariant.

--#assert I>=L and I<=U;

package SearchPackage is

subtype AR_T is Integer range 1..10;

subtype ARMO_T is Integer range 0..10;

type AC_T is range -1000..1000;

type A_T is array (AR_T) of AC_T;

procedure Search(A: in A_T; L,U: in AR_T;

F: in AC_T; R: out ARMO_T);

--#derives R from A,L,U,F;

end SearchPackage;

package body SearchPackage is

procedure Search(A: in A_T; L,U: in AR_T;

F: in AC_T; R: out ARMO_T)

is

begin

R:=0;

for I in AR_T range L..U loop

--# assert true;

if A(I)=F then

R:=I;

exit;

end if;

end loop;

end Search;

end SearchPackage;

Fig. 13. SPARK code: Search subprogram

6.4 Method: Non-looping Code

Non-looping code is more susceptible to static analysis than looping code. With-
out loops, the number of paths through the code can be statically determined,
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allowing each path to be considered individually. Note that subprograms con-
taining loops will still contain sections of non-looping code.

At the start of a SPARK subprogram an arbitrary variable x will either have
been assigned some unknown initial value (x∼) or will be undefined (undef ).
There then follows non-looping code, where variables are modified through as-
signments until a loop or the end of the subprogram is reached. Each assignment
to x will take the general form

x:=F (v1, v2, . . . vn) ,

where F (v1, v2, . . .vn) represents arbitrary function calls on program variables
v1, v2, . . .vn. Every program variable v, at each program point p, has an abstract
state vp. To minimise complexity the abstract states are restricted to a particular
class of formula. The formula only contains single value variables, constants, and
regular arithmetic and relational functions. In general, following an assignment
to x, its abstract state will take the following form

xp = F (vp

1, v
p

2, . . . v
p

n
) .

This general mechanism supports the propagation of abstract states through
non-looping code. However, to remain within our restricted representation for
abstract states, it is often necessary to apply approximations. As only single
value variables are represented directly, array elements are approximated to the
extreme bounds of their type. Similarly, as only standard functions are consid-
ered, any arbitrary function call is approximated to the extreme bounds of its
return type. Despite these approximations, relatively complex abstract states
can still emerge. However, by exploiting contextual information and employing
lightweight equality reasoning, effective simplifications are often possible.

For example, consider the Clip subprogram shown in Figure 14. There are
three paths through this code. At initialisation v0 = v∼, as v is an import (in)
variable, and r0 = undef as r is an export (out) variable. The first path involves
entering the outermost then branch yielding the property v < i t’first and
an assignment giving r1 = i t’first. The second path involves failing the
outermost then branch and entering the innermost then branch. This yields
the properties ¬(v < i t’first) and v > i t’last and an assignment giving
r2 = i t’last. The final path enters the outermost else branch. This yields the
properties ¬(v < i t’first) and ¬(v > i t’last) and an assignment giving
r3 = v∼. As the value v∼ is unknown it offers a weak constraint. However, by
exploiting the type information gathered by earlier methods, it can be found
that r3 ≥ i t’first ∧ r3 ≤ i t’last. At this stage the three separate paths
merge to give

r4 = i t’first ∨

r4 = i t’last ∨

(r4 ≥ i t’first∧ r4 ≤ i t’last)

which can be simplified as

r4 ≥ i t’first∧ r4 ≤ i t’last (7)
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and expressed as the following candidate assertion.

--#assert (R>=I_T’First and R<=I_T’Last);

package ClipPackage

is

subtype I_T is Integer range 1..4;

procedure Clip(V: in Integer; R: out I_T);

--# derives R from V;

end ClipPackage;

package body ClipPackage is

procedure Clip(V: in Integer; R: out I_T)

is

begin

if V<I_T’First then

R:=I_T’First;

else

if V>I_T’Last then

R:=I_T’Last;

else

R:=V;

end if;

end if;

end Clip;

end ClipPackage;

Fig. 14. SPARK code: Clip subprogram

6.5 Method: Looping Code

Looping code introduces significant complexities over non-looping code. The
discovered abstract states must be invariant to accommodate every potential
loop iteration. As noted in §2.4, invariant properties can be discovered by solving
recurrence relations. We build upon this observation, exploiting the services of
a powerful recurrence relation solver. We decompose our looping code analysis
into four sub-methods. The first two sub-methods discover generic recurrence
relations to describe the available loops. The third sub-method instantiates these
generic recurrence relations based on the behaviour of the surrounding code. The
fourth sub-method structures the discovered recurrence relations for inclusion as
invariants.
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Sub-Method: Generate And Solve Recurrence Relations This method
identifies and solves recurrence relations. The innermost loop without solved
recurrence relations is tackled next. To represent a general iteration n every
variable’s abstract state vp is treated as vp

(n). To begin, every variable is initialised

to its value on the previous iteration as v
p

(n) = v
p

(n−1). With this initialisation

our non-looping method for one iteration of the loop generates abstract states
that can be extracted as recurrence relations.

For example, return to the Filter example in Figure 1. Variables i and r

are initialised to their values on the previous iteration. Variable i is implicitly
assigned once each iteration via I:=I+1, generating a final abstract state that
can be expressed as the recurrence relation i(n) = i(n−1) + 1. This can then be
solved as i(n) = i(0) + n, i.e. the value of i on iteration n is equal to the initial
value of i (i(0)) plus the current iteration number (n).

There are two separate paths to consider for variable r. The first path in-
volves not entering the if statement. Consequently, r is unchanged and the
final abstract state for r is its initial value. This gives the recurrence relation
r(n) = r(n−1), which is solved as r(n) = r(0). The second path involves en-
tering the if statement. The condition A(I)>=0 and A(I)<=100 reveals the
property element(a, i) ≥ 0∧ element(a, i) ≤ 100, and the assignment statement
R:=R+A(I) leads to the abstract state r1

(n) = r(n−1) + element(a, i). As noted in
§6.4, our analysis approximates in the presence of array elements. In this case,
the context information leads to the following two extreme cases

[

r1
(n) = r(n−1) + 0, r1

(n) = r(n−1) + 100
]

.

Note that [c1, c2, . . . , cn] defines a range of values through a collection of extreme
cases. Once the details of each case are known the collection may be ordered and
simplified into regular inequality bounds. Here the abstract state is extracted as
two extreme recurrence relations and solved as

[

r(n) = r(0), r(n) = r(0) + 100 ∗ n
]

.

Note that the extreme recurrence relations subsume the case where not entering
the if statement.

Sub-Method: Generalise Loop The generation and solving of recurrence
relations is applicable to a single loop. To support the analysis of loops that
contain loops, the modifications made to a variable within a loop is abstracted
to a single assignment. This abstracted assignment conceals the nested loop,
allowing the outer loop to be analysed.

Unsurprisingly, the quality of the recurrence relations found on the outer
loop depend strongly on the quality of the abstracted assignment. In general,
this technique is most effective where the nested loop performs simple iteration.
For example, this situation might occur where using two nested for loops to
iterate over a two dimensional array.
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Sub-Method: Instantiate and Simplify All of the solved recurrence relations
above are general, referencing undefined initial values of the form v(0). Once the
outermost loops have been solved the actual initial values may be inserted. This
process works in reverse to the discovery of recurrence relations, instantiating
from the outermost loop toward the inner loop. These instantiations introduce
specific values, often supporting additional simplifications.

For example, return to the Filter example in Figure 1. At entry to the loop
the abstract state found for both i and r will be 0. Thus, both i(0) and r(0) may
be replaced with 0 giving the simplified recurrence relations

i(n) = n
[

r(n) = 0, r(n) = 100 ∗ n
]

.

This may be simplified further by translating the collection into inequalities

i(n) = n

r(n) ≥ 0 ∧ r(n) ≤ n ∗ 100 .

Sub-Method: Restructure for Invariant Based on the abstract predicates
the abstract states are extracted as candidate invariants. In most cases the ab-
stract states can be directly expressed as candidate invariants. However, for
solved recurrence relations, it is necessary to eliminate references to the artifi-
cial loop iteration variable n. Such an elimination can be achieved by deriving
an expression for n in terms of the actual program variables. In practise, this
can often be achieved by transforming a recurrence relation associated with a
loop counter variable.

For example, return to the Filter example in Figure 1. At the invariant it is
known that i(n) = n, thus all occurrences of n can be replaced with the variable
i. Exploiting this transformation the abstract value for variable r may now be
expressed as the following candidate invariant.

--#assert (R>=0) and (R<=(I*100));

6.6 Method: For Loop Entry

The end-point of a for-loop range may be an expression containing program
variables. The Ada semantics specify that the end-point is evaluated only when
the loop is entered. However, any variables referenced in the end-point may be
modified within the loop. Therefore the evaluation of an end-point expression at
loop entry may differ from its evaluation on subsequent loop iterations. To encode
these semantics the Examiner clones any variables in an end-point expression
as entry variables. These variables may be referenced in annotations, with a
variable X having a corresponding entry variable X%.

Where a variable v remains unchanged within a loop it will generate a recur-
rence relation of the form v(n) = v(n−1). If this variable is also an entry variable
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it is valid, and useful, to equate the entry variable with its regular variable within
the loop.

For example, consider the Search subprogram shown in Figure 13. This in-
cludes a for-loop that is constrained to be within a range. The end-point of this
range is the variable U. The abstract state generated for U will reveal that the
variable remains unchanged within the loop. This property can be expressed
with the following candidate invariant.

--#assert U=U%;

7 Filter Subprogram Revisited

To describe the overall behaviour of our program analysis we return to the Filter
subprogram in Figure 1. In first analysing this example the Examiner generates
VCs, not all of which are proved by the Simplifier. These remaining VCs trigger
the first iteration of NuSPADE. While our proof planning on the remaining VCs
fails, the elementary critic (see §5.1) generates an abstract predicate of the form

(r ≥ A) ∧ (r ≤ B) .

Our program analysis oracle is invoked, with the looping method (see §6.5)
satisfying the abstract predicate above with the following candidate invariant.

--#assert (R>=0) and (R<=(I*100));

The addition of this invariant revises the subprogram specification, requiring the
Examiner to regenerate the VCs. Two of the resulting VCs are not proved by
the Simplifier, triggering a second iteration of NuSPADE. The proof planning
on the remaining VCs is successful, and completes the exception freedom proofs.
The details of the remaining VCs and the associated proof planning is described
below.

7.1 Exception Freedom Proofs

Here we focus on the proof of the remaining EFVC, shown in Figure 15. We
focus on proving the conclusion

r + element(a, [i]) ≤ integer last . (8)

Note that the proof context now includes the hypothesis

r ≤ i ∗ 100 (9)

as well as the hypothesis

element(a, [i]) ≤ 100 . (10)
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H1: r >= 0 .

H2: r <= loop__1__i * 100 .

H3: for_all (i___1: integer, ((i___1 >= ar_t__first) and

(i___1 <= ar_t__last)) -> ((element(a, [i___1]) >=

integer__first) and (element(a, [i___1]) <=

integer__last))) .

H4: loop__1__i >= ar_t__first .

H5: loop__1__i <= ar_t__last .

H6: element(a, [loop__1__i]) >= 0 .

H7: element(a, [loop__1__i]) <= 100 .

H8: r >= integer__first .

H9: r <= integer__last .

->

C1: loop__1__i >= ar_t__first .

C2: loop__1__i <= ar_t__last .

C3: r + element(a, [loop__1__i]) >= integer__first .

C4: r + element(a, [loop__1__i]) <= integer__last .

Fig. 15. Revised exception freedom verification condition (EFVC)

The proof planning of conclusion (8) begins with an application of the transitivity

method, giving rise to a conjunction of the form

(r + element(a, [i]) ≤ X1) ∧ (X1 ≤ integer last) . (11)

Recall that X1 denotes a meta-variable. The decomposition method uses sub-
stitution laws to decompose the inequalities. Here the decomposition method
applies the following substitution law

(W ≤ Y ) ∧ (X ≤ Z) → (W + X) ≤ (Y + Z) . (12)

Given that we are performing a backward style of proof, the application of (12)
to the left-hand conjunct of (11) gives rise to

(r ≤ X2) ∧ (element(a, [i]) ≤ X3) ∧ (X2 + X3 ≤ integer last) . (13)

Note that as a side-effect of the decomposition step, X1 is instantiated to be
X2 + X3. The fertilise method is now applicable. Exploiting hypotheses (9) and
(10), fertilisation simplifies (13), instantiating X2 to be i ∗ 100 and X3 to be 100
in the process. This leaves a proof residue of the form

(i ∗ 100) + 100 ≤ integer last . (14)

Assuming that integer last is the constant 32767, the remaining goal (14), is
trivial and is discharged by the simplify and elementary methods.
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H1: r >= 0 .

H2: r <= loop__1__i * 100 .

H3: for_all (i___1: integer, ((i___1 >= ar_t__first) and

(i___1 <= ar_t__last)) -> ((element(a, [i___1]) >=

integer__first) and (element(a, [i___1]) <=

integer__last))) .

H4: loop__1__i >= ar_t__first .

H5: loop__1__i <= ar_t__last .

H6: element(a, [loop__1__i]) >= 0 .

H7: element(a, [loop__1__i]) <= 100 .

H8: r >= integer__first .

H9: r <= integer__last .

H10: r + element(a, [loop__1__i]) >= integer__first .

H11: r + element(a, [loop__1__i]) <= integer__last .

H12: loop__1__i >= ar_t__first .

H13: loop__1__i <= ar_t__last .

H14: not (loop__1__i = ar_t__last) .

->

C1: r + element(a, [loop__1__i]) >= 0 .

C2: r + element(a, [loop__1__i]) <= (loop__1__i + 1) * 100 .

C3: for_all (i___1: integer, ((i___1 >= ar_t__first) and

(i___1 <= ar_t__last)) -> ((element(a, [i___1]) >=

integer__first) and (element(a, [i___1]) <=

integer__last))) .

C4: loop__1__i + 1 >= ar_t__first .

Fig. 16. Revised loop invariant verification condition
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7.2 Loop Invariant Proofs

Here we focus on the proof of the remaining loop invariant VC, shown in
Figure 16. Given the hypotheses

r ≤ i ∗ 100 (15)

element(a, [i]) ≤ 100 (16)

we focus on proving the conclusion

r + element(a, [i]) ≤ (i + 1) ∗ 100 . (17)

The annotate method identifies the difference between (17) and hypothesis (15),
giving

r + element(a, [i])
↑

≤ (i + 1)
↑

∗ 100 . (18)

The wave-rules and rewrite rule required for the proof are as follows

(X + Y )
↑

∗ Z ⇒ (X ∗ Z ) + (Y ∗ Z)
↑

(19)

(W + X)
↑

≤ (Y + Z)
↑

⇒ W ≤ Y ∧ X ≤ Z
↑

(20)

1 ∗ X ⇒ X . (21)

The wave method applies (19) to the right-hand side of (18) to give

r + element(a, [i])
↑

≤ (i ∗ 100) + (1 ∗ 100)
↑

. (22)

Using wave-rule (20), the wave method further ripples (22) to give

(r ≤ i ∗ 100) ∧ (element(a, [i]) ≤ 1 ∗ 100)
↑

. (23)

Rippling is complete and the fertilise method applies, matching with hypothesis
(15), leaving a proof residue of the form

element(a, [i]) ≤ 1 ∗ 100 . (24)

The simplify method, using (21), reduces (24) to give

element(a, [i]) ≤ 100 . (25)

Matching against hypothesis (16) the fertilise method reduces (25) to true, and
the elementary method completes the proof.
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8 Proof Checking in the SPARK Approach

Proof planning decouples the processes of proof search and proof checking. As
mentioned in §2.3, a successful proof planning attempt will generate a tactic.
A tactic is a program which controls the the application of low-level inference
rules. Tactics are able to perform calculations and make dynamic decisions. For
example, a tactic might search through the available hypotheses to retrieve a
desired formula.

Unfortunately, the Proof Checker is not tactic based. As there is no support
for dynamic calculations, each theorem proving step is achieved via an explicit
proof command. Consequently, in NuSPADE, the tactics generated must be
translated into a prescriptive sequence of proof commands, that we call a proof

script. Note that the Proof Checker is designed for interactive use, actively seek-
ing to assist the user by automating small proof steps. While valuable to the
user, these unplanned proof steps introduce significant complexities in generat-
ing prescriptive proof scripts. To overcome this problem we introduced a small
collection of new commands to the Proof Checker. These commands simply by-
pass the automatic support, making the Proof Checker more controllable.

To illustrate, the tactic generated by NuSPADE for conclusion C4 in Figure 15
is shown in Figure 17 and the tactic for conclusion C2 in Figure 16 is shown in
Figure 18. Taking a closer look, consider the fourth line of the tactic in Figure 18

wave(inequals(80),[],imp)

This corresponds to a single application of the wave method. In particular, it
describes an application of rewrite rule

(W + X) ≤ (Y + Z) ⇒ W ≤ Y ∧ X ≤ Z .

The proof script segment generated for this single rewrite step is shown in Fig-
ure 19. The verbosity is the result of two factors. Firstly, the lack of dynamic
calculation naturally leads to a more detailed proof. Secondly, to gain control,
we tended to use smaller grain proof commands.

9 Implementation

The two core components in NuSPADE are a proof planner and a program anal-
ysis oracle. The proof planner is implemented in SICStus Prolog. We built upon
the Clam proof planner [13], in particular the critics enabled version [29, 30]. We
modified Clam to make it aware of SPARK VCs and support our methods and
critics. During our proof planning we exploit the services of a constraint solver.
We simply used the constraint logic programming (CLP) capability provided
with SICStus Prolog.

The program analysis oracle requires the translation from SPARK to a flowchart.
Praxis provided the SPARK grammar and a tokeniser that was extracted from
the Examiner. Exploiting these components the Stratego [50] system was used to
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plan(vc6_4,c4,

simplify(filter_rules(3),[2],equ) then

simplify(filter_rules(4),[2],equ) then

simplify(filter_rules(7),[2],equ) then

simplify(filter_rules(8),[2],equ) then

trans(transitivity(1),loop__1__i*100+100) then

decomp(inequals(80),[1]) then

fertilize(h2) then

fertilize(h12) then

simplify(logical_and(5),[1],equ) then

simplify(logical_and(2),[],equ) then

simplify(filter_rules(4),[2]) then

elementary)

Fig. 17. Exception freedom verification condition (EFVC) tactic

plan(vc3_2,c2,

annotate(c2,h2) then

wave(distribute(1),[2],equ) then

wave(inequals(80),[],imp) then

fertilize(h2) then

simplify(logical_and(2),[],equ) then

simplify(filter_rules(7),[2],equ) then

simplify(filter_rules(8),[2],equ) then

simplify(arith(2),[2],equ) then

elementary)

Fig. 18. Loop invariant verification condition tactic
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...

dosubgoalproperty r<=loop__1__i*100 and

element(a,[loop__1__i])<=1*100.

...

done c#1.

alldone.

dosubgoalproperty

r+element(a,[loop__1__i])<=loop__1__i*100+1*100.

dosubgoalproperty r<=loop__1__i*100 and

element(a,[loop__1__i])<=1*100->

r+element(a,[loop__1__i])<=

loop__1__i*100+1*100.

prove c#1 by implication.

dosimplifyhypsconj.

infer r+element(a,[loop__1__i])<=loop__1__i*100+1*100

using inequals(80).

done c#1.

alldone.

done c#1.

alldone.

forwardchain h#21.

done c#1.

alldone.

...

Fig. 19. Proof script extract
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translate a core subset of SPARK into our flowchart representation. The program
analyser itself is implemented in SICStus Prolog. During execution the program
analysis exploits results from the PURRS [47] recurrence relation solver. Further,
the program analysis relies on our proof planner, and its constraint services, to
perform various equational reasoning tasks.

The Proof Checker is implemented in Poplog Prolog. While not essential,
developing our systems in Prolog eased the task of integrating NuSPADE within
the SPARK Approach. Some changes were made to the Proof Checker to support
the execution of automatically generated proof scripts. These changes involved
very little new code, simply introducing more constrained versions of the existing
proof commands.

10 Results

The analysis of NuSPADE drew upon two sources of data. Firstly, Praxis pro-
vided access to two safety critical industrial applications written in SPARK. One
of the industrial applications was the Ship Helicopter Operating Limits Infor-
mation System (SHOLIS) [39]. SHOLIS was the first system developed to meet
the UK Ministry of Defence Interim Defence Standards 00-55 [42] and 00-56
[41]. The systems contains roughly 15,000 lines of executable code, leading to
roughly 7000 VCs. Further details of the industrial applications are confidential.
Our second set of examples are non-industrial and were drawn from text books.

The Simplifier is very effective at proving EFVCs, typically proving around
90% automatically [15]. Our techniques focus on the VCs the Simplifier fails
to prove. Code containing loops tends to present the more difficult automation
problems, thus we concentrated our efforts in this area. While industrial strength
critical software systems are engineered to minimise the number and complexity
of loops, we found that 80% of the loops that we did encounter were provable
using our techniques. That is, our program analysis, guided by proof-failure
analysis, automatically generated auxiliary program annotations that enabled
subsequent proof planning and proof checking attempts to succeed. Two key
reasons were identified for the 20% of loops that our techniques failed to prove.
Firstly, in some situations a stronger precondition to the enclosing subprogram
was required in order to complete a proof. Secondly, our program analysis is
sometimes too coarse grained, e.g. insufficient discrimination between conditional
branches. These limitations represent opportunities for future work.

Providing additional properties that correspond to program variable type
information increases the Simplifier’s success rate by around 2%. During the
development of NuSPADE, Praxis extended the behaviour of the Examiner to
automatically present type information for all variables that appear on the right
hand side of an assignment. In isolation this technique is unsound as variables
may not have been initialised. However, the Examiner’s data flow analysis checks
that every variable is assigned a value before its use, eliminating the potential
error. The advantage of our technique is conducting explicit proofs rather than
relying on the correctness of the Examiner’s data flow analysis.
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The actions taken by NuSPADE in tackling a subprogram depends on the
nature of the subprogram, and capabilities of the Simplifier. Consequently, indi-
vidual subprograms can exhibit quite different patterns of behaviour. However,
in considering a collection of examples some general patterns begin to emerge.
Our results on 21 loop based examples are presented in Figure 20. A more de-
tailed analysis of these results is presented in the appendix.

Number of

examples

Goals at iteration

1 2 3

U P U P U P

6 12 0 - - - -

14 37 1 14 43 - -

1 8 0 4 6 0 6

In the table above we separate our 21 examples depending on the number of
NuSPADE iterations involved. On each iteration we list the number of goals
remaining after an invocation of the Simplifier. We partition these goals into
U, those that are unprovable, and P those that are provable.

Fig. 20. Results summary table

The insertion of an invariant leads to an additional VC to prove that the
invariant is correct. While the Simplifier is very effective on general exception
freedom verification tasks, it is less capable in reasoning about loops. These
factors explain why the number of remaining goals tends to increase after the
first iteration of NuSPADE.

Following the final iteration of NuSPADE some goals remain unproved. Three
goals required the insertion of preconditions, which is not considered by NuS-
PADE. Due to resource constraints, the Examiner does not generate exhaustive
rules for large constant structures. The resulting missing information leads to
eight unproved goals. In such situations NuSPADE directs the user to provide
the missing rules. Once the rules are in place NuSPADE successfully plans the
remaining goals.

Note that one example required three iterations of NuSPADE to complete.
This unusual situation exists as two distinct kinds of properties were required.
The first iteration of NuSPADE leads to one property being inserted. With this
property in place the second iteration of NuSPADE progresses further, leading
to the second property being inserted. Finally, once both properties are in place,
the remaining VCs are proved by NuSPADE.

More generally, NuSPADE provided evidence as to the effectiveness of proof
planning. Existing proof methods were incorporated into NuSPADE with relative
ease. This highlights how proof planning facilitates the reuse of proof strategies.
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In our particular domain of automated program reasoning we wanted to intro-
duce a program analysis component. Proof planning naturally supported this
integration via proof-failure analysis and its critics mechanism. This highlights
the flexibility of proof planning, and its ability to be specialised for particular
application domains.

11 Related Work

The Runcheck system [27] aimed to prove exception freedom for Pascal programs.
Runcheck employs various heuristics to discover invariants and tackles proof
with an external theorem prover. One of its heuristics involves the calculation of
recurrence relations as change vectors, ignoring program context and collecting
transformations made to variables. These change vectors are subsequently solved
using a few rewrite rules that target common patterns. Our approach has a
tighter integration between theorem proving and program analysis. In addition,
our program analyser solves recurrence relations using a powerful recurrence
relation solver tool. Further, our program analysis exploits program context and
approximates to ranges where equality solutions can not be found.

Recently there has been renewed interest in approaches that employ theorem
proving to support program development. The focus tends to be on finding errors
rather than proving correctness. For example, ESC/Java [25] is an extended
static checker for Java. Like SPARK, ESC/Java requires program annotations.
Houdini [24] is able to automatically generate many of the annotations required
by ESC/Java using predicate abstraction.

Our approach has similarities to Caveat [4], a static analysis tool designed
for safety critical software written in a subset of ANSI C. It is developed by the
French nuclear agency (CEA) and is used by Airbus in the formal verification of
avionics software. Caveat relies upon the programmer to provide loop invariants.
In the longer term, however, it is planned to integrate Caveat with an abstract
interpretation tool in order to automatically discover invariants [4].

An integration of abstract interpretation and program proof has been ex-
plored in [48] for a simple imperative programming language. The approach
uses abstract interpretation to generate program annotations. An algorithm is
then used to generate Hoare style proofs for the annotated programs. The work
currently focuses on verifying properties of integer ranges for program variables.
Our approach differs in that we use proof-failure analysis to focus our program
analysis efforts.

There exist program analysis systems that are formulated inside the abstract
interpretation framework [16]. These systems tend to pinpoint the location of
errors rather than prove correctness. The most noteworthy systems are Merle
[51] and Polyspace [46]. These systems gain constraints on variables by analysing
a program in its entirety. This process can be computationally expensive and
requires a complete program for input. Our program analysis exploits the strong
SPARK type model and program annotations to gain effective constraints on
variables where analysing individual subprograms. Consequently, our analysis is
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fairly cheap to perform and is applicable early in program development. Further,
we replace the formalisation aspects of the abstract interpretation framework
with explicit proofs. This simultaneously frees the development of our program
analysis and offers strong correctness guarantees.

An alternative approach to developing high integrity software involves the
generation of annotations during the construction of the program. This works
well for niche application areas, as exemplified by the AutoBayes program syn-
thesis system [6].

Finally, it should be noted that the work presented here represents a contin-
uation of the work in [19, 20]. In particular, we significantly extended both the
proof methods and critics. Further, we broadened the application of our program
analysis to deal with nested loops. In addition, we extended our empirical testing
of NuSPADE to include industrial test data.

12 SPADEase: Towards Technology Transfer

Following NuSPADE, the SPADEase project involved a six month industrial
secondment. The SPADEase project aimed to facilitate the transfer of the ideas
embodied in NuSPADE to an industrial environment. In practise, we planned to
stimulate this knowledge transfer by developing an industrial minded version of
NuSPADE, called SPADEase.

NuSPADE was developed as a research system, focusing on the hard automa-
tion problems. Consequently, NuSPADE lacks the integrity and accessibility ex-
pected of industrial tools. Thus, the primary goal of SPADEase was to re-factor
NuSPADE as a practical system for industrial use. Given the short project time,
emphasis was placed on consolidating the proof planning aspect of NuSPADE.

Like the NuSPADE proof planner, SPADEase is implemented in SICStus
Prolog. This allowed SPADEase to reuse various predicates from the NuSPADE
system, for example to support the rippling heuristic. To improve control and
traceability, a new core planning engine was created for SPADEase.

As SPADEase was fundamentally a knowledge transfer project it did not
extend the core functionality of NuSPADE. Nevertheless, SPADEase represents
a significant advance over NuSPADE in terms of ease of use and deployment.
SPADEase seamlessly integrates within the SPARK Approach, appearing to the
external user as an enhanced version of the SPADE Simplifier. While SPADEase
lacks a program analysis component its modular design readily supports the
integration of this facility in the future.

13 Limitations and Future Work

In §5.1 we observed that the constraint solving system employed in NuSPADE
fails on large numbers. Unfortunately, such large numbers can occur in EFVCs.
In such cases the elementary critic is deactivated, allowing the proof plan to
continue and other methods detect unprovability. Ideally, the constraint solver
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should be sufficiently powerful to tackle the problems that occur in practise.
This may be achieved by exploiting a more powerful constraint solver.

The transitivity method is most effective where considering linear expressions.
Moreover, our translation from solved recurrence relations to inequality bounds
does not support non-linear expressions. It would be possible to enrich the be-
haviour of our techniques to deal more effectively with non-linear expressions.
However, as the vast majority of the programs we encountered led to liner ex-
pressions, we did not find a need for such enhancements in practice.

The decomposition method exploits substitution laws to decompose inequali-
ties. If multiple substitution laws are applicable the decomposition method repre-
sents a choice point in the search for a proof. Ideally, each of these choice points
should be explored before reporting on the success or otherwise of the proof
plan. However, our elementary critic is not aware of alternative choice points and
will detect and report the first false goal it finds. In principle, this weakness
could mean not exploring proof paths that lead to proof. However, this potential
problem has not arisen in practise, as the decomposition method is relatively con-
strained, leading to a sparse number of choice points. Nevertheless, this weakness
may be addressed by introducing more global analysis into our critics.

In §10 we note that the introduction of a precondition can be a key step in
completing a proof. Consequently, we are interested in investigating the auto-
matic generation of preconditions. This process would involve discovering pre-
conditions based on the form of the code. If the code contains errors the gener-
ated precondition could be flawed. Thus, any generated precondition would need
to be manually reviewed to maintain the integrity of the system. Nevertheless,
we feel that valuable automation may be achieved in the area of precondition
discovery.

A possibility which we have not considered is exploiting the services of de-
cision procedures. The use of decision procedures within proof planning is an
active area of research [37]. Further, there exists powerful off-the-shelf decision
procedures, e.g. the Integrated Canonizer and Solver (ICS) [23]. It is likely that
decision procedures would bring valuable reasoning to NuSPADE.

Our focus here has been on proving exception freedom within the SPARK
Approach. However, our approach can be naturally extended to tackle other
program verification tasks. In particular, we are interested in applying our ap-
proach to automate partial correctness proofs. While this task represents a signif-
icant verification challenge our initial results [34, 32] suggest that some valuable
progress can be made in this area.

Aspects of our program analysis reflect the behaviour of existing abstract
interpretation systems, such as Merle and Polyspace. While these systems are
not designed for formal verification their results could assist in the discovery of a
formal proof. Consequently, we are interested in investigating the practicalities
of integrating these tools into our program analysis oracle.

Finally, we view SPADEase as a first step toward technology transfer. We
are actively looking to enhance our tool support further, with the intention of
employing our techniques during the development of a live software project.
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14 Conclusion

NuSPADE increases the level of automation when proving exception freedom
in the SPARK Approach. NuSPADE has been successfully evaluated on indus-
trial data, producing encouraging results. Based upon this work we developed
SPADEase, providing an initial step toward technology transfer. Our approach
tackles the verification task on two fronts by automating both proof search and
specification strengthening. We build upon the proof planning framework. In
particular, we use proof-failure analysis to guide the search for program proper-
ties. Our approach highlights the leverage that can be gained by a “co-operative”
integration of distinct static analysis techniques.
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A Introduction to NuSPADE Results

Formal proof using NuSPADE typically involves a number of iterations. On each
iteration an application of the Examiner and Simplifier proceeds an application
of NuSPADE. That is, NuSPADE is only applied to the VCs that are not proved
by the Simplifier. Note that where NuSPADE modifies a program specification,
e.g. loop invariant strengthening, another iteration of the analysis and proof
process is required.

For each example below we describe the behaviour of NuSPADE on successive
iterations. For each goal considered by NuSPADE we record which: i) proof plan
applied, ii) critics applied, and iii) program analysis methods applied. For space
reasons, the following key is used to describe the table headings:

Plan
a1 exception freedom (see §4.1)
a2 loop invariant (see §4.2)

Critic

b1 elementary (see §5.1)
b2 transitivity (see §5.2)
b3 fertilise (see §5.3)

PropGen

c1 for-loop range (see §6.3)
c2 looping code (see §6.5)
c3 for-loop entry (see §6.6)

Note that in these tables the symbol • denotes success while ◦ denotes partial
success, for example when a plan fails but a critic successfully fires.

B Industrial Examples

B.1 Example 1

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

I2 5 •

I3 6 •

Due to resource constraints the Examiner does not generate exhaustive rules
for large constant data structures. This can leave information gaps in the VCs,
preventing proof. In I1 1, I1 2, I1 3 and I1 4, the critic requests additional infor-
mation that corresponds to such a data structure. It would be unsound for our
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tools to add this information directly, however it would be possible for our tools
to communicate with the Examiner to request a targeted subset of the constant
information. Currently this information must be introduced by the user creat-
ing explicit rules, ensuring that these rules faithfully reflect the code. Note that
another example exhibited exactly the same pattern as this example.

B.2 Example 2

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I1 5 ◦ • •

I1 6 ◦ • •

I1 7 ◦ • •

I1 8 ◦ • •

I2

I2 1 ◦ • •

I2 2 •

I2 3 ◦ • •

I2 4 ◦ • •

I2 5 •

I2 6 •

I2 7 ◦ • •

I2 8 •

I2 9 •

I2 10 •

I3

I3 1 •

I3 2 •

I3 3 •

I3 4 •

I3 5 •

I3 6 •
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B.3 Example 3

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I1 5 ◦ • •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

B.4 Example 4

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1
I1 1 ◦ • •

I1 2 ◦ • •

I2 I2 1 ◦ • •

B.5 Example 5

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1
I1 1 ◦ • •

I1 2 ◦ • •

B.6 Example 6

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

B.7 Example 7

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1
I1 1 ◦ • •

I1 2 ◦ • •
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B.8 Example 8

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I1 5 ◦ • •

B.9 Example 9

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

B.10 Example 10

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

I2 I2 1 ◦ • •

Note that this subprogram calls a function with preconditions, resulting in VCs
to prove that the preconditions hold. As NuSPADE focuses on exception freedom
it is unable to make progress on these partial correctness problems.

Note that three other examples exhibited exactly the same pattern as this
example.

B.11 Example 11

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1
I1 1 ◦ • •

I1 2 ◦ • •

I2
I2 1 ◦ • •

I2 2 ◦ • •
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B.12 Example 12

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

I2 5 •

I2 6 •

I2 7 •

I2 8 •

I2 9 •

By default the SPARK tools come complete with a large collection of rules,
suitable to complete the proof of most exception freedom VCs. However, the
proof of this example required some very specific rewrite steps, not available in
SPARK. To overcome this problem the proof plan exploits both generalisation
and induction methods. Although these methods are infrequently required, they
extend the reach of the proof planner beyond the default rules allowing for the
successful proof of more complicated examples.

C Non-industrial Examples

C.1 Example Filter

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

I2
I2 1 •

I2 2 •

C.2 Example: Filter2

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1
I1 1 ◦ • •

I1 2 ◦ • •

I1 3 •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

I2 5 •

42



C.3 Example: Average

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

I2 5 •

I2 6 •

C.4 Example: Power

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I2
I2 1 •

I2 2 •

C.5 Example: Find

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

C.6 Example: Matrix Multiplication

Iteration Goal
Plan Critic PropGen

a1 a2 b1 b2 b3 c1 c2 c3

I1

I1 1 ◦ • •

I1 2 ◦ • •

I1 3 ◦ • •

I1 4 ◦ • •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

I2 5 •

I2 6 •
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C.7 Example: Matrix Filter

Iteration Goal
Plan Critic Method

a1 a2 b1 b2 b3 c1 c2 c3

I1 I1 1 ◦ • •

I2

I2 1 •

I2 2 •

I2 3 •

I2 4 •

I2 5 •

D Non-industrial Examples Code

D.1 Example Code: Filter

The code for this example has already been presented in Figure 1.

D.2 Example Code: Filter2

package Filter2Package is

subtype P_Type is Integer;

subtype I_Type is Integer range 0..9;

subtype Dc_Type is Integer range -10000..10000;

type D_Type is array (I_Type) of Dc_Type;

procedure Filter2(D1, D2: in D_Type; P: out P_Type);

--# derives P from D1, D2;

end Filter2Package;

package body Filter2Package is

procedure Filter2(D1, D2: in D_Type; P: out P_Type)

is

begin

P:= 0;

for I in I_Type loop

--# assert true;

if D1(I) >= 0 and D1(I) <= 20 and

D2(I) >= 0 and D2(I) <= 20 then

P:= P + (D1(I) * D2(I));

end if;

end loop;

end Filter2;

end Filter2Package;
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D.3 Example Code: Average

package AveragePackage

is

subtype S_Type is Integer;

subtype I_Type is Integer range 1..10;

subtype ADc_Type is Integer range -100..100;

type D_Type is array(I_Type) of ADc_Type;

procedure Average(D: in D_Type; S: out S_Type;

A: out ADc_Type);

--# derives S, A from D;

end AveragePackage;

package body AveragePackage

is

procedure Average(D: in D_Type; S: out S_Type;

A: out ADc_Type)

is

begin

S:= 0;

for I in I_Type loop

--# assert true;

S:= S + D(I);

end loop;

A:= S/((I_type’Last - I_Type’First) + 1);

end Average;

end AveragePackage;

D.4 Example Code: Power

package PowerPackage is

subtype KZ_Type is Integer;

subtype YX_Type is Integer range 0..5;

procedure Power(X, Y: in YX_Type; Z: out KZ_Type);

--# derives Z from X, Y;

end PowerPackage;
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package body PowerPackage

is

procedure Power(X, Y: in YX_Type; Z: out KZ_Type)

is

K: Integer;

begin

K:= 0;

Z:= 1;

while K /= Y

loop

--# assert true;

Z:= Z*X;

K:= K+1;

end loop;

end Pow1;

end PowerPackage;

D.5 Example Code: Find

package FindPackage is

subtype KI_Type is Integer range 0..9;

subtype Ac_Type is Integer range 0..100;

type A_Type is array (KI_Type) of Ac_Type;

function Find(A: A_Type) return KI_Type;

end FindPackage;

package body FindPackage is

function Find(A: A_Type) return KI_Type

is

K: KI_Type;

begin

K := 0;

for I in KI_Type loop

if A(I) < A(K) then

K := I;

end if;

end loop;

return K;

end Find;

end FindPackage;
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D.6 Example Code: Matrix Multiplication

package MatMultiplicationPackage is

subtype I_Type is Integer range 0 .. 3;

subtype E_Type is Integer range -9 .. 9;

subtype R_Type is Integer;

type OneA_Type is array (I_Type) of E_Type;

type TwoA_Type is array (I_Type) of OneA_Type;

type ROneA_Type is array (I_Type) of R_Type;

type RTwoA_Type is array (I_Type) of ROneA_Type;

procedure MatMultiplication(A: in TwoA_Type;

B: in TwoA_Type;

C: out RTwoA_Type);

--# derives C from A, B;

end MatMultiplicationPackage;

package body MatMultiplicationPackage is

procedure MatMultiplication(A: in TwoA_Type;

B: in TwoA_Type;

C: out RTwoA_Type)

is

M: Integer;

begin

for I in I_Type loop

--#assert true;

for J in I_Type loop

M:=0;

for K in I_Type loop

--#assert true;

M:=M+A(I)(K)*B(K)(J);

end loop;

C(I)(J):=M;

end loop;

end loop;

end MatMultiplication;

end MatMultiplicationPackage;
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D.7 Example Code: Matrix Filter

package body MatFilterPackage is

procedure MatFilter(A: in TwoA_Type; R: out Integer)

is

begin

R:=0;

for I in I_Type loop

for J in I_Type loop

if A(I)(J) >= 0 and A(I)(J)<=10 then

R:=R+A(I)(J);

end if;

--#assert true;

end loop;

--#assert true;

end loop;

end MatFilter;

end MatFilterPackage;

package body MatFilterPackage is

procedure MatFilter(A: in TwoA_Type; R: out Integer)

is

begin

R:=0;

for I in I_Type loop

for J in I_Type loop

if A(I)(J) >= 0 and A(I)(J)<=10 then

R:=R+A(I)(J);

end if;

--#assert true;

end loop;

--#assert true;

end loop;

end MatFilter;

end MatFilterPackage;
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E Non-industrial Example Summary

Name Abstract predicate Candidate invariant

Filter r ≥ A ∧ r ≤ B
R>=0 and

R<=I*100

Filter2 p ≥ A ∧ p ≤ B
P>=0 and

P<=I*400

Average s ≥ A ∧ s ≤ B
S>=(I-1)*(-100) and

S<=(I-1)*100

Power
k ≥ A ∧ k ≤ B

z ≥ C ∧ z ≤ D

Z>=1 and

Z<=(5**K)*1 and

K>=0 and

K<=Y

Find k ≥ A ∧ k ≤ B
K>=0 and

K<=I

Matrix Multiplication m ≥ A ∧ m ≤ B

(most inner loop)

M>=K*(-81) and

M<=K*(81)

Matrix Filter r ≥ A ∧ r ≤ B

(outer loop)

R>=0 and

R<=I*40

(inner loop)

R>=0 and

R<=(I*40)+((J+1)*10)
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