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1 Previous Research

Dr Andrew Ireland is a Senior Lecturer in Computer Science within the School of Mathematical and Computer
Sciences at Heriot-Watt University. He has substantial research experience in the area of automated reasoning
and automated software engineering. In particular he has played an influential role in the development of proof
planning [8, 10, 23, 27, 28, 31, 32, 33, 34, 49, 50]. He has also been involved most recently in more applied
research. As principle investigator of the NuSPADE project (GR/R24081) he successfully applied the proof planning
ideas to the SPARK Approach [1] to developing safe and secure software. This involved a strong collaborative
element with Praxis High Integrity Systems Ltd (Bath), which led to a follow-on Knowledge Transfer project
(GR/T11289). The NuSPADE project gave rise to an integrated approach to software verification [16, 17, 24,
29, 30], which was highly rated by the EPSRC reviewers. The integrated theme of the NuSPADE project is also
reflected in another application-oriented project called PARTES, which combined model checking and performance
modelling. PARTES, was funded by an Industrial Case Award (GR/PO1786) in collaboration with QinetiQ’s
Systems Assurance Group (Malvern) [20]. Another integrated project in which Dr Ireland was involved in (as
co-investigator) focused on the “Parallelising compilation of Standard ML through prototype instrumentation and
transformation” (GR/L42889). Here he provided automated reasoning expertise in terms of transformation rule
synthesis and verification [12, 13].

During his 12 years at Heriot-Watt, Dr Ireland has maintained a close collaborative relationship with Prof.
Bundy’s Mathematical Reasoning Group (MRG) at the University of Edinburgh. He is an Honorary Research Fellow
of Edinburgh University and is currently a co-investigator on Prof. Bundy’s Platform grant, i.e. “The Integration
and Interaction of Multiple Mathematical Reasoning Processes” EP/E005713 (and GR/S01771). Previously he was
a co-investigator on Prof. Bundy’s rolling funding grants, i.e. GR/M45030, GR/L11724 and GR/J80702.

It should be noted that Platform grant GR/S01771 has provided considerable support in developing the current
proposal, and the strong links with the MRG will greatly assist with the development and dissemination of the
proposed programme of research.

Dr Ireland has organized a number of national and international workshops in automated reasoning. He is a
member of programme and organizing committees for a series of national and international workshops and confer-
ences. He has been a member of the Programme Committees/Expert Reviewer Panels/Conference Committees for
a series of IEEE/ACM International Conferences on Automated Software Engineering (ASE-01, ASE-02, ASE-03,
ASE-04, ASE-05, ASE-06, ASE-07), as well as the International Conference on Automated Deduction (CADE-18,
CADE-19). He was appointed to the Steering Committee for ASE in 2006 and will be Programme Co-Chair for
ASE-08 in L’Aquila (Italy). He reviews papers for major journals, i.e. JAR, AMAI and JLC. He has been a
member of the EPSRC Peer Review College since 2003.

In terms of research environment, Computer Science at Heriot-Watt received a 4A in the 2001 Research As-
sessment Exercise in the Computer Science unit of assessment. It is housed in a modern building, with excellent
computer and infrastructural facilities. The applicant is a founding member of the Dependable Systems Group
(DSG), whose research focus is to improve the reliability and predictability of computer systems through the devel-
opment and application of rigorous design, implementation and verification techniques. The current DSG research
areas include: Theorem proving, formal verification and synthesis; Design of parallel and distributed functional
languages; Performance modelling and simulation of parallel and distributed systems. Since its inception in 1997,
the DSG has grown to 2 Professors, 3 Senior Lecturers, 2 Lecturers and 5 Research Assistants and 19 PhD students.
Group members currently hold 4 research grants.
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Dr Ewen Maclean (Research Associate)

Dr Maclean gained his PhD from the University of Edinburgh in 2004 for work on automating formal proofs
in non-standard analysis using a proof planning approach. For most of 2003 and 2004 he was an RA with the
Mathematical Reasoning Group at the University of Edinburgh. He supported the group’s research activities with
the lambda-Clam proof planner and took over development of the IsaPlanner proof-planning system built on top
of the Isabelle/HOL theorem prover.

Recently he was a consultant on a project to determine the market feasibility of program analysis tools based
on research at Edinburgh and Heriot-Watt universities. His role was to develop and implement a preliminary pro-
totype system which generated verification conditions and proved these automatically using IsaPlanner. Program
properties considered by the system included properties associated with heap data and with resource consumption.
Much of the work was concerned with automatically generating loop invariants. The results obtained were very
promising and he is presently continuing this work with the company MicroArt in Barcelona, analysing their Java
code for possible applications of the research.

Miss Ianthe Hind (Research Student)

Miss Hind is a first year Computer Science PhD student within the School of Mathematical and Computer Sciences
at Heriot-Watt University. She is currently a visiting researcher within the Mathematical Reasoning Group at
Edinburgh University. Her research interests lie within automated reasoning and the applications of logic. She has
been tutoring throughout her academic career, most recently Intelligent Agents, Formal Specification and Compiler
Theory at Heriot-Watt University.

Miss Hind completed her BSc (Honours) in Computer Science (2.1) at Edinburgh University in 2006. Her
Dissertation was entitled Extending the Capabilities of Anastasia. Anastasia is a structural editor for programming
languages that uses proofs as programs to exploit the duality between functional programs and proofs in constructive
logic. Her work involved writing a grammar for the Haskell language (including list comprehensions and lambda
abstractions), investigating the integration of termination checking and the completion a successful evaluation of
Anastasia’s usefulness compared to that of a free form text editor.

Prior to attending Edinburgh University, Miss Hind gained valuable experience in industry before realising that
her true interests lay in research. She completed her BSc in Applied Mathematics and Computer Science (2.1) at
the University of Cape Town in 2001 before moving to the United Kingdom.
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2 Proposed Research

2.1 Background
The proliferation of software across all aspects of modern life means that software failures can have significant
economic, as well as social impact. The goal of being able to develop software that can be formally verified
as correct with respect to its intended behaviour is therefore highly desirable. The foundations of such formal
verification have a long and distinguished history, dating back over fifty years [18, 19, 22]. What has remained
more elusive are scalable verification tools that can deal with the complexities of software systems.

However, times are changing, as reflected by a current renaissance within the formal software verification
community. An IFIP working group has been set up with the aim of developing a Grand Challenge for Verified
Software [35]. Dr Ireland has participated in a number of events which have helped shape the Grand Challenge,
and the current proposal is closely aligned with its goals. There have also been some notable industrial success
stories. For instance, Microsoft’s Static Device Verifier (SDV) [40] and the SPARK Approach to developing high
integrity software [1]. Both of these successes address the scalability issue by focusing on generic properties and
tool integrations that support a high degree of automation. In the case of SDV, the focus is on deadlock freedom
at the level of resource ownership for device driver software. Abstraction and model checking are used to identify
potential defects, which are then refined via theorem proving to eliminate false alarms. The SPARK Approach has
been used extensively in the development of safety [36] and security [21] critical applications. It provides a loose
coupling of analysis techniques from data and information flow analysis through to formal verification via theorem
proving. One of its key selling points is its support for automating so called exception freedom proofs, i.e. proving
that a system is free from common run-time errors such as buffer overflows.

The targeting of generic properties, such as deadlock and exception freedom, has proved both highly effective and
extremely valuable to industry. However, to increase the value of software correctness guarantees will ultimately call
for a more comprehensive level of specification, i.e. correctness specifications. In the case of bespoke applications,
this might take the form of correctness specifications developed in conjunction with the customer requirements.
Alternatively, the verification of software libraries and components against agreed correctness standards could prove
highly valuable across a wide range of sectors. The focus of this proposal is on developing techniques that support
the automatic verification of correctness specifications.

Verifying code against more comprehensive specifications will call for significant advances in terms of scalable
tools. We believe that these advances will require frameworks which provide, i) general support for modular rea-
soning as well as, ii) a flexible basis in which novel tool integrations can be investigated. Our proposal builds upon
separation logic, where modular reasoning is a key feature. At the level of tool integration, we propose the use
of proof planning, an automated theorem proving technique which has a track-record in successfully combining
reasoning tools:

Separation logic was developed as an extension to Hoare logic [22], with the aim of simplifying pointer program
verification proofs [43, 46]. Pointers are a powerful and widely used programming mechanism, but developing and
maintaining correct pointer programs is notoriously hard. A key feature of separation logic is that it focuses the
reasoning effort on only those parts of the heap that are relevant to a program, so called local reasoning. Because it
deals smoothly with pointers, including “dirty” features such as memory disposal and address arithmetic, separation
logic holds the promise of allowing verification technology to be applied to a much wider range of real-world
software than has been possible up to now.

In terms of tool development, the main focus has been on shape analysis. Such analysis can be used to verify
properties about the structure (shape) of data structures within the heap. For example, given a sorting program
that operates on singly linked list, then shape analysis techniques can be used to verify that for an arbitrary singly
linked list the program will always output a singly linked list. Note that shape analysis ignores the content of
data structures. Smallfoot [3] is an experimental tool that supports the automatic verification of shape properties
specified in separation logic. Smallfoot uses a form of symbolic execution [4], where loop invariants are required.
Related tools are SLAyer [2], Space Invader [14] and Smallfoot-RG [11], all of which build directly upon the
foundations of Smallfoot. Within SLAyer, higher-order generic predicates are used to express families of complex
composite data structures. A restricted form of predicate synthesis is used to instantiate the generic predicates
during shape analysis. Space Invader, unlike Smallfoot supports loop invariant discovery via fixed point analysis.
Abstraction is used to overcome divergence in the search for a fixed point. Smallfoot-RG also includes Space
Invader’s invariant discovery strategy. Closely related to Space Invader is an algorithm developed at CMU for
inferring loop invariants within the context of separation logic [38]; again fixed point analysis is the underlying
mechanism. Another interesting tool is reported in [41], which combines shape and size analysis. Inductive
predicates play a significant role in specifying pointer programs within separation logic. A limitation of the program
analysis tools mentioned above is that they are hard-wired with pre-defined inductive predicates, e.g. singly linked
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lists, binary trees etc. To make these tools extensible would require the ability to add new user-defined inductive
predicates on-the-fly. To achieve this would require the ability to automate proof by mathematical induction. We
will return to this point later.

Less work has been undertaken in the area of theorem proving for separation logic. In [45] a partial formalization
within PVS [44] is presented which supports the verification of recursive procedures. A complementary formaliza-
tion, which includes simple while loops, but not recursive procedures, is presented in [51]. In [37] separation logic is
added to Isabelle [42] using the Schirmer’s verification environment for sequential imperative programs [47]. This
integration was used to reason about pointer programs written in C. Finally, in [39] the Coq proof environment
has been extended with separation logic in order to verify the C source code of the Topsy heap manager. All these
applications of theorem proving to separation logic have involved significant user interaction, e.g. user specified
induction rules. In contrast, our proposal focuses on verification automation in which user interaction is elimi-
nated as far as possible.

Proof planning is a technique for automating the search for proofs through the use of high-level proof outlines,
known as proof plans [5]. The current state-of-the-art proof planner is called IsaPlanner [15], which is Isabelle
based. Proof planning has been used extensively for proof by mathematical induction [9]. Mathematical induction
is essential for the synthesis and verification of the inductively defined predicates that arise within separation logic
specifications. Proof planning therefore offers significant benefits for reasoning about separation logic specifications.
In addition, the kinds of data structures that arise naturally when reasoning about pointer programs, i.e. a
queue implemented as a “circular” linked list, will provide challenging examples which will advance the existing
proof plans. A distinctive feature of proof planning is middle-out reasoning [7], a technique where meta-variables,
typically higher-order, are used to delay choice during the search for a proof. Middle-out reasoning has been used
to greatest effect within the context of proof critics [23], a technique that supports the automatic analysis and
patching of failed proof attempts. Such proof patching has been applied successfully to the problems of inductive
conjecture generalization and lemma discovery [27, 28], as well as loop invariant discovery [33]. This work is
currently being integrated and extended within IsaPlanner. The tool integration capabilities of proof planning have
been demonstrated through the Clam-HOL [48] and NuSPADE projects1 [29]. The NuSPADE project targeted
the SPARK Approach [1], and integrated proof planning with light-weight program analysis in order to increase
proof automation for loop-based code. The resulting integration was applied to industrial strength problems and
successfully increased the level of proof automation for exception freedom proofs [29].

2.2 Programme and Methodology
2.2.1 Research Aims
There are two long-term aspects to our work. Firstly, we aim to deepen our understanding of the complemen-
tary nature of program analysis and deductive reasoning. Secondly, we aim to use this understanding to inform
the development of integrated approaches to the problem of automating software verification. In particular, we
are interested in approaches where there is real cooperation between complementary techniques. That is, where
individual techniques combine their strengths, but crucially compensate for each other’s weaknesses through the
communication of partial results and failures. More general evidence as to the merits of such cooperation can be
found in [6]. For us the pay-off of achieving this level of cooperation will be measured in terms of automation,
i.e. we believe that this form of cooperation will deliver verification automation where skilled human interaction is
currently essential. Our starting point is the proof planning paradigm, and our research hypothesis is:

Proof planning provides a framework within which real cooperation between
program analysis and deductive reasoning can be achieved.

As a first step towards validating this hypothesis we have chosen to focus upon a specific instance, i.e. an
integration of the Smallfoot program analyzer and the IsaPlanner proof planner. We believe that this will take 3
years. After which point we will review progress with respect to the more general hypothesis. It should be noted
that the generic nature of IsaPlanner/Isabelle means that one of the outcomes of the programme of work will be
a generic framework which will directly support our longer-term aims. Figure 1 provides some details as to how
cooperation between Smallfoot and IsaPlanner could be achieved.

1NuSPADE project: http://www.macs.hw.ac.uk/nuspade
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We see two areas where proof planning could be combined cooperatively with shape analysis. When reasoning about
recursively defined procedures, the discovery of an appropriate frame axiom plays a pivotal role. Likewise when reasoning
about iterative code, the discovery of an appropriate loop invariant plays a pivotal role. The Frame and While-loop rules
shown below provide the logical foundation for reasoning about frame axioms and loop invariants respectively:

Frame rule:
{P} C {Q}

{R ∗ P} C {R ∗Q}

While-loop rule:

{P → R} {R ∧ S} C {R} {¬S ∧R→ Q}
{P} while S do {R} C od {Q}

The frame rule imposes a side condition, i.e. no variable occurring free in R is modified by C. Note also that in both
rules, R will typically not form part of a program’s overall correctness specification. That is, R represents an auxiliary
part of the specification, typically supplied via user interaction. In terms of proof search, R represents an infinite choice
point, and therefore a major challenge to achieving verification automation. Our proposal directly addresses this challenge.
We are focusing on correctness specifications, so R describes both the shape and content of heap data structures. Note
that Smallfoot, and its related program analysis tools, support the automatic discovery of shape properties, but they do
not address the issue of content. We believe that proof planning, via middle-out reasoning and proof patching, will enable
shape properties to be automatically extended to include properties about the content of data structures within the heap.
Smallfoot provides strength in terms of automating the discovery of shape properties while the strength of IsaPlanner lies in
its ability to automate the discovery of properties about the content of data structures. In addition, the inductive theorem
proving capabilities of IsaPlanner will enable us to compensate for the limitations of current program analysis tools, i.e.
as mentioned above, extensibility requires the ability to automatically reason about inductively defined predicates. More
details on how we believe real cooperation can be achieved are provided in [25, 26].

Figure 1: Automating the Discovery of Frame Axioms & Loop Invariants

2.2.2 Research Objectives and Programme of Work

To achieve our integration, we plan to build upon Schirmer’s generic verification environment mentioned in §2.1.
As it is currently funded by the Verisoft2 project, we will refer to it as the VerisoftVE. A key reason for selecting
VerisoftVE is the fact that it is Isabelle based, which makes it an ideal choice given that IsaPlanner is also Isabelle
based. Our principal objectives for this three year research project are:

• Develop an extensible program analyzer that automates the discovery of shape properties within separation
logic.

• Develop proof plans that work cooperatively with the program analyzer in order to automatically verify the
correctness of pointer programs, both iterative and recursive.

• Evaluate the effectiveness of the cooperation in terms of verification automation on applications where user
interaction is currently required.

The research programme has been broken down into 5 Work Packages (WP). A description of the aims of each WP
is given below together with a breakdown of the tasks, deliverables and responsibilities. The research will require a
Postdoctoral Research Associate (RA) and a Research Student (RS) for 36-months. A diagrammatic project plan
that details the WPs and milestones is provided in the attached Work Plan.

WP1: Extensible shape analysis [Months 1 to 12: Total 12 person months] Develop an extensible program
analyzer, called NuSmallfoot, which supports shape invariant discovery and is compatible with IsaPlanner [ 100%
RS ].

Tasks: Building upon Smallfoot (and related tools), develop a program analyzer, which supports shape invariant
discovery and is compatible with IsaPlanner (T1); Investigate how IsaPlanner’s inductive reasoning capabil-
ities can be used to make NuSmallfoot extensible (T2).

Deliverables: An experimental program analyzer (NuSmallfoot) (D1); Evidence of NuSmallfoot’s loop invariant
discovery capabilities and ideas on how to make NuSmallfoot extensible (D2). A system description and
conference paper describing D1 and D2 (D3).

WP2: Separation logic for VerisoftVE [Months 1 to 12: Total 12 person months] Extend VerisoftVE with
separation logic, i.e. provide a basis for reasoning about the correctness of pointer programs [ 100% RA ].

2http://www.verisoft.de
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Tasks: Extend VerisoftVE with separation logic (T3); Building upon T3, model a basic pointer programming
language within the extended Verisoft environment (T4).

Deliverables: Extended VerisoftVE capable of modelling and reasoning about the correctness of pointer programs
(D4). A conference paper describing the extension (D5).

WP3: Proof Plans for Separation Logic [Months 13 to 24: 21 person months] The aim is to adapt and extend
the existing IsaPlanner proof plans for use within VerisoftVE and NuSmallfoot. In terms of theorem proving, the
focus will be on invariant verification, rather than discovery. Automating the discovery of invariants via proof
planning will be addressed in WP4 [ 75% RA + 100% RS ].

Tasks: Adapt IsaPlanner’s planning mechanism so that it can automate the search for proofs within VerisoftVE
(T5); Extend IsaPlanner’s proof plans for induction, rippling and fertilization to deal with pointer references
(T6) and the kinds of inductive predicates that are required when reasoning about separation logic specifi-
cations (T7); Evaluate the effectiveness of D6 and D7 in controlling the search for verification proofs within
separation logic (T8).

Deliverables: An extensible version of NuSmallfoot (D6); An IsaPlanner adapted for VerisoftVE (D7); An ex-
tended library of proof plans (D8); Conference and journal papers describing D6, D7 and D8 and an initial
evaluation (D9).

WP4: Meta-Level Cooperation [Months 19 to 30: 6 person months] The aim is to develop meta-level control
techniques that automate the discovery of frame axioms and loop invariants via cooperation [ 50% RA ].

Tasks: Develop assertion refinement in support of frame axiom instantiation and integrate with NuSmallfoot (T9);
Develop middle-out reasoning in support of content invariant discovery and integrate with NuSmallfoot (T10).

Deliverables: A NuSmallfoot and IsaPlanner integration which supports automatic, i) loop invariant discovery,
and ii) assertion refinement (D10); A system description and conference paper describing the integration
(D11).

WP5: Evaluation Phase [Months 25 to 36: 21 person months] The aim is to consolidate and evaluate the
effectiveness of the cooperation that is achieved via the NuSmallfoot and IsaPlanner integration. In particular, we
will revisit the loop invariants and frame axioms mentioned in WP4 in order to evaluate the discovery capabilities
resulting from the integration [ 75% RA + 100% RS ].

Tasks: Evaluation based upon standard pointer programs and library routines, as well as challenge examples drawn
from the literature and other related projects (T11); Thesis writing (T12).

Deliverables: PhD Thesis (D12); A conference paper describing the results of T11 (D13); A journal paper de-
scribing the achievements of project as a whole (D14); Final report (D15).

2.3 Relevance to Beneficiaries

The immediate beneficiaries of the work will be researchers working in the areas of separation logic, program
analysis and automated theorem proving. As mentioned previously, our goal is to develop a generic framework.
Having such a framework will accelerate further investigations into novel integrations of program analysis and
theorem proving techniques. In addition, we would expect our results will be of interest to the wider automated
deduction and formal methods communities, as well as the program analysis community. If our cooperative style of
integration is successful, then it could have a significant impact on reducing the cost of developing highly reliable
software.

2.4 Dissemination and Exploitation

We will seek to publish our results in high quality journals and at the relevant major international conferences.
Note that we will target the general software engineering community, e.g. ASE & ICSE, as well as the more
specialized formal methods community, e.g. FME & IFM. We will also target relevant international workshops
such as WING, Verify and ARW. We anticipate at least 7 conference and 2 journal publications, as well as a PhD
Thesis, to be generated by this project. The system itself and associated deliverables will be made available via the
web. Moreover, we would seek to publicize our techniques by giving tutorials at international conferences. As with
our previous NuSPADE project, we will continue to work closely with Heriot-Watt’s Technology Transfer Services
in order to capitalize on any commercial opportunities that may arise from the work.
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