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Abstract
Separation logic holds the promise of supporting scalable for-

mal reasoning for pointer programs. Here we consider proof au-
tomation for separation logic. In particular we propose an ap-
proach to automating partial correctness proofs for recursive pro-
cedures. Our proposal is based upon proof planning and proof
patching via assertion refinement.

1. Introduction
While pointers are a powerful and widely used programming

mechanism, they are the source of many subtle program defects.
As a consequence, developing and maintaining correct pointer pro-
grams is notoriously hard. This is reflected in some approaches to
software development where the use of pointers is prohibited [1].

It would therefore be highly desirable to be able to automati-
cally reason about the correctness of pointer programs. The stum-
bling block to achieving such a goal has been the lack of scalable
reasoning techniques. Separation logic [21, 24] was designed to
support pointer program proof by allowing specifications and rea-
soning to focus on only those parts of the heap that can be ma-
nipulated by a program. Through such local reasoning, separation
logic holds the promise of scalable formal reasoning for pointer
programs.

In this paper we exploit the local reasoning provided by sep-
aration logic. We propose an approach to automating the search
for proofs within the context of separation logic. In particular, we
focus upon partial correctness proofs for recursively defined pro-
cedures. While separation logic supports local reasoning, it does
not remove the burden of the programmer having to supply inter-
mediate assertions. Building upon existing automated reasoning
techniques, our proposal aims to directly address this burden.

The contributions of this paper are twofold. Firstly we outline
a proposal as to how proof automation could be achieved for a
significant class of programs. Our proposal exploits in particular

$

the automated reasoning technique known as rippling. Our second
contribution is a proposal to extend rippling to deal with pointer
references.

The paper is structured as follows. Background material on
separation logic and the problem we are addressing are summa-
rized in §2. In §3 our general approach is outlined, while future
and related work is highlighted in §4. Our conclusions are pre-
sented in §5. For a more detailed presentation of our proposal see
[14].

2. Separation Logic
Here we provide a brief overview of separation logic, for a de-

tailed presentation see [21, 24]. In separation logic, program spec-
ifications are presented as Hoare triples, i.e. {P}C{Q}, where
P and Q denote propositions, and C denotes program code. As
well as predicate calculus, separation logic includes two new log-
ical connectives. Firstly, separating conjunction, i.e. P ∗ Q holds
for a heap if the heap can be divided into two disjoint heaps H1

and H2, where P holds in H1 and Q holds in H2 simultaneously.
Secondly, separating implication, i.e. P −∗Q holds if the current
heap H1 is extended with a disjoint heap H2 in which P holds,
then Q will hold in the extended heap.

At the level of heap cells, a singleton heap is denoted by the
predicate X �→ E, i.e. one cell at address X with contents E.
The empty heap is denoted by emp. Note that using separating
conjunction, an assertion about a singleton heap can be extended
to an arbitrary sized heap, i.e. true∗(X �→ E). A useful definition
which we will exploit is:

(X �→ E1, E2) ↔ (X �→ E1) ∗ (X + 1 �→ E2)

This gives a convenient way of expressing properties about an ad-
jacent pair of heap cells.

The central proof rule of separation logic is the frame rule:

{P} C {Q}
{R ∗ P} C {R ∗ Q}

Note that the frame rule imposes a side condition, i.e. no vari-
able occurring free in R is modified by C. It is the frame rule
that supports local reasoning. That is, in proving the correctness
of C the frame rule allows us to only focus on the variables and
parts of the heap that are relevant to C, i.e. the “footprint” of C.
The frame rule plays a pivotal role in reasoning about recursively
defined procedures. Consider a procedure definition of the form:

procedure h(x1, . . . , xm; y1, . . . , yn) is C



where C denotes the procedure body. Note that x1, . . . , xm de-
note variables that are not modified by C while y1, . . . , yn denote
variables that are modified by C. In terms of verification, we are
interested in proving Hoare triples of the form:

{P} h(x1, . . . , xm; y1, . . . , yn) {Q} (1)

We therefore require the application of a standard proof rule for
reasoning about recursively defined procedures [12]:

{P} h(x1, . . . , xm; y1, . . . , yn) {Q}
...

{P} C {Q}
{P} h(x1, . . . , xm; y1, . . . , yn) {Q}

This rule reduces the task of proving (1), to proving that the proce-
dure body C satisfies the specification, under the assumption that
any recursive calls also satisfy the specification. In order to apply
this assumption, known as the recursive hypothesis, we require the
following substitution rule:

{P} C {Q}
({P} C {Q})[e1/v1, . . . , en/vn]

Note that v1, . . . , vn denote variables occurring free in P , C or Q,
and if vi is modified by C then ei is a variable that does not occur
free in any other ej .

We now sketch the verification of a recursive procedure using
separation logic. Our aim is to illustrate the role of the frame rule
and highlight the search control problem that we are addressing.
Consider the following copylist procedure1:

procedure copylist(i; j) is
if i = nil then

j := i
else

newvar ih, it, jt in
ih := [i];
it := [i + 1];
copylist(it; jt);
j := cons(ih, jt)

end if
end copylist

Note that copylist has two pointer arguments, where the first
argument points to an acyclic list. The effect of the procedure
is to assign to the second argument a copy of the list referenced
by first argument. To specify partial correctness of copylist,
we introduce list, an inductively defined predicate which relates
the notion of an acyclic singly-linked list to the abstract notion of
sequences:

list([], Z) ↔ emp ∧ (Z = nil)

list([X|Y ], Z) ↔ (∃p. (Z �→ X, p) ∗ list(Y, p))

Note that the first argument of list denotes a sequence, where se-
quences are represented using the Prolog list notation. The sec-
ond argument references the head of the corresponding linked-
list structure. Armed with this definition, partial correctness of
copylist can be specified as follows:

{list(α, i)}copylist(i; j) {list(α, i) ∗ list(α, j)} (2)

1[E] denotes the contents addressed by E.

In words, this states: Assuming i points to an acyclic list with
contents α, then if the execution of copylist(i; j) terminates
then i and j will point to distinct acyclic lists, both containing
α. Using the procedure proof rule (see above), the verification
of (2) reduces to verifying the procedure body given the recursive
hypothesis, i.e.

{list(α, i)}copylist(i; j) {list(α, i) ∗ list(α, j)} (3)

In terms of verifying the recursive call, we have to prove:

{(∃αh, αt. ([αh|αt] = α) ∧ (ih = αh) ∧ (i �→ ih, it) ∗
list(αt, it))}

copylist(it; jt);

{(∃αh, αt. ([αh|αt] = α) ∧ (ih = αh) ∧ (i �→ ih, it) ∗
list(αt, it) ∗ list(αt, jt))} (4)

From (3), using the substitution rule, a precise specification of the
recursive call can be inferred. However, such a specification is not
strong enough to prove (4), as it does not specify the larger context
of the procedure body. This is where the frame rule is required. In
addition to the substitution rule, the frame rule, and the auxiliary
variable elimination rule2 enables us to bridge the gap between
(3) and (4). Note that the application of the frame rule involves
instantiating R to be:

([αh|αt] = α) ∧ (ih = αh) ∧ (i �→ ih, it) (5)

This process of instantiation corresponds to a programmer supply-
ing an intermediate assertion. Below we provide an outline of our
approach to automating the discovery of such intermediate asser-
tions.

3. Overview of our General Approach
The task of verifying a procedure body can be represented schemat-

ically as follows:

{P}
...

{R1 ∗ P1}
h(x1

1, . . . , x
1
p; y1

1 , . . . , y1
q);

{R1 ∗ Q1}
...

{Rn ∗ Pn}
h(xn

1 , . . . , xn
p ; yn

1 , . . . , yn
q );

{Rn ∗ Qn}
...

{Q}
Achieving verification automation requires proof automation tech-
niques as well as techniques for discovering appropriate frame rule
instantiations, as highlighted above. We propose an iterative ap-
proach which integrates proof search with the process of instanti-
ation. Central to our proposal is an automated reasoning paradigm
called proof planning [6]. Proof planning automates the search for
proofs through the use of explicit high-level proof outlines, known
as proof plans. By making proof search knowledge explicit, proof
planning supports proof patching via proof-failure analysis [13].
2The auxiliary variable elimination rule is used to introduce the
existential variables αh and αt.



Applications of proof patching include conjecture generalization
and lemma discovery [13, 15], loop invariant discovery [10, 11]
and refining faulty conjectures [19]. In particular, the work on re-
fining faulty conjectures is closely related to the refinement task
proposed here. Here we see proof-failure analysis guiding the re-
finement of the frame rule instantiation. Below we first outline the
proof automation aspect of the approach and then the proof-failure
analysis.

3.1 Proof Automation
The schema presented above gives rise to two basic patterns of

verification tasks:

Verifying recursive calls: to prove the ith recursive call we are
given a recursive hypothesis of the form:

{P} h(x1, . . . , xp; y1, . . . , yq) {Q}
and a goal of the form:

{Ri ∗ Pi} h(xi
1, . . . , x

i
p; yi

1, . . . , y
i
q) {Ri ∗ Qi}

Working backwards from the goal, the frame rule and the
substitution rule provide the basis for a proof plan.

Verifying intermediate assertions: to prove the ith assertion we
have to discharge a conjecture of the form:

(Ri−1 ∗ Pi−1) → (R′
i ∗ Q′

i)

where R′
i and Q′

i are calculated from Ri and Qi using weak-
est precondition semantics.

In terms of proof search, it is the verification of the intermediate
assertions that requires guidance. We propose to use the rippling
proof plan [2, 7, 8]. Rippling is a rewrite strategy that uses a dif-
ference reduction criterion to select applicable rewrite rules. Typ-
ically rippling is used to selectively rewrite a goal formula so that
parts of the goal match with given hypotheses. Rippling was de-
signed for reasoning about recursive structures, so it needs to be
extended to deal with pointer programs. That is, a new annotation
is required for highlighting differences at the level of pointer ref-

erences. We use
Y�→
X to indicate that an occurrence of pointer refer-

ence X in a goal formula corresponds to an occurrence of pointer
reference Y within the given hypothesis. Because of the nature
of separation logic, proofs typically involve existential quantifi-
cation. Our new pointer reference annotation can be extended to
cover existential variables, more details can be found in [14].

3.2 Failure Driven Assertion Refinement
Now consider the problem of instantiating the frame rule. We

start by approximating the frame rule instantiation. In terms of the
schema given above, this involves instantiating Ri (1 ≤ i ≤ n)
to be true. In the case of the copylist example, this gives
rise to the following approximation to (4), the specification of the
recursive call:

{true ∗ list(S, it)}
copylist(it; jt);

{true ∗ list(S, it) ∗ list(S, jt)}
Note that S denotes a meta-variable, a place holder for missing
term structure. The initial approximation is then incrementally

refined through an iterative process of proof planning and proof-
failure analysis. This iterative process focuses on the verification
of the intermediate assertions. In particular, we focus on post-
recursive calls, as these verification tasks are most suitable to our
proof-failure analysis techniques. In the case of copylist, the
verification of the post-recursive call gives rise to a hypothesis of
the form

true ∗ list(S, it) ∗ list(S, jt) (6)

while the goal is to prove

(∀j′. (j′ �→ ih, jt)−∗ (list(α, i) ∗ list(α, j′))) (7)

In principle, rippling is applicable to this kind of verification task,
modulo the extension proposed in §3.1. The expectation is that
proof planning and proof-failure analysis within the context of rip-
pling will provide sufficient constraints in order to discover an ap-
propriate instantiation of the frame rule. In the specific case of
(7), four iterations of proof planning are required in order to com-
plete the proof. Note that (5), the required instantiation for R, is
generated as a side-effect of the proof-planning and the associated
proof-failure analysis. In addition, S is instantiated to be αt within
(6). Details of the actual proof planning and proof-failure analysis
can be found in [14].

4. Future and Related Work
Our proposed approach to automating assertion refinement has

been tested by-hand on copylist, and the copytree exam-
ple given in [21, 24]. The copytree example deals with binary
trees, giving rise to a procedure body with two recursive calls.
In addition, the extension to rippling proposed in §3.1, has been
tested, again by-hand, on the verification of an in-place list rever-
sal program given in [24]. More challenging examples need to be
explored, such as programs that manipulate graphs and directed
acyclic graphs, which have been investigated on paper within the
context of separation logic [5].

We are interested in partial correctness, where specifications
express both the shape and contents of data structures. Our goal
is to increase the level of proof automation that is possible when
reasoning about such specifications, and as a consequence our
approach is heuristic based. By restricting the kinds of asser-
tions that one can verify, algorithmic approaches can be devel-
oped. For instance, SMALLFOOT [3] is an experimental tool that
supports the automatic verification of shape properties specified in
separation logic. SMALLFOOT uses a form of symbolic evalua-
tion [4], where loop invariants are required, but instances of the
frame rule are generated automatically. Interestingly, the method
for generating instances of the frame rule is based upon a form
of proof-failure analysis. Another interesting connection is that
SMALLFOOT sometimes requires inductive lemmas. The proof
plan for mathematical induction [7, 8] could potentially satisfy
this requirement dynamically. More broadly, proof planning might
provide a natural way of extending the power of SMALLFOOT to
deal with partial correctness.

In [17] an algorithm for inferring loop invariants within the
context of separation logic is described. Invariant properties re-
lated to the shape of the heap, as well as data, can be generated au-
tomatically. Like SMALLFOOT, the algorithm is based upon sym-
bolic evaluation, and involves the repeated evaluation of the loop
body in order to identify a fixed point. The search for a fixed point
may not converge, as a consequence the algorithm is not complete.



Another related tool is the Pointer Assertion Logic Engine (PALE)
[18] in which pointer programs and specifications are encoded
in monadic second-order logic. Verification is achieved via the
MONA tool [16]. While PALE can express relatively complex
specifications, the user is required to provide loop invariants. Closely
related to the goals of PALE is the work on parametric shape analy-
sis as implemented in the TVLA tool [25]. TVLA provides signif-
icant verification automation. While not requiring loop invariants,
TVLA may require a user to supply instrumentation predicates,
i.e. predicates that encode local properties of datatypes. Instru-
mentation predicates, however, may be reused between applica-
tions.

Finally, in order to advance our work a mechanization of sepa-
ration logic is required, preferably within a tactic based proof de-
velopment environment. In [23], Preoteasa provides a formaliza-
tion within PVS [22] which supports the verification of recursive
procedures. A formalization which includes simple while loops,
but not recursive procedures, has been undertaken by Weber [26].
Weber’s mechanization was developed within Isabelle/HOL [20].
Building upon Isabelle/HOL would have significant advantages
since we could also exploit IsaPlanner [9], an Isabelle based proof
planning system.

5. Conclusion
Separation logic promotes scalable reasoning for pointer pro-

grams. Here we have focused upon the use of separation logic in
specifying and reasoning about the partial correctness of recursive
procedures. We propose an approach to automating such reason-
ing, based upon the iterative refinement of intermediate program
assertions. The proposal builds upon existing automated reasoning
techniques, i.e. proof planning and proof-failure analysis. We ex-
ploit in particular, the rippling search control technique. Our work
has suggested a principled extension to rippling that is necessary
if it is to be applied to reasoning about pointer programs. Initial
investigations of the proposal have been positive, the time is ripe
to prototype and further test the approach.
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