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Abstract. The close association between higher order functions (HOFs) and algorithmic skeletons is a promising
source of automatic parallelisation of programs. A theorem proving approach to discovering HOFs in functional
programs is presented. Our starting point is proof planning, an automated theorem proving technique in which
high-level proof plans are used to guide proof search. We use proof planning to identify provably correct transfor-
mation rules that introduce HOFs. The approach has been implemented in the λClam proof planner and tested
on a range of examples. The work was conducted within the context of a parallelising compiler for Standard ML.

1. Introduction

1.1. Parallel Functional Programming and Higher Order Functions

Pure functional languages, satisfying the Church-Rosser property of evaluation order independence, have long
been proposed as a basis for parallel programming. Thus, Wegner [Weg71] observed in 1971:

“Note that [the Church-Rosser theorem] essentially states that lambda expressions can be evaluated by
asynchronous multiprocessing applied in arbitrary order to local subexpressions.” page 185

Early work on functional parallelism focused on reduction of Curry combinators [Tur79], originally developed
as a succinct acclimatization of computability, which may be lifted automatically from functional programs, but
these proved of too fine granularity for efficient parallel evaluation [Sto84]. Somewhat more success was obtained
from parallel reduction of super-combinators [Hug84] extracted from programs written in lazy languages such as
Haskell, found by lifting maximal free expressions from functional programs, but these are necessarily program
specific and hence of unpredictable efficacy for parallelism.

More recently, attention has focused on higher order functions (HOFs) as predictable behaviour, appropri-
ate granularity, general purpose loci of potential parallelism. HOFs are abstractions over functions which may
subsequently be specialised with appropriate function arguments for use in specific domains. For example, map:

fun map f [] = [] |
map f (h::t) = f h::map f t

fn : (’a -> ’b) -> ’a list -> ’b list

applies a function f to every element of a list to form a new list:
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map f [e1,e2,...,eN] ⇒ [f e1,f e2,...,f eN]

For example, foldr

fun foldr f b [] = b |
foldr f b (h::t) = f h (foldr f b t)

fn : (’a -> ’b -> ’b) -> ’b -> ’a list -> ’b

applies a function f “between” each element of a list, from left to right:

foldr f b [e1, e2, . . . , eN] ⇒ f e1 (f e2 (f...(f eN b)...))

HOFs originate in pre-computer mathematical logic, notably for formalisations of notions of computability.
Thus, Church’s λ calculus [Chu41], one of the foundations of contemporary functional languages, is a pure lan-
guage of function abstraction, and HOFs are implicit in Kleene’s recursive function schemes [Kle52]. However,
the term HOF is more popularly applied to functions which generalise operations over types, like map and foldr
above, which came to prominence in the late 1950’s and early 1960’s as people began to explore the relation-
ships between formal computation and practical computing. For example, McCarthy’s LISP [McC60] supported
mapping primitives which apply functions across lists, as well as a rather clumsy λ calculus-like notation for
function abstraction. For example, Gordon [Gor73] cites Barron and Strachey [BS66] as the origin of lit, a
foldr precursor.

HOFs were further popularised by Backus’ influential Turing Award paper of 1978 [Bac78]. This introduced
the FP approach to program construction, based on higher order combining forms, supported by an algebra for
proving properties of composed forms. FP was primarily a language of sequences. Contemporaneously, Bird and
collaborators started to explore what was to become the Bird-Meertens Formalism (BMF), a more general algebra
of higher order combining forms [Bd97]. Such formalisms provide a strong basis for proving and transforming
sequential programs based on HOFs. For example, writing o for an infix function composition operator:

(f o g) x ⇔ f (g x)

then a composition of maps of functions is equivalent to a map of the composition of those functions:

(map f) o (mapg) ⇔ map(fog)

For example, map and foldr are related by:

map f ⇔ foldr (fn h => fn t => f h::t) []

Skillicorn[Ski94] has investigated the construction of accurate cost models for parallel programs using a BMF-
based approach. One of our long term aims is to use such cost models to automatically transform programs to
optimise useful parallelism located in HOFs.

1.2. HOFs and Skeletons

We have been investigating an approach to automatic parallelisation of functional programs [MIK97] which draws
heavily on Cole’s foundational characterisation of algorithmic skeletons and their equivalent HOFs [Col89]. An
algorithmic skeleton is an abstraction from a pattern of program control, usually parallel control, which may be
instantiated with problem specific operations.

For example, mapmay be realised by a skeleton based on a process farm. A farmer communicates with workers
which all run the same process f. The farmer receives a sequence of values, sends each to a free worker, receives
the processed results and assembles them into the correct final sequence – Fig. 1.

For example, a foldr with an associative and commutative argument function f, and a base value b which is
an identity for f:

Associativity: f (f x y) z ⇔ f x (f yz)
Commutivity: f x y ⇔ f x
Identity: f x b ⇒ x

may be realised as a divide and conquer skeleton. The divide phase splits a sequence of values and passes them
to further divide and conquer stages. For single values eI and eI+1, f eI eI+1 is returned to the previous stage’s
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Fig. 1. Process farm
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f (fold f b l1) (fold f b l2)
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Fig. 2. Divide and conquer

conquer phase, for further combination with f – Fig. 2. Where the function f is not associative or commutative,
it may be possible to restructure it in the form:

f x y � g (h x) y

enabling the realisation of foldr as a foldr of map:

foldr f [] l ⇔ foldr g [] (map h l)

where there may still be farm parallelism from map.
The map/foldr equivalence noted above enables the replacement of a process farm by a divide and conquer

network. Hamdan [Ham00] discusses the use of this equivalence, and the special case of foldr as foldr of map
mentioned earlier, for skeleton parallelism in his EKTRAN system.

For example, composition may be realised as a process pipeline – Fig. 3.
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Fig. 4. Pipe of farms

Note that transformations on HOFs have equivalences in restructuring skeletons. For example, the distribu-
tion of map over compose discussed above is equivalent to restructuring a pipeline of farms (Fig. 4) as a farm of
pipelines (Fig. 5). This has been exploited in the parallel implementation of a perspective inversion algorithm for
scene/model matching as process farms [WMM+92].

1.3. Example – Matrix Multiplication

Consider matrix multiplication:[
x11 ... x1n

... ... ...
xm1 ... xmn

]
∗

[
y11 ... y1m

... ... ...
yn1 ... ynm

]
�

[
z11 ... z1m

... ... ...
zm1 ... zmm

]

where:

zij � xi1 ∗ y1j + xi2 ∗ y2j + ... + xin ∗ ynj
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Fig. 5. Farm of pipe

In a pure functional setting, a matrix may be represented as a list of lists of values:

[[x11, ..., x1n],
...

[xm1, ..., xmn]]

With this representation, multiplication is greatly simplified if the second matrix is transposed to align its
columns with the rows of the first matrix:

[[y11, y12, ..., y1n], [[y11, y21, ..., ym1],
[y21, y22, ..., y2n], [y12, y22, ..., ym2],

... �⇒ ...

[ym1, ym2, ..., ymn]] [y1n, y2n, ..., ymn]]

which may be achieved by:

fun dist [] [] = [] |
dist (h1::t1) (h2::t2) = (h1::h2)::dist t1 t2;

fun transpose [] = [] |
transpose (row::rows) = dist row (transpose rows);

Given a row and a transposed column as lists, the dot product may be found by:

fun dotprod (h1::t1) (h2::t2) = h1*h2+dotprod t1 t2 |
dotprod _ _ = 0;

One row of the first matrix may then be multiplied by all columns of the second matrix to form the corresponding
row of the result matrix:

fun rowmult _ [] = [] |
rowmult row (col::cols) = dotprod row col::rowmult row cols;

Similarly, all rows of the first matrix may be multiplied by all columns of the second matrix to form the whole
result matrix:

fun rowsmult [] _ = [] |
rowsmult (row::rows) cols = rowmult row cols::rowsmult rows cols;

Thus, to multiply two matrices represented as lists of lists, the second is transposed with transpose to enable the
multiplication of all rows of the first by all columns of the second with rowsmult:

fun mmult m1 m2 = rowsmult m1 (transpose m2);

The above formulation contains no HOFs. However, transpose may be reformulated as a foldr:

val transpose = foldr dist [];

and rowmult and rowsmult may be reformulated as maps:
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fun rowmult row = map (dotprod row);

fun rowsmult rows cols =
map (fn row => map (dotprod row) cols) rows;

Here we deploy partial application (η-reduction) from λ-calculus where λ x.f x is rewritten as f . In an SML func-
tion definition, if the function body is a function application whose rightmost actual parameter is the defined
function’s rightmost formal parameter, then both occurrences of that parameter may be dropped. For exam-
ple, fun transpose l = foldr dist [] l is equivalent to val transpose = foldr dist [], where fun is
actually a shorthand variant of a general val definition where an identifier is associated with a function value.

Using the map/foldr equivalence discussed above, rowmult and rowsmult may also be reformulated as
foldrs:

fun rowmult row =
foldr (fn col => fn cols => dotprod row col::cols) [];

fun rowsmult rows cols =
foldr (fn row’ => fn rows’ => rowmult row’ cols::rows’) [] rows;

Thus, rowsmult may be realised as a map of map, a map of foldr, a foldr of map or a foldr of foldr, with
equivalent skeleton implementations. The implementation of matrix multiplication for arbitrary length integers
by our compiler, through map/map realised as nested process farms, is discussed in [MSBK01]. Hamdan [Ham00]
explores in considerable depth the choice of sequential or parallel realisations of map and foldr for the same
problem in his EKTRAN system.

1.4. Why Discover HOFs?

While HOFs are powerful abstract programming components, in practice they appear to be under used, and thus
opportunities for their parallel exploitation in extant programs are limited. There may be two reasons for this.

First of all, HOFs are seen by students and staff as a relatively hard topic in functional programming courses,
just as recursion is often treated as an advanced topic in courses on imperative programming. For example,
Paulson [Pau96] makes this explicit in the Preface to his widely used Standard ML text:

“The organization reflects my experience with teaching. Higher-order functions appear late, in Chapter 5. They are
usually introduced at the very beginning with some contrived example that only confuses students. Higher-order

functions are conceptually difficult and require thorough preparation.” page xv

Secondly, HOF use often appears to be forced. Consider the multiplication of all rows by all columns in the
matrix multiplication example above. Here, the use of map seems relatively uncontroversial, as it is intuitive that
this involves multiplying each row by all columns. In contrast, the use of foldr seems unnatural as the function
argument f must take account of the treatment of the other rows as well as of the current row.

Nonetheless, HOF use facilitates skeleton based parallelisation, and apparently unnatural HOF use may aid
parallel efficiency. Thus, we deem the discovery of HOFs, in programs that lack them, as eminently worthwhile
for the automatic exploitation of parallelism.

1.5. Related Work

There has been considerable research into the exploitation of parallelism through skeletons expressed functionally.
For example, Kelly’s Caliban[Kel89] added a functional coordination layer to the lazy language Miranda, which
enabled abstraction over parallel processing constructs. Here, HOFs proved a natural basis for generic parallel
constructs. Similarly, GpH [HRP00] adds strategies to Haskell, where sequential processing is complemented
by parallel distribution. In GpH, considerable use is made of Haskell’s lazy evaluation model which enables
parallel invocations to be spread across the graph for a function without forcing evaluation. Again, HOFs prove
a natural basis for generic parallel strategies. Eden [PR01], is a Haskell variant with explicit, strict, point to point
communication over channels. Once again, skeletons based on HOFs are employed to generalise parallelism.

In all these approaches, skeletons must be crafted and nominated explicitly by the programmer. However,
in general, parallel programming is considerably harder than sequential programming, requiring deep under-
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standing of the underlying processor and comunication architecture. We think that parallelism is essentially an
implementation technique for gaining performance improvements from programs, and that compilers should
extract parallelism from programs automatically. Thus, in our conception, the programmer need not know that
HOF use will be the locus of parallelism or that the system may attempt to discover HOFs with useful parallelism
in programs that lack them.

2. Proof Planning

To restate the problem, given an arbitrary function we seek to change it to use instances of applications of HOFs
with known equivalent parallel skeletons. Our approach is to speculate that there is some instance of a schema
for HOF application that corresponds to the original function. We then systematically deploy meaning preserv-
ing transformations across the equivalence until the schema is fully instantiated. We view such discovery as an
application of theorem proof. Thus, rather than using a transformation or rewrite system, we have chosen to base
our approach on tactic-based theorem proving [GMW79].

Designed to support interactive proof, tactic-based reasoning allows primitive proof steps to be packaged-up
into programs known as tactics. This programming style of proof construction raises the level at which user
interaction takes place. However, even working with the best tactic-based theorem provers, a user typically has
a strong expectation as to the overall structure a proof will take and knows how to influence the prover’s search
strategy accordingly. Such skilled users can also be identified by their ability to analyse partial proofs, using the
insights gained to again influence the prover’s search.

We are aiming at strategies that automate these higher-level theorem proving activities that are typically seen
as requiring user interaction. Our starting point is proof planning [Bun88], an approach to theorem proving that
builds upon tactic-based reasoning. Unlike tactic-based reasoning, proof planning was designed initially to sup-
port automation. Starting with a set of general purpose tactics, plan formation techniques are used to construct
a customised tactic for a given conjecture. The search for a customised tactic is constrained by a set of methods,
each of which specifies the applicability of a general purpose tactic. Collectively a set of methods is known as a
proof plan and defines a family of proofs.

Working with proof plans, instead of primitive proof steps or tactics, brings us closer to the level at which the
skilled user works. However, what clearly distinguishes proof planning from other approaches to theorem proving
is the support it provides for middle-out reasoning [BSH90] and proof critics [Ire92, IB96]. Middle-out reasoning
is a technique that supports a schematic style of proof construction and which has been applied very successfully
to the problem of program synthesis [KBB96, ASG97, SI99], one of the most challenging application areas for
theorem proving.

Under-pinned by the notion of a proof plan, middle-out reasoning and proof patching via critics have there-
fore led to the development of some very powerful strategies. This success can be attributed to the flexibility that
the techniques provide in terms of the order in which proofs are constructed, e.g. instead of relying upon the
user knowing in advance which lemmas to manually supply to the theorem prover, the proof planning approach
enables auxiliary lemmas to be constructed automatically during the course of a proof. Here we use the power of
middle-out reasoning to guide the discovery of higher order terms within the context of transformation rules.

3. A Proof Plan for Transformation Verification

We begin by considering the problem of verifying the correctness of transformation rules that introduce HOFs. In
particular we describe a proof plan that addresses this verification problem. This verification proof plan provides
the foundations for our discovery proof plan that is described in Section 4.

Our application involves reasoning about recursively defined functions, as a cosequence proof by mathe-
matical induction plays a central role. We build upon a proof plan for induction, and in particular a sub-plan
called rippling. Here we outline the general pattern of rippling and present an example of a ripple guided proof.
This paper deals with an application of rippling, for a definitive account the interested reader is directed to
[BW96, BSvH+93].
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3.1. The General Pattern of Rippling

We are interested in inductive conjectures that take the following general form:

∀x.∀y.(f x y � g x y)

Proof by mathematical induction gives rise to base and step case proof obligations. Here we will consider the
pattern of proof associated with an arbitrary step case. Assuming an induction on the variable x, then within a
step case we will have an induction hypothesis of the form:

∀y ′.(f t y ′ � g t y ′) (1)

and an induction conclusion (goal) of the form:

∀y.(f (c t) y � g (c t) y) (2)

where (c t) denotes the induction term. Note that there exists a syntactic similarity between goal (2) and hypothesis
(1). Rippling provides a heuristic for selecting rewrite rules that preserve the syntactic similarity while at the same
time making progress to achieving a match between the goal and hypothesis. This involves distinguishing those
terms within the goal that differ from the given hypothesis and is achieved by the use of meta-level annotations.
In the case of our general step case example, the annotated version of goal (2) takes the form:

∀y · (f (c t )
↑

�y	 � g (c t )
↑

�y	) (3)

Note that the annotated part of the term, represented by the shading, denotes a mismatch between the goal and
the given induction hypothesis. These differences are called wave-fronts. The uparrow records the direction in
which the wave-front is being moved with respect to the unannotated term structure. A down arrow can also
be associated with a wave-front. Directed wave-fronts enable the termination of rippling to be guaranteed, thus
eliminating the problem of orienting rewrite rules that occurs within other theorem provers. In addition to wave-
fronts, the �. . .	 annotation is used to highlight subterms within the goal that correspond to universally quantified
variables within the induction hypothesis. These subterms denote positions where wave-fronts can be eliminated
via matching with the induction hypothesis. Using annotated goal (3), the general pattern of a ripple proof is
shown below:

∀y.(f (c t )
↑
�y	 � g (c t )

↑
�y	) (4)

∀y.( c1 t y ( f t �(c2 t y)	 )
↑

� g (c t )
↑
�y	) (5)

∀y.( c1 t y ( f t �(c2 t y)	 ) � c3 t y (g t �(c4 t y)	)
↑
)

On the left hand side the constructor c has been rippled to become the contexts c1 and c2. These contexts denote
new positions of the wave-fronts within the goal. The same process happens on the right producing contexts c3
and c4. It should be noted that this schematic example shows all the possible wave-front movements.

The manipulation of the annotated goal is achieved through a syntactic class of rewrite rules known as wave-
rules. Difference identification through annotation, as described above, is used to automatically derive wave-rules
from rewrite rules. For example, (5) is obtained from (4) using the following wave-rule1:

f (c X )
↑
Y ⇒ c1 X Y (f X (c2 X Y )

↓
)

↑

(6)

Note that wave-rule (6) contains an inward directed wave-front on the right-hand side while this inward directed
wave-front is absent from the right-hand side of (5). This is explained by that fact that as wave-fronts are moved
into sink positions differences are eliminated so the wave-front annotation is also eliminated. The final step in the
ripple proof given above is achieved by a wave-rule corresponding to substitution, this has the effect of equating
the contents of the sinks, i.e.

1 We use ⇒ to denote rewrite rules and → to denote logical implication.
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∀z.∀y.((c1 t y z) � (c3 t y z)) ∧ ∀y.((c2 t y) � (c4 t y)) ∧ ∀y.((f t y) � (g t y))
↑

Now that the goal is fully rippled we may match the unannotated part of the goal against (1), the induction
hypothesis, leaving:

∀z.∀y.((c1 t y z) � (c3 t y z)) ∧ ∀y.((c2 t y) � (c4 t y))

What is left is a residue which may require a further induction to prove. The base case is then tackled using the
same techniques as the main proof but, usually it requires only symbolic evaluation.

3.2. An Example of a Ripple Guided Verification

We now consider the verification of a particular transformation rule, i.e. a transformation that allows us to replace
a function transpose with an application of an equivalent foldr. The associated verification conjecture takes the
form:

∀l : list(τ ). transpose l � f oldr (λx.λy.(dist x y)) [] l (7)

where the functions transpose and f oldr are defined as follows:

f oldr f b [] � b (8)
f oldr f b (h :: t) � f h (f oldr f b t)

transpose [] � [] (9)
transpose (row :: rows) � dist row (transpose rows)

Given the recursive nature of these definitions, a proof of (7) not surprisingly requires proof by mathematical
induction. A structural induction on the list l is required, the resulting base case takes the form:

transpose [] � f oldr (λx.λy.(dist x y)) [] [] (10)

Rewriting (10), using definitions (9) and (8) reduces the base case to a trivial identity. In the step case we are given
an inductive hypothesis of the form:

transpose t � f oldr (λx.λy.(dist x y)) [] t (11)

while our goal becomes:

transpose (h :: t) � f oldr (λx.λy.(dist x y)) [] (h :: t) (12)

Note that there exists the syntactic similarity between goal (12) and hypothesis (11). Using the rippling heuristic,
we annotate (12) to give:

transpose (h :: t )
↑

� f oldr (λx.λy.(dist x y)) [] (h :: t )
↑

(13)

With regards to wave-rules, the above definitions give rise to a set of wave-rules that includes the following:

transpose (X :: Y )
↑

⇒ dist X ( transpose Y )
↑

(14)

f oldr F X (Y :: Z )
↑

⇒ F Y ( f oldr F X Z )
↑

(15)

The application of (14) to (13) gives rise to a new goal of the form:

dist h ( transpose t )
↑

� f oldr (λx.λy.(dist x y)) [] (h :: t )
↑

(16)

Rippling on the right-hand side of the (16) goal is achieved using wave-rule (15), giving rise to a goal of the form:

dist h ( transpose t )
↑

� dist h ( f oldr (λx.λy.(dist x y)) [] t )
↑

(17)
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The ripple part of the proof is completed by the application of the following wave-rule2:

F Y
↑

� F Z
↑

⇒ Y � Z

which reduces (17) to:

transpose t � f oldr (λx.λy.(dist x y)) [] t

The goal now matches (11), the induction hypothesis, so the step case proof is complete.

4. A Proof Plan for Transformation Discovery

We now use the general verification plan presented above to inform the structure of the discovery plan. Below we
outline the general discovery plan followed by an example. In the discovery plan we are constructing transfor-
mation rules so we want to discover an expression equivalent to the original expression. We begin by considering
the general case.

4.1. The General Pattern of Discovery

Given an expression, the aim of the discovery plan is to construct an equivalent expression that involves higher-
order functions such as map and foldr. Our starting point is a discovery conjecture, which has strong similarities
to the structure of the verification conjecture used above. However, the discovery conjecture differs in that the
right-hand side of the conjecture contains a higher-order meta-variable. The meta-variable is a place-holder for
the expression that is to be discovered.

To be more precise, if the expression we want to transform is f x y then the discovery conjecture takes the
form:

∀x.∀y.(f x y � M x y) (18)

Note that M denotes a second-order meta-variable which can be instantiated to a function. In proving this
schematic conjecture, the constraints of the theorem proving heuristics are used to instantiate M. The plan
represents an application of the general strategy of middle-out reasoning mentioned in Section 2. As with the
verification counter-part, in planning a proof of (18) we require induction, using rippling in the step case.

Assuming induction on x, then the resulting step case gives rise to an induction hypothesis of the form:

∀y ′. (f t y ′ � M t y ′) (19)

and a goal of the form:

∀y. (f (c t) y � M(c t) y) (20)

Annotating (20) gives rise to a ripple goal of the form:

∀y. (f (c t )
↑

�y	 � M (c t )
↑

�y	)

Given definitions and properties for the function f , rippling on the left-hand side reduces the goal to give:

∀y. (c1 t y ( f t �(c2 t y)	 )
↑

� M (c t )
↑

�y	) (21)

At this point the proof is blocked because we do not know what the structure of M is and whether it has any
appropriate wave-rules associated with it. To overcome the blockage, we introduce a schematic wave-rule of the
form:

M (c t )
↑

�y	 ⇒ M1 t y ( M t �M2 t y	 )
↑

(22)

2 Derived from the substitution law.
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Note that schematic wave-rule (22) introduces additional meta-variables, i.e. M1 and M2. The construction of
the schematic wave-rule is partially determined by the structure preserving property of rippling. Here the term
structure being preserved is (M t y). Additional constraints on the the placement of wave-fronts on the right-hand
side of the schematic wave-rule are derived from the application. That is, the position of the wave-fronts on the
left-hand side of the blocked goal are used to guide the positioning of wave-fronts on the right-hand side. For

example, the left-hand side of (21) contains two wave-fronts, i.e. c1 t y . . .
↑

and (c2 t . . . )
↓
. Note that the

second wave-front is implicit because of the presence of the sink. The positioning of these wave-fronts is used
to constrain the positioning of wave-fronts on the right-hand side of (22). That is, we introduce two wave-fronts

on the right-hand side of (22), i.e. M1 t y . . .
↑

and (M2 t . . . )
↓
. Again note that the second wave-front is

implicit because of the presence of the sink. The application of (22) to (21) gives:

∀y. ( c1 t y ( f t �(c2 t y)	)
↑

� M1 t y ( M t �(M2 t y)	 )
↑
)

Rippling continues as in the verification counter-part, with the use of a substitution law giving:

∀z.∀y.((c1 t y z) � (M1 t y z)) ∧ ∀y.((c2 t y) � (M2 t y)) ∧ ∀y.((f t y) � (M t y))
↑

We can now match our goal against (19), leaving a residue of the form:

∀z.∀y. ((c1 t y z) � (M1 t y z)) ∧ ∀y. ((c2 t y) � (M2 t y))

Note that each conjunct within the residue takes the form of a discovery conjecture. As a consequence, the
discovery plan can be recursively applied to each conjunct in order to instantiate M1 and M2. To complete the
process of discovery requires us to commit to an instantiation for each schematic wave-rule used during the proof
planning. We achieve this by comparing each schematic wave-rule against a set of wave-rules derived from the
definitions of the available wave-rules. Once instantiated, the lemma underlying the schematic wave-rule is then
proved, typically this involves a further application of the proof plan for induction. Note that the process of
instantiating the schematic wave-rules leads to choice, where each choice point gives rise to alternative discovery
proofs and thus alternative transformation rules. Examples of this choice are given in the following sections.

4.2. An Example of Transformation Discovery

We now apply our discovery plan to the matrix multiplication example with the aim of constructing a combi-
nation of higher-order functions equivalent to the rowsmult, rowmult and transpose functions. We start by
identifying the expressions equivalent to rowsmult. The equational definition required for the identification task
are as follows:

rowsmult [] cs � []
rowsmult (r :: rs) cs � (rowmult r cs) :: (rowsmult rs cs)

rowsmult r [] � []
rowsmult r (c :: cs) � (dotprod r c) :: (rowmult r cs)

The equational definitions associated with our set of candidate higher-order functions are as follows:

map f [] � []
map f h :: t � (f h) :: (map f t)
f oldr f b [] � b

f oldr f b h :: t � (f h (f oldr f b t))
f oldl f a [] � a

f oldl f a h :: t � (f oldl f (f a h) t)
scan f a [] � []

scan f a h :: t � (f a h) :: (scan f (f a h) t)
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Our initial discovery conjecture for rows\-mult takes the form:

rowsmult k l � M k l (23)

Proof by induction on k gives rise to a base case of the form:

rowsmult [] l � M [] l

In the step case we have an induction hypothesis of the form:

rowsmult t l � M t l (24)

and an (annotated) goal of the form:

rowsmult ( h :: t
↑
) �l	 � M ( h :: t

↑
) �l	 (25)

Note that we tackle step cases before base cases because step cases typically provide more constraints for instan-
tiating M. A ripple guided proof of (25) proceeds as previously described:

rowsmult ( h :: t
↑
) �l	 � M ( h :: t

↑
) �l	

(rowmult h �l	) :: ( rowsmult t �l	 )
↑

� M (h :: t )
↑

�l	

(rowmult h l) :: ( rowsmult t �l	 )
↑

� M1 h l t ( M t �l	 )
↑

(26)

Note that the schematic wave-rule used to ripple the right-hand side of the goal takes the form:

M (h :: t )
↑

�l	 ⇒ M1 h l t ( M t �l	 )
↑

(27)

Further rippling of (26) using substitution gives:

∀x.((rowmult h l) :: x � M1 h l t x) ∧ ( rowsmult t �l	) � (M t �l	 )
↑

A match is now possible with the induction hypothesis (24) leaving a residue of the form:

∀x.∀l.∀h.((rowmult h l) :: x � M1 h l t x)

A recursive application of the discovery plan to this goal will result in the instantiation of M1. Instantiation for
M1 may simply be the left hand side of the equality in the residue or the discovery may generate an expression
involving map or f oldr. Let us consider the expression involving map, i.e.

M1 � (λu.λv.λw.λz.(map λx.(dotprod u x) v) :: z) (28)

With this instantiation for M1, the lemma associated with wave-rule schema (27) becomes:

M (h :: t )
↑

�l	 ⇒ (map λx.(dotprod h x) l) :: ( M t �l	 )
↑

In order to complete the discovery, an instantiation for M is required. As previously described, this instantiation
is determined by considering the wave-rules that arise from the available higher-order function definitions. The
selection criteria are as follows:

1. All wave-fronts on the left-hand side of the wave-rule schema must match with wave-fronts on the left-hand
side of the candidate wave-rule.

2. The positioning of wave-fronts on the right-hand side of the wave-rule schema must correspond to the posi-
tioning of wave-fronts on the right-hand side of the candidate wave-rule.
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To illustrate, consider map, f oldr, f oldl and scan as defined earlier. Applying the above selection criteria with
respect to (28) gives the following results3:

map F (H :: T )
↑

⇒ (F H ) :: ( map F T )
↑

�

f oldr F B (H :: T )
↑

⇒ F H ( f oldr F B T )
↑

�

f oldl F �A	 (H :: T )
↑

⇒ f oldl F �(F H A)	 T \�
scan F �A	 (H :: T )

↑
⇒ (F H A) :: ( scan F �(F H A H )	 T )

↑
\�

� map passes the selection criteria because the left-hand side wave-fronts match and the right-hand side wave-
fronts correspond.

� f oldr passes the selection criteria because the left-hand side wave-fronts match and the right-hand side
wave-fronts correspond.

\� f oldl fails the selection criteria because although the left-hand side wave-fronts match, the wave-fronts on
the right-hand side do not correspond, i.e. the right-hand side of the candidate wave-rule contains a inward
directed wave-front while the schematic wave-rule contains an upward directed wave-front.

\� scan fails the selection criteria because although the left-hand side wave-fronts match, the wave-fronts on the
right-hand side do not correspond, i.e. the right-hand side of the candidate wave-rule contains both inward
and outward directed wave-fronts while schematic wave-rule only contains an outward directed wave-front.

We will choose f oldr though map is also a possibility. The schematic wave-rule and the higher-order function
wave-rule are unified and the result is:

f oldr f1 (B l) (h :: t )
↑

⇒ f1 h ( f oldr f1 (B l) t )
↑

where f1 � λx.λy.((map λz.(dotprod x z) l) :: y). Note that the meta-variable B is still to be instantiated at this
point but there is not enough information to instantiate it in the step case proof. Instead the instantiation of B
(which is the base case argument to the higher-order function) must be solved in the base case of the original
induction. To illustrate we revisit the base case goal:

rowsmult [] l � f oldr (λx.λy.map (λz.dotprod x z) l :: y) (B l) [] (29)

Rewriting (29) using the non-recursive definitions for rowsmult and f oldr equations yields:

[] � B l

Now the base case variable B can be instantiated to (λz. []) which completes the discovery proof. The final
instantiation for M is as follows:

(λv.λw.f oldr (λx.λy.map λz.dotprod x z) w) :: y) []) v w

Applying this instantiation to (23), the discovery conjecture, gives:

rowsmult k l � (f oldr (λx.λy.map (λz.dotprod x z) l) :: y) []) k l

5. Implementation

5.1. clam and λλλ clam

The original proof planning proposal was in [Bun88] as automatic search control for the NuPRL system [CAB+86].
NuPRL was designed for program synthesis, based on Martin-Löf Intuitionistic Type theory to provide a con-
structive logic framework. In NuPRL, proof plans are represented by LCF [GMW79] style tactics.

Subsequently, a light weight version of NuPRL, called oyster[Hor88], was implemented in. In oyster, the
search for a proof must be guided externally by interaction with a human or another Prolog program. Thus, the

3 We use a � to denote success and a \� to denote failure.
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meta-level proof planner clam [BvHHS90] is built on top of oyster and provides tactics which guide the proof
search. Such tactics are specified by methods through heuristic preconditions what guide the search for a proof.
Once created, a proof plan is translated into an object-level proof, using the corresponding tactics to guide the
oyster proof system.

Initially, clam methods were implemented to use rippling out to guide inductive proof [BvHS88]. These meth-
ods were later extended to include multi-wave rippling, rippling in, rippling sideways, destructor style rippling, and
existential rippling [BSvH+93]. Next, synthesis and middle-out reasoning capabilities were introduced [KBB93].
Most recently, a critics mechanism has been provided [IB96] to make productive use of the occasional failure of
rippling.

Many of the tasks clam is used for are naturally higher-order. Synthesis and verification techniques, such as
critics, rely on the use of middle-out reasoning and higher-order unification. In clam these techniques were later
extensions and are not naturally integrated into the theorem proving framework.

clam’s successor, λclam is a higher-order version of clam written in λProlog [MN88] the higher-order exten-
sion of Prolog. In particular, we used the Terzo λProlog [Wic] version of λclam. In λProlog typed λ-terms are
used instead of first order terms and implication, and both universal and existential quantification are allowed
in goals. The λ calculus used in λProlog is restricted to Church’s simply typed λ-terms; this enables higher-order
unification. λProlog is based on hereditary Harrop formulas instead of the Horn clauses of Prolog. The higher-
order unification built in to the λclam system enabled the close integration of middle-out reasoning and proof
planning [RSG98].

5.2. λλλ and Higher-order Function Discovery

In discovering HOFs within λclam, a number of changes were needed. λclam uses methodicals to specify which
methods shall be applied in a proof attempt and the order in which they should be applied. Methodicals are
method combinators and are analogous to LCF style tacticals [GMW79]. Methodicals provide a flexible basis
for modifying proof planning behaviour. In particular, methods built from methodicals can be input into λclam
along with a conjecture so no re-compiling of the planner is necessary.

However, the necessary lower-level manipulation to perform HOF discovery could not be achieved by solely
changing methodicals. This required changes to the source code for the methods, in particular to strengthen con-
straints on meta-variable instantiation to avoid immediate selection of a component of the original conjecture.

A number of other modifications were required to support HOF discovery in λclam:

• The methodical structure controlling sequencing was strengthened to ensure that the partial instantiation of
a meta-variable in one part of a proof constrains subsequent instantiations.

• New methods were introduced for manipulating the meta-annotations that prevents a meta-variable from
being instantiated.

• A special purpose method was implemented to split apart the goal during rippling. This was required to
generate new sub-goals corresponding to potential nested HOFs within a goal.

• A new method was provided to choose the target HOF for potential discovery.

6. Results

The result for the matrix multiplication example presented above was:

rowsmult � (λv.λw.f oldr (λx.λy.map (λz.(dotprod x z) w) :: y) []) v w

However, running the matrix multiplication example through the discovery proof plan and forcing it to backtrack
gives several other solutions. These solutions together with timings are presented in Table 1.

Note that there are significant time differences between finding groups of related solutions. These arise because
discovery is guided to initial loci of HOFs. However, once a locus is exhausted, backtracking search over consid-
erable term structure may be required to reach a new locus.

Note that the order in which the proof planning occurs leads to the original conjecture being discov-
ered after all other possibilities have been exhausted. Hence, the apparently substantial time taken to discover
(λx.λy.rowsmult x y) is actually a good indication of complete search space traversal to failure.
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Table 1. Solutions discovered for the matrix multiplication example

No. Solution Time (s)

1 (λx.λy.map (λz.map (λu.dotprod z u) y) x) 73
2 (λx.λy.f oldr (λz.λu.map (λv.(dotprod z v) y) :: u) [] x) 83
3 (λx.λy.map (λz.f oldr (λu.λv.(dotprod z u) :: v) [] y) x) 122
4 (λx.λy.f oldr (λz.λu.

(f oldr (λv.λw.(dotprod z v) :: w) [] y) :: u) [] x) 132
5 (λx.λy.map (λz.rowmult z y) x) 401
6 (λx.λy.f oldr (λz.λu.(rowmult z y) :: u) [] x) 411
7 (λx.λy.rowsmult x y) 2771

Table 2. HOF discovery results

Function HOFs Solutions Total Time (s)

rev 1 f oldl 2 200
presums 1 scan 2 1527
sum2d 2 f oldrs 3 238
subset 2 f oldrs 3 2221
mergesort 2 f oldrs 4 417
squs2d 2 maps 7 1201
mmult 2 maps + 1 f oldr 14 10899

The discovery plan has been used to find solutions for several other examples involving the HOFs map,
f oldr, f oldl, and scan. These results are presented in Table 2. For each example we give the prototype function,
the potential HOFs, the number of solutions discovered, and the overall time to find all results. The definitions
related to these examples are given in the Appendix.

For rev and presums, the plan finds either the single HOF or the original function. Note that discovering
scan involves duplicated term structure instantiation and discovery for both occurrences of (f a h) in:

scan f a [] � []
scan f a (h :: t) � (f a h) :: (scan f (f a h) a t)

This incurs additional costs. For sum2d and subset , the plan finds the top level f oldr, the top and inner f oldr
or the original function. However, where sum2d involves an arity 1 function calling an arity 2 function, subset
involves nested arity 2 functions, which both have more term structure than sum2ds components. Note that
mergesort , sum2d and subset all have two f oldr sites. Here, mergesort appears anomalous as four solutions are
found, compared with only three for sum2d and subset . However, mergesort is defined in terms of two composed
functions, so an additional result is found for its right-hand side as well as for the original top-level call. Despite
more solutions being found, the discovery of HOFs in mergesort is still considerably faster than for subset , again
because it consists of nested calls to arity 1 functions.

Finally, squs2d and mmult both involve map as primary HOFs, so equivalent f oldr solutions are also found.
squs2d consists of arity 1 functions whereas mmult is built solely from arity 2 functions. Note that mmult is the
full matrix multiplication example presented in Section 1.3, whereas rowsmult , discussed above, does not include
the transpose stage.

7. PMLS Integration

Our work has been conducted in the context of the PMLS parallelising compiler for Standard ML (SML). PMLS
has the objective of exploiting parallelism latent in potential HOF use in programs. We have evaluated the 12
derived versions of the matrix multiplication example by:

• translating the λClam to SML;
• compiling the translated SML to native code via PMLS;
• running the native code on an IBM SP2 multi-processor architecture.

The parallel runtimes on 1, 2, 4 and 8 processors are shown in Table 3, for a 50×50 matrix. The annotations M
and F indicate which maps and folds are evaluated using parallel skeletons. The times are typical of the behaviour
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Table 3. Parallel runtimes for nested implementations.

Version HOFs R1 R2 R4 R8

1 MMF 0.483 0.595 15.69 7.954
2 FMF 0.472 0.886 11.51 5.759
3 MFF 0.481 0.600 8.655 4.602
4 FFF 0.473 0.882 8.844 5.108
5 MF 0.455 0.578 1.724 0.535
6 FF 0.449 0.875 2.336 0.651
7 MM 0.167 0.267 1.684 0.738
8 FM 0.185 0.840 4.449 2.035
9 MF 0.164 0.270 1.389 0.699
10 FF 0.167 0.598 1.952 0.799
11 M 0.147 0.310 0.127 0.090
12 F 0.137 0.590 0.167 0.112

of our skeletons when instantiated with functions with little or no work relative to communication. The outer
map skeleton shows lower overheads than a fold in an equivalent position as seen by comparing Versions 7 with
8 or 11 with 12. Here nesting is of little use since the overheads are high with respect to the sequential runtimes.

For this application the single non-nested map gives the best actual performance. This has been borne out by
other work on matrix multiplication [SMH01]. Furthermore, these runtimes broadly correspond to the predic-
tions from the PMLS profiler. This work is discussed in detail in Michaelson and Scaife [MS03].

Although automatic translators between Core SML and λP rolog have been constructed, at present, HOF dis-
covery is independent of the compiler. It will be interesting to link HOF discovery more closely with parallelising
compilation.

8. Related Work

A number of systems realise parallelism in HOFs through skeletons. Examples include compilers for the imper-
ative skeleton language P3L [Pel98] and the divide and conquer Haskell subset HDC [HL00], and the Skipper
framework for OCaml augmented with skeletons [SCD01]. In such systems, however, the user must explicitly
invoke a HOF or equivalent construct for it to be implemented as a skeleton.

There has been comparatively little research into the use of HOFs for automatic parallelisation. The FAN
skeleton framework for parallel programming by transformation [AGLP01] was contemporaneous with the work
described here. FAN is based on a coordination notation for second order functions over arrays and scalers. Each
function has an associated cost equation. Starting with a naive program, transformation rules are applied to try
and minimise the overall program cost. Subsequently, FAN was implemented in the META tool [Ald02].

FAN/META differs from our approach in two important respects. First of all, the system is interactive and
offers transformation options to the user, where our approach is fully automatic. Secondly, for FAN/META a pro-
gram must contain explicit HOFs as the initial loci of transformation. In contrast, our system will automatically
discover initial HOFs.

9. Discussion

We have shown that, in principle, proof planning is an appropriate technique for discovering HOFs in programs
that lack them and for exploring the space of possible HOFs. However, discovery takes unacceptably long times
for even relatively small programs.

Our system represents a first attempt at HOF discovery and as such is somewhat inefficient. As mentioned in
Section 5.1, the version of λclam that was used within our system was written in Terzo [Wic], one of the early
implementations of λProlog. Terzo is an interpreter and is relatively inefficient in terms of both time and space.
For example, Terzo does not use tail recursive optimisation. Because of these inefficiencies, the developers of
λclam switched to Prolog/Mali [BR] and then to the Teyjus [Nad] implementation of λProlog. Prolog/Mali
and Teyjus provide compilers for λProlog and both are an order of magnitude faster than the Terzo interpreter.
The timescales of our project, however, did not allow us to exploit the benefits of either the Prolog/Mali or Tey-
jus versions of λclam. More recently, λclam has been superseded by IsaPlanner [DF03], a proof planner for the
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Isabelle [Pau94] proof development system. The support for higher-order meta variables provided by Isabelle
makes IsaPlanner the ideal framework for extending our work. Switching to IsaPlanner would also address
the fundamental issue of efficiency associated with λclam, e.g. in [DF03], a theorem drawn from arithmetic took
λclam 5 min to prove while the same theorem in IsaPlanner required only 0.9 s.

As well as inefficiencies in the underlying implementation of λProlog, inefficiencies can also be attributed in
part the simple structure of the λclam proof planner. The planner used was based on full backtracking where the
same discovery sequences may be needlessly repeated. This might be alleviated by the introduction of intermediate
caching of results.

Furthermore, as noted above the plan is exhaustive in seeking all possible combinations of HOFs. The results
from matrix multiplication above show that all potentially useful HOFs were discovered in the first 411 s (15%),
with a further 2360 s (85%) spent in fruitlessly searching for other possibilities. Similarly, the results from [MS03]
for a simple program to square all elements of a list of list of integers show that six useful HOF combinations were
discovered in the first 312 s (26%) with a further 889 s (74%) spent without any further discovery. This suggests
that it would be worth exploring heuristics to either predict the likely number of potential HOF combinations,
based on the number of HOFs found initially, or to terminate the search after a given period without further
discovery.

In the longer term, we think that close cooperation between the discovery plan and compilation might fur-
ther improve performance, in particular using profiling to guide discovery, analogous to the use of costs to guide
transformation in FAN/META, and in a proposed extension to HDC [HL01].

Rather than running the plan before compilation to find all possible HOFs, the compiler might invoke the
plan if no HOFs are present in an original program, to find a first set of HOFs. Subsequently, the compiler might
re-invoke the discovery plan, to transform the program, if profiling and analysis suggest that present or discovered
HOFs cannot deliver exploitable parallelism. In turn, the plan would use profiling and analysis information from
the compiler to constrain the choice of alternatives.

Finally, it would be valuable to analyse the times taken for HOF discovery for a large set of representative
source programs of varying structural complexities. Here, characterisation of patterns of discovered HOF nesting
and composition might be combined with analyses of the observed behaviours of individual HOFs, to try and
establish a predictive model for optimal HOF discovery for parallel implementation.
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Appendix A. Examples and Results

The definitions for the example functions and their equivalent solution are presented below.

A.1. reverse

rev b [] � b

rev b (h :: t) � rev (h :: b) t

rev � (λx.λy.lf oldl (λz.λu.u :: z) x y)

A.2. presums

presums b [] � []
presums b (h :: t) � (h + b) :: (presums (h + b) t)

presums � (λx.λy.scan (λz.λu.z + u) x y)

A.3. sum2d

sum2d [] � 0
sum2d (h :: t) � sumb (sum2d t) h

sumb b [] � b

sumb b (h :: t) � h + (sumb b t)

sum2d � (λx.f oldr (λy.λz.f oldr (λu.λv.u + v) z y) 0 x)

A.4. subset

subset [] x ↔ true

subset (h :: t) x ↔ (mem h x) ∧ (subset t x)
mem x [] ↔ f alse

mem x (h :: t) ↔ (x � h) ∨ (mem x t)

subset � (λx.λy.f oldr (λz.λu.(f oldr (λv.λw.(z � v) ∨ w) f alse y) ∧ u) true x)
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A.5. mergesort

mergesort x � mergeall (sortmall x)
mergeall [] � []

mergeall (h :: t) � merge h (mergeall t)
sortmall [] � []

sortmall (h :: t) � (sortm h) :: (sortmall t)
sortm [] � []

sortm (h :: t) � insertm h (sortm t)

mergesort � (λx.f oldr (λy.λz.merge y z) [] (map (λy.f oldr (λz.λu.insertm z u) [] y) x))

A.6. squs2d

squs2d [] � []
squs2d (h :: t) � (squares h) :: (squs2d t)

squares [] � []
squares (h :: t) � (h × h) :: (squares t)

squs2d � (λx.map (λy.map λz.(z ∗ z) y) x)

A.7. mmult

mmult m1 m2 � (rowsmult m1) (transpose m2)
rowsmult [] cols � []

rowsmult (row :: rows) cols � (rowmult row cols) :: (rowsmult rows cols)
rowmult row [] � []

rowmult row (col :: cols) � (dotprod row col) :: (rowmult row cols)
dotprod [] [] � 0

dotprod (h1 :: t1) (h2 :: t2) � (h1 × h2) + ((dotprod t1) t2)
transpose [] � []

transpose (row :: rows) � dist row (transpose rows)

mmult � (λx.λy.map (λz.map (λu.dotprod z u) (f oldr (λu.λv.dist u v) [] y)) x)
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