Software Design (F28SD2)

Dynamic & Static Analysis Summary

Andrew Ireland

Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh
Executive Summary

- Dynamic (testing) and static analysis are complementary.
- Testing can never show the absence of defects, but can increase confidence in the quality of a product.
- Static analysis does not require coding to be complete, it can be applied early within the development life-cycle.
- No “silver bullet” – use a range of techniques that provide different perspectives.
Dynamic Analysis

- Equivalence partitioning & boundary value analysis. *
- State based testing.
- Code coverage analysis, *e.g.* MC/DC testing etc. *
- Data definition-use testing.
- Assertion based testing & design by contract.
- Java’s assertion mechanism. *
- JUnit. *

Note: * denotes a topic with an associated skill that has been taught.
Static Analysis

- Reviews & Inspections.
- McCabe’s Cyclomatic Complexity measure. *
- Data & control flow analysis.
- Program slicing. *
- Information flow analysis.
- Formal methods: Design through to coding and assertion based proof.

Note: * denotes a topic with an associated skill that has been taught.
Typical Exam Questions

• Explain the technique known as program slicing and the roles that it can play within software development. (4 marks)

• Using a fragment of code containing at least 1 if-statement, illustrate the notions of a forward slice and a backward slice. (8 marks)

• Explain in detail the major components of a Fagan style inspection. (6 marks)

• Describe an advantage and a disadvantage of the process of inspection within the software development life-cycle. (2 marks)
Typical Exam Questions

• Explain the following software coverage metrics:
 – Decision Coverage (DC)
 – Condition/Decision Coverage (CDC)
 – Modified Condition/Decision Coverage (MC/DC)
Your explanation should include an advantage and a disadvantage of each metric (9 marks)

• Use CDC and MC/DC coverage to generate test cases for the following schematic conditional statement:
 \(\text{if}((C1 \&\& C2 \&\& C3) | | C4) \text{ S1; else S2; } \) Use a truth table style of presentation and clearly show the values for \(C1, C2, C3, C4 \) with respect to the execution of statements \(S1 \) and \(S2 \). (8 marks)

• What is regression testing and why is it important? (3 marks)