LTL Reasoning: How It Works

Andrew Ireland
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Overview

- How processes, system models and properties are represented in SPIN.
- How LTL properties are verified within SPIN.
• A process is given meaning via an automata, i.e. a finite-state transition system:
 – set of states (unique initial state);
 – set of state-to-state transitions based upon input stimuli.

• *-Automata: the conventional notion of automata where there exists explicit initial and final states, i.e. recognizes finite sequence of stimuli. Acceptance corresponds to final state.

• ω-Automata: an automata which contains an explicit initial state but no final state i.e. recognizes an infinite sequence of stimuli (reactive systems). Acceptance requires a different criteria ... (more on slide 5).

• A system model is given meaning via an asynchronous interleaving product of automata.
LTL Formula via Buchi Automata

- As mentioned above, we are interested in finite state models which give rise to infinite executions.
- A Buchi Automata provides one way of expressing acceptance properties for infinite executions.
- Acceptance for a Buchi automata means that there exists a state which is visited infinitely often.
- Any LTL formula can be expressed as a Buchi automata.

LTL Verification via Buchi Automata

- To verify that model M satisfies LTL formula F generate:
 - P the asynchronous interleaving product for model M.
 - B the Buchi automata corresponding to the negation of F.
 - S the synchronous product of B and P.
- If S contains an acceptance cycle then a counter-example to F exists.
- Note that in a synchronous product automata each transition denotes a joint transition of the component transitions.
- The synchronous product allows one to check whether or not a model exhibits a particular LTL property as expressed via a Buchi automata.
A Simple Safety Example

bit x=0;
proctype A(){
do:: (x==0) -> x++
 od}
proctype B(){
do:: (x==1) -> x--
 od}
init {atomic{ run A(); run B()}}

Will the above model satisfy the following safety invariant?

\[\Box (x == 0 \lor x == 1) \]

Buchi Automata

where P defined as \((x == 0 \lor x == 1)\)
byte x=0;
proctype A(){
 do
 :: true -> x++
 od
}
proctype B(){
 do
 :: (x==1) -> x--
 od
}
init {atomic{ run A(); run B()}}

Will the above model satisfy the following safety invariant?

\[\square (x == 0 \lor x == 1) \]
Always Eventually

\[\text{true} \rightarrow \text{S1} \rightarrow \text{true} \rightarrow \text{accept} \]

\[[] \leftrightarrow P \]

Eventually Always

\[\text{true} \rightarrow \text{S1} \rightarrow \text{P} \rightarrow \text{accept} \rightarrow \text{P} \rightarrow \text{true} \]

\[<> [] P \]
Buchi Automata via Promela

- Buchi automata are represented within SPIN via a special process, known as a never claim.
- A never claim is used to represent a property that should never be satisfied during the execution of a model.
- SPIN automatically interleaves the execution of a never claim along with the given Promela model.
- SPIN is looking to see if the execution of the never claim matches with the execution of the Promela model. A match corresponds to either:
 - an acceptance cycle being detected within the never claim
 - termination of the never claim (complete match)

Distributed Systems Programming F21DS1 14

Buchi Automata via Promela

```
buchi never { /* [<>] p */
t0_init:
  if
    :: ((p)) -> goto accept_s9
    :: (1) -> goto t0_init
  fi;
accept_s9:
  if
    :: (1) -> goto t0_init
  fi;
}
```
Generating Never Claims within SPIN

```
never { /* []<> p */
T0_init:
  if
    :: ((p)) -> goto accept_S9
    :: (1) -> goto T0_init
  fi;
accept_S9:
  if
    :: (1) -> goto T0_init
  fi;
}
```

Given a LTL formula, the LTL property manager (XSPIN) displays the generated never claim. Using SPIN one can also directly generate a never claim for an arbitrary LTL formula, e.g. the above never claim was generated by the following command line:

```
spin -f '[]<>p'
```

Buchi Automata via Promela

```
never { /* <>[] p */
T0_init:
  if
    :: ((p)) -> goto accept_S4
    :: (1) -> goto T0_init
  fi;
accept_S4:
  if
    :: ((p)) -> goto accept_S4
  fi;
}
```
It is easier to prove that a model does not satisfy a property than it is to prove that it does, i.e. it only takes one counter-example to shown that a property is not satisfied.

A never claim is therefore typically used to represent the negation of the formula (property) of interest.

To prove F, a never claim is generated for $\neg F$ – the negation of F. SPIN then checks the model against $\neg F$:

- If an acceptance cycle is detected then $\neg F$ is satisfied and a counter-example exists for F.
- If no acceptance cycle is detected then $\neg F$ is not satisfied, and therefore F is satisfied by the model.

```plaintext
never { /* ![]p */
T0_init:
    if
        :: (! ((p))) -> goto accept_all
        :: (1) -> goto T0_init
    fi;
accept_all:
    skip
}
```
Response Property via Never Claim

never { /* ![](p -> <>q) */
T0_init:
 if
 :: (! ((q)) && (p)) -> goto accept_S4
 :: (1) -> goto T0_init
 fi;
accept_S4:
 if
 :: (! ((q))) -> goto accept_S4
 fi;
}

Precedence Property via Never Claim

never { /* */
T0_init:
 if
 :: (! ((q)) && (p)) -> goto accept_S4
 :: (! ((q)) && ! ((r)) && (p)) -> goto accept_all
 :: (1) -> goto T0_init
 fi;
accept_S4:
 if
 :: (! ((q))) -> goto accept_S4
 :: (! ((q)) && ! ((r))) -> goto accept_all
 fi;
accept_all:
 skip
}

Distributed Systems Programming F21DS1
Summary

Learning outcomes:

- To understand and be able to describe how processes and system models are represented in SPIN.
- To understand and be able to convert between a Buchi automata and an equivalent LTL formula.
- To understand and be able to convert between LTL formulas and never claims.
- To be able to explain LTL reasoning within SPIN at the level of Buchi automata and never claims.

Recommended reading: