

 Industrial Strength Exception Freedom

 Peter Amey, Roderick Chapman

Publication notes

ACM COPYRIGHT NOTICE. Copyright © 2002 by the Association for Comput-
ing Machinery, Inc. Permission to make digital or hard copies of part or all
of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be
honoured. Abstracting with credit is permitted. To copy otherwise, to repub-
lish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept.,
ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published for SIGAda ’02, December 8–12, 2002, Houston, Texas,
USA (ISBN:1-58113-611-0).

mailto:permissions@acm.org

Industrial Strength Exception Freedom
Peter Amey, Roderick Chapman

Praxis Critical Systems
20, Manvers Street
Bath, BA1 1PX, UK
+44 (0)1225 466991

peter.amey@praxis-cs.co.uk
rod.chapman@praxis-cs.co.uk

ABSTRACT
Ada is unique amongst modern high-level languages in the degree
to which it allows programming errors to be trapped at the
compilation stage. Using a tool like the SPARK Examiner
amplifies this effect and can provide a high degree of confidence
that a program is well formed before we try and verify that its
behaviour is correct. Despite this progress a less tractable class of
errors remain: run-time exceptions. For safety-related systems a
run-time error may be just as hazardous as any other logical error.
For secure systems, guarding against the deliberate generation of
such errors—through buffer overflow attacks for example—is
vital. The paper explains how automated techniques based on
formal verification or proof techniques have now matured and
provide an industrial strength solution.

Categories and Subject Descriptors
D2.4 [Software/Program Verification] Correctness proofs,
Formal methods, Programming by contract.

General Terms
Reliability, Security, Languages, Verification.

Keywords
Exception freedom, run-time errors, Ada, SPARK, security,
safety, high-integrity systems, DO178B, Common Criteria.

1. INTRODUCTION
Nearly 10 years ago, at the 1993 Ada UK Conference, Program
Validation Ltd. presented a paper on the “Automatic Proof of the
Absence of Run-time Errors” [1]. Much of the paper was
speculative and concerned how the emerging Formal Definition of
the SPARK language could form a basis for reasoning about run-
time errors.

A great deal has happened in the intervening period: Program
Validation Ltd. has become part of Praxis Critical Systems;

SPARK1 has become a well-established language for the
development of critical systems; its supporting tools have grown
in scope and power; and the inexorable march of Moore’s law has
vastly increased the “computing horsepower” available to
developers (although much of it remains unused in typical
development environments).

The combination of these factors has resulted in the concepts of
the 1993 paper maturing into industrial-strength tools, capable of
straightforward deployment, and providing the means to
eliminate—and prove the elimination of—all the predefined
exceptions from an Ada program.

2. THE PROBLEM
Over the short history of our industry there has been a trend
towards detecting errors earlier in the development lifecycle. As
we have migrated from machine code, through assembly
languages and low level languages like C towards Algol, Pascal
and Ada, our compilers get ever better at indicating the mistakes
we have made. Static analysis tools such as the SPARK Examiner
[4], the Polyspace Verifier [18], and MERLE [9] can amplify the
trend and detect even more potential problems before the
expensive testing phase is entered; however, there remains a class
of errors which are difficult to detect by purely static means.
These are run-time errors such as numeric overflow, division by
zero and so on.

(As an aside, history might show that this trend peaked with Ada:
the current fashion for code generation into ill-defined languages
from semantic-free design diagrams might be considered a
backward step in this regard, although some domain-specific
languages and tools do not suffer in this regard quite so
markedly).

For critical systems of any sort it is vital that the software behaves
predictably. We cannot even begin to answer the question “Does
this system meet its specification and fulfil its requirements?”
until that precondition is met. A system which can unexpectedly
raise a run-time error cannot be said to be predictable.

Furthermore, for a critical, real-time system, the occurrence of a
run-time error can be just as damaging as any other error of logic
or design. For such systems we need to eliminate all forms of
unpredictable and erroneous behaviour before deployment.

1 Note: The SPARK programming language is not sponsored by or

affiliated with SPARC International Inc. and is not based on
SPARC™ architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’02, December 8–12, 2002, Houston, Texas, USA.
Copyright 2002 ACM 1-58113-611-0/02/0012…$5.00.

3. POTENTIAL SOLUTIONS
So how are we to deal with potential run-time errors in our
system? We can either handle them (i.e. deal with them when and
where they are detected) or seek to show that they will never
occur. The latter approach can be tackled by dynamic (testing)
means or static (analysis) methods. In practice, as we shall see,
systems may use a combination of all these approaches.

3.1 Handling Exceptions at run-time
Ada provides more assistance in this area than other languages
through its system of predefined exceptions. Unfortunately, while
the reliable detection and signalling of an error close to the point
of occurrence is of enormous benefit, it does not solve all our
problems and brings with it some unwelcome baggage.

The specification of recovery actions from unexpected behaviour
is notoriously difficult; certainly it is harder than specifying the
expected functional behaviour of our system. We are faced with
making a safe recovery from:

• an unexpected event (for if it was foreseeable surely we
would have guarded against it);

• of an unknown cause (a bug, single event upset, data
corruption, malicious intrusion or bad input data?);

• of a system in an unknown state (the value of state
variables in the system may depend on whether the
subprogram which raised the exception was passed its
parameters by reference or by copy); and

• in a very short period of time (e.g. for an unstable fly-
by-wire aircraft).

Given these rather severe difficulties it seems that we can only
rely on exception handling at two programming extremes:

• At a very local, tactical level, within a subprogram and
without allowing propagation. Here we are using
exception handlers to replace IF statements, perhaps
with some increase in clarity and then again perhaps
not.

• At a system-wide, global level where a single, catch-all,
when others handler might be used to restart a system or
switch to a standby unit.

Before we can make use of run-time exception handling, we have
to accept a certain amount of overhead in the form of checks that
the compiler inserts into our object code. These checks bring
two significant drawbacks with them: performance and test
coverage problems.

Code containing compiled-in, run-time checks will inevitably be
both larger and slower than code which has the checks
suppressed and this may present serious difficulties for some
systems.

The difficulty with achieving high levels of test coverage for
code in which all checks are enabled is perhaps even more
serious. Commonly-used standards such as DO178B [2] and the
Common Criteria [3] require high levels of test overage to be
demonstrated as part of the certification process. Code inserted
by the compiler to detect run-time violations may be difficult or
impossible to execute using normal testing techniques. In fact
we have a rather strange paradox here: the better written the code
and the more free from potential run-time errors it is, the higher

the proportion of the check code which will be untestable!
DO178B does give us some escape routes here with its concept
of deactivated code but the effort required remains high.

For all these reasons there is invariably strong project pressure to
turn off run-time checking in delivered code thus reducing Ada’s
run-time security to a level closer to that of C (although, of
course, Ada's standard static checks remain.)

3.2 Eliminating exceptions - dynamic
techniques
Attempting to show that a code sample is free from potential run-
time errors by testing shares all the difficulties generally
associated with testing together with the added complication of
trying to identify the test data sets that are most likely to expose
such errors. Such data cannot be straightforwardly extracted from
requirements as recommended by DO178B nor can we assume
that dividing input data into equivalence sets will provide the
necessary values since the nature of run-time errors is that they
might well be triggered by specific values scattered arbitrarily
through such sets.

It is in the search for run-time errors by testing that Ada’s system
of predefined exceptions is most helpful. At least we can be sure
that if an error occurs during testing it will be detected and we
will be given a clear indication of its nature and location. Without
the exception mechanism we have to wait until unexpected
behaviour is revealed some time after the occurrence of the
original error; this is clearly much less effective and much less
efficient.

As with all testing, we are ultimately faced with the
inconvenience, expressed by Dijkstra, that “testing can
demonstrate the presence of bugs, but not their absence”. For the
most critical systems we must also accept the uncompromising
Bayesian mathematics that no feasible amount of testing can
provide assurance in the ultra critical region [12-14]. So it is an
unfortunate fact that we cannot eliminate the possibility of run-
time errors by testing alone.

In practice, systems are typically tested to meet their functional
requirements, up to a level of coverage required by a standard and
any run-time errors exposed by this process are dealt with.
Systems are not usually tested with run-time error detection as a
specific objective.

3.3 Eliminating exceptions - static techniques
Static techniques offer a number of advantages over dynamic
testing:

• we can potentially cover the entire vector state of the
program; i.e. examine all possible paths and all possible
data values;

• we can eliminate run-time errors before entering the
expensive test phase thus raising efficiency and
reducing cost.

Essentially the trade off between static and dynamic techniques is
that the former shows that the program should work under all
circumstances and the latter that it does work under a tiny number
of specific circumstances.

Unfortunately the kinds of relatively straightforward static
techniques such as data- and information-flow analysis [15] are

not powerful enough for the more demanding task of statically
detecting potential run-time errors. We need to enlist more
powerful techniques such as abstract interpretation and proof.
The former technique was first deployed by DERA Malvern (now
QinetiQ) in the MERLE tool [9] and more recently by Polyspace
[18]. These tools perform an algebraic evaluation of a program
computing possible variable ranges at various points and using
that information to deduce the conditions under which a run-time
error might occur. Abstract interpretation is extremely
computationally intensive and requires a linkable closure of a
program to be effective.

The use of proof techniques was suggested in [1] and has now
been developed into a practical, industrial-strength tool in the
form of the SPARK Examiner. Before considering the SPARK
approach in more detail we consider some properties that we
require of our program and computing environment before any of
these static techniques can be feasible.

3.4 Prerequisites for static elimination of
exceptions
We can only apply logic in a logically-sound framework or
environment. Essentially this requires:

• A two-valued logic: assertions are True or False but
never “Maybe”.

• An unambiguous language where the symbols we use
can only be interpreted in one way.

A crucial part of meeting the first of these requirements is the
elimination of random and invalid values from our system.
Demonstration of exception freedom often requires us to show
that a variable lies in a particular range; this is rather hard if it
contains a random value or if it contains a bit pattern that is not
even a valid representation of any value it can legally hold. Such
values may come from an external hardware device or code
written in another language, for instance. We must therefore work
in an environment where we can show that all our data is well-
defined and legally represented.

Ambiguity is a more subtle problem but just as detrimental to our
goal. Programming languages have a seductive visual similarity
to mathematics but in practice allow the construction of programs
of uncertain meaning. For example, Section 11.6 of the LRM
[19] gives compiler writers substantial freedom to re-order
expressions (and even statements). If a static analysis tool makes
a different assumption about ordering from that actually employed
by the compiler then the analysis may be invalid.

The following piece of erroneous Ada raises a constraint error if
the marked expressions are evaluated from right-to-left but safely
prints the value 13 if evaluated left-to-right.

with Ada.Integer_Text_IO;
use Ada.Integer_Text_IO;
procedure Test1
is
 X, Y, Z, R : Integer;

 function F (X : Integer) return Integer
 is
 begin
 Z := 0;
 return X + 1;
 end F;

begin
 X := 10;
 Y := 20;
 Z := 10;
 R := Y / Z + F (X); -- undefined evaluation order
 Put (R);
end Test1;

Similar ambiguities arise from the combination of aliasing with a
free choice of parameter passing mechanism. To avoid these traps
the tool would have to analyse all possible combinations of re-
ordering and parameter passing which would be computationally
prohibitive and also perhaps generate a number of false alarms.
(Note that the fact that the code above is defined as erroneous is
of no help to us if we are unable to tell it is erroneous and so
predict the unexpected behaviour in advance) .

A more sound approach is to design our language so that these
ordering effects cannot occur. For example, effective prohibition
of function side-effects removes the ambiguity from the code
above. Similarly, effective elimination of aliasing renders
parameter passing freedoms harmless.

The combination of a logically-sound language and freedom from
invalid or random values is an essential prerequisite for a
systematic demonstration of freedom from run-time exceptions.

4. THE SPARK APPROACH
The SPARK approach is derived directly from the considerations
of the preceding section. First we created an unambiguous
language and by careful attention to the elimination of invalid and
random data, created a logically sound environment in which to
conduct proof work. An approachable description of the SPARK
language can be found in [4] and a more rigorous one at [16].
The important properties of the SPARK language in the current
context are:

• freedom from implementation-dependent behaviour
(SPARK programs are unaffected by such things as sub-
expression evaluation order and differences in
parameter passing mechanisms);

• language rules which are 100% machine checkable,
using fast and efficient algorithms prior to compilation
(so that we know in advance that our program really is
SPARK and that our proof will be valid);

• effective, system-wide detection of all possible data-
flow errors thus ensuring that no random values enter
the system; and

• strengthened specifications, through the use of
annotations (also commonly known as "design by
contract"), allowing efficient analysis to begin before
the program is complete (and perhaps before it is even
compilable).

A useful consequence of the way the SPARK language was
designed is its compatibility with the certifiable, reduced or non-
existent run-time systems supplied by various Ada compiler
vendors. For example (in alphabetical order), ACT's GNAT Pro
High Integrity Edition, Aonix’s ObjectAda Real-Time/Raven,
DDCI's SCORE, Green Hills' GMART, and Rational's
APEX/MARK. These systems address other issues concerning
system certification and it is useful that SPARK programs can be

compiled using them. It is also the case that the reduced run-time
support permits only a single “last wish” exception handler
making proof of exception freedom especially valuable.

With sound foundations in place we can seek to construct an
automatic proof of the absence of all run-time errors which is
valid for all input data within the computational model.

The predefined exceptions and checks of Ada95 [19] are:

Table 1. Ada95 exceptions and checks

Exception Source

Constraint_Error access check, discriminant check,
index check, length check, range
check, division check, overflow
check, tag check

Program_Error erroneous execution, incorrect order
dependence, return not executed in
function subprogram, elaboration
check, accessibility check

Storage_Error exhaustion of dynamic heap storage,
stack overflow

Tasking_Error exceptions raised during intertask
communication

The use of SPARK removes the possibility of many forms of run-
time error either because

• the language subset does not include the Ada feature
concerned; or

• the additional static semantic rules of SPARK allow the
error to be detected before the program is run.

An example of the former is the elimination of Tasking_Error
because SPARK currently does not permit tasking. An example
of the latter is the Examiner’s ability to detect statically whether a
subtype indication is compatible with the type mark in a subtype
definition. By these means, all the errors in italic in the table
above are eliminated.

Leaving aside Storage_Error for now, we are therefore left with
index check, range check, division check and overflow check.
For these checks, we can generate proof obligations or
verification conditions (VCs) which are equivalent to the run-time
checks that the compiler would insert. If the VCs can be reduced
to “True” then we have a proof that the run-time error can never
occur. For example, consider the following code fragment:

 type T is range -128 .. 128;

 procedure Inc(X : in out T)
 --# derives X from X;
 is
 begin
 X := X + 1;
 end Inc;

On entry to Inc we can assume that T’First ≤ X ≤ T’Last because
if this were not true then a run-time error would already have
occurred at the point where Inc was called (an obligation to
show this will of course be needed at the point of call). In order
to show that the single executable statement in Inc does not

cause a run-time error we need to show that at that point T’First ≤
(X + 1) ≤ T’Last is true.

The generation of these checks is fully automated by the SPARK
Examiner. Two levels of checking are supplied as standard: the
first generates all checks except overflow and the second includes
overflow checks. Because we do not have a full formalization of
Ada real number arithmetic we do not support checks of real
values by default. The Examiner can be configured to produce
such checks but in this case the VCs are generated assuming that
real numbers behave like true mathematical reals rather than their
approximate binary representations. In consequence we cannot
claim proof of absence of run-time errors for real numbers: an
unprovable VC almost certainly indicates a problem but
successful proof may not guarantee exception freedom because an
error might arise, for example, from cumulative rounding errors.
Traditional numerical analysis is required with such algorithms to
determine their stability and error bounds.

The Examiner’s output takes the form of a file for each
subprogram in the examined code. The files are straightforward
text files and contain a VC for each check that has been generated.
Each VC takes the form of a number of hypotheses, which may be
assumed to be true, and a number of conclusions, which must be
shown to be true using the hypotheses and proof rules which are
also generated automatically by the Examiner to describe type and
base type ranges, constant values and so on. VCs are expressed in
a simple first order predicate language called the Functional
Description Language or FDL. Names are preserved from the
original SPARK making the VCS reasonably understandable to
the programmer; however, it is important to be clear that VCs are
no longer program code, they are mathematical formulae.

The unsimplified VCs for the code fragment are as follows:

For path(s) from start to run-time
check associated with statement of line
13:

procedure_inc_1.
H1: true .
H2: x >= t__first .
H3: x <= t__last .
 ->
C1: x + 1 >= t__first .
C2: x + 1 <= t__last .

To show that the code is free from any possible exception we need
to show that

 H1 and H2 and H3 ? C1 and C2
Clearly there are going to be a large number of these VCs. There
will be one for every exception check specified in the Ada
language which may well amount to more than one per program
statement. The approach would therefore be impractical if proofs
had to be attempted manually. A second tool, the SPADE
Automatic Simplifier, has therefore been developed. Unlike
heavyweight theorem provers such as PVS [17], the Simplifier is
deliberately limited in scope so that it is fast and is guaranteed not
to perform speculative substitutions that leave a formula in a less
clear state than it found it. The Simplifier has, however, been
tuned over the years to be particularly effective on the kinds of
VCs that SPARK run-time checks generate. Very high rates of
automatic simplification are achieved on error-free code as
indicated in the industrial experience section later in this paper. It
is also worth noting that the Simplifier produces a log file listing

the substitutions it has made and the rules it has consulted; this
make it possible to audit the proof process.

When the Simplifier is applied to our example it leaves:

procedure_inc_1.
H1: x >= - 128 .
H2: x <= 128 .
 ->
C1: x <= 127 .

Clearly we cannot prove the VC since H1 is not relevant and H2
is not strong enough to establish C1. A potential run-time error
therefore exists and the VC gives us a strong clue as to the
circumstances under which it will occur: calling Inc with an actual
parameter equal to T’Last. Some strategies for dealing with
unprovable VCs are discussed later.

In practice, the important thing about this process is the degree of
automation achieved. Generation of checks from the Examiner
requires only the application of the appropriate command line
switch. The Simplifier has a companion “make tool” which finds
and simplifies all the VCs generated with a single command.
Finally, a summarizer tool provides an overview of the number of
VCs that have been generated and which are proved or
outstanding.

4.1 Practical Issues 1 - Dealing with input
data
One important practical matter that must be addressed here is how
potentially unreliable sources of input data are handled. Our
computational model assumes that a program obeys the canonical
semantics of Ada, but how do we stop a "bad value" (or more
correctly an invalid representation) from entering our program?

The Ada95 LRM identifies this problem, advising that if an object
has an invalid representation

"It is a bounded error to evaluate the value of such an
object. If the error is detected, either Constraint_Error
or Program_Error is raised. Otherwise, execution
continues using the invalid representation. The rules of
the language outside this subclause assume that all
objects have valid representations." LRM 13.9.1(9)

A particular problem arises with obtaining values from memory-
mapped I/O devices, where the device word-size is larger than the
number of bits needed to represent the object being read. For
instance:

type Warning is
 (None, Advisory, Caution, Error);
for Warning'Size use 8;

Input_Port : Warning;
for Input_Port'Address use ...;

then

procedure Read_Port (V : out Warning)
--# global in Input_Port;
--# derives V from Input_Port;
is
begin
 V := Input_Port;
end Read_Port;

In the assignment to V here, no check is required by the language
(since left and right sides of the assignment are exactly the same

subtype), but it remains possible that an invalid value might be
returned owing to the size of type Warning.

In processing this code, the Examiner recognizes that the variable
Input_Port has an address representation clause, and therefore
assumes that values read from it may not be assumed to be valid.
Firstly, the Examiner generates a suitable warning:

 11 V := Input_Port;
 ^
--- Warning :393: External variable
Input_Port may have an invalid
representation.

Secondly, the Examiner goes beyond the LRM and generates a
VC for the assignment statement of the form:

H1: true .
 ->
C1: input_port >= warning__first .
C2: input_port <= warning__last .

which cannot be proven - giving you a reasonable hint that your
program is at risk!

Of course, Ada95 supplies us with the 'Valid attribute for exactly
this purpose. The usual idiomatic usage is to read an untrusted
value into a temporary variable which is then validated before
being returned, thus:

procedure Read_Port2 (V : out Warning)
--# global in Input_Port;
--# derives V from Input_Port;
is
 Temp : Warning;
begin
 Temp := Input_Port;
 if Temp'Valid then
 V := Temp;
 else
 V := Error; -- a "safe" value for
 -- instance, or take
 -- some other action.
 end if;
end Read_Port2;

Now for the first assignment of Temp to Valid, we may assume
that Temp'Valid is True, so the VC takes the form:

H1: warning__valid(input_port) .
 ->
C1: input_port >= warning__first .
C2: input_port <= warning__last .

which can be proven, since if a value is Valid then that value must
lie within the bounds of its subtype.

4.2 Practical Issues 2 - The "Cosmic Ray"
problem
During a presentation of this approach, you can bet good money
that someone at the back of the room will pop their hand up and
say "Aha! But what about cosmic rays!" This is indeed a good
point that warrants some consideration.

Our analytical model is valid with respect to certain
assumptions—namely the canonical semantics of SPARK, the
trustworthiness of a compiler, and the reliability of the underlying
hardware. But what if hardware cannot be assumed to be 100%
reliable, or if we face the problem of malicious attack, where the

system in question may be tampered with in some way? In some
systems, these issues are a real problem. In space-borne
applications, "Cosmic rays" (more formally known as Single
Event Upsets) are a known issue. In the world of smart cards,
intrusive and malicious tampering is a well-known and productive
attack [5].

Clearly, our proofs of exception freedom are not 100% valid
under these scenarios. So should we still bother with the proofs at
all? We strongly believe that you should! A common approach is
to engineer high-integrity systems such that they are robust in the
face of such failures—the use of triple or quadruple redundant
systems is common in the aerospace industry for instance. Can
we do the same with software? Where we have redundancy in
hardware, why not build redundancy in the software so it too is
more robust in the face of these problems?

At the most extreme end of the spectrum, we could engineer
software using the SPARK approach in the following fashion:

• Prove the program is free from exceptions, and
rigorously validate all input data. This would give us
strong assurance that the program contains no
algorithmic or logic errors that could yield an exception.

• Compile and run the program with "checks on" as an
extra level of defence.

• Compile and run the program with additional validity
checks enabled to continuously check the validity of all
program state. We note the GNAT Pro compiler
recently added this functionality specifically to address
this kind of application [6].

• Use data representations that are amenable to error
detection and correction.

• Run with a final "catch all" exception handler that falls
back on some system-level backup or fault-tolerance
mechanism.

This style of development offers some interesting advantages.
Firstly, it increases the probability that an SEU or other random
hardware failure would be promptly detected, rather than allowing
the system to "run on" with invalid data. Secondly, the possibility
of an algorithmic or logic defect is eliminated by proof, so the
question "What's gone wrong?" if an exception is raised is
significantly simplified.

4.3 Practical Issues 3 - Storage_Error
One run-time error that the SPARK proof model does not directly
attack is Storage_Error. High-Integrity systems are typically long-
running, and have a fixed amount of RAM in which to run, so
"memory leaks" are intolerable.

One of SPARK's design goals is that programs should be
amenable to analysis of worst-case execution time and memory
usage. Several language features of Ada are prohibited in SPARK
since they exhibit an unpredictable execution time, memory
usage, or have a large impact on the run-time system. The non-
static use of the "&" operator and the ability of an Ada function to
return an unconstrained array spring to mind in this context.

SPARK simplifies the problem in three ways:

• SPARK can be compiled with absolutely no use of a
"heap" data structure or storage pool. There are no

explicit allocators in SPARK, and language features that
require implicit use of a heap are also excluded.

• All constraints in SPARK are static. From the
compiler's point of view, this means that the activation
record (or "stack frame") for a SPARK subprogram is
always a fixed size—there is no dynamic component.

• SPARK is non-recursive.

These simplifications reduce static analysis for Storage_Error to a
simple analysis of worst-case stack usage for a non-recursive
program. While the Examiner does not implement this kind of
analysis directly (it is highly compiler- and target-dependent),
specialized tools for the SHOLIS project [7] were constructed to
perform this task with relative ease. The size of the activation
record for each subprogram and the program's call-tree can be
directly extracted from the assembler listings produced by a
compiler. These data can then be combined to produce worst-case
stack usage figures using simple rules [11]. In the SHOLIS
project, this static analysis was supported and confirmed by a
dynamic "high water mark" test of worst-case stack usage.

5. STRATEGIES FOR DEALING WITH
UNSIMPLIFIED VCs
After we have generated our VCs and simplified them we will
have:

1. A large proportion that have been proved automatically;

2. a small number that have been simplified but not
proved; and,

3. possibly, a very small number that the Simplifier has
reduced to False rather than the True we were seeking.

The first group are easy. The code associated with these VCs
cannot raise a predefined exception for any data values (as long as
our von Neumann machine continues to behave like one!). The
last group are also straightforward: they represent code that will
always generate an exception and which clearly needs attention.
This category is actually rather uninteresting since moderately
competent programmers usually avoid such gross errors and even
the most cursory test program would identify the problem.

It is the middle group that is really interesting. There are three
reasons why a VC may not be proved by the Simplifier:

1. It may be too complex for the Simplifier;

2. it may require some system domain knowledge, not
included in the source code, to prove it; or

3. it may indicate that a run-time error will occur under
specific conditions such as particular values of
variables.

A number of techniques can be deployed to deal with these
residual VCs. For the first group we might deploy a more
powerful proof engine such as the SPADE Proof Checker or
document an informal but rigorous argument to show that the VC
is indeed true. The second group is also amenable to rigorous
argument. For example, a 32 bit counter in an aircraft system that
started at 0 and incremented once per second during flight would
generate an unprovable VC similar to that for the Inc example;
however, it would take approximately 64 years to overflow and
we could argue that our system was unlikely to be in service that

long let alone fly continuously for that period! These rigorous
arguments can be indicated to the summarizer tool which will note
which VCs have been cleared by this means.

It is the third group that is most interesting because it is
conditional run-time errors that are the most dangerous and the
hardest to find by testing. Consideration of why the VC can’t be
proved usually quickly reveals the circumstances under which the
exception will be raised. We can then set about solving the
problem by improving the code in some way. Most
straightforwardly, we can employ defensive programming to
guard against the dangerous condition. For the simple Inc
program we could guard the suspect line with if X < T’Last
then and either refuse to perform the increment if an error would
occur or signal the error condition back to the caller.

For environments that seek to eliminate run-time errors without
proof, defensive programming is the only technique that is
available. In effect we must make the system watertight by
making every subcomponent watertight. The SPARK proof
approach provides another rather useful technique: we can
strengthen the specification of code, without changing its
executable statements, by addition of precondition annotations.
For example, our Inc example can be strengthened thus:

procedure Inc (X : in out T);
--# derives X from X;
--# pre X < T’Last;

The precondition now allows Inc to be proved exception free;
however, this is no “free lunch”, we now find an obligation to
prove the precondition is true everywhere that Inc is called. Often
moving proof obligations in this way is very productive because
the calling environment may well be rich enough to provide the
necessary information to complete the proof whereas the called
environment may not.

Usually only a very few iterations are required to generate
SPARK source code that can be shown to be free from all run-
time errors. Defensive programming is only needed where there
is a real risk to be guarded against; where preconditions are
introduced our understanding of the code is enhanced; and,
throughout the process we have log files and summaries that
document the arguments that we have used.

6. SOME PROJECTS
The SPARK approach to exception freedom was first presented
nearly ten years ago [1]. It was first deployed on a large project
(SHOLIS) in 1995 [7] with reasonable success. Following
SHOLIS, several significant improvements to the technology were
made, most notably:

• The Examiner's VC Generator was improved to reduce
the number and complexity of hypotheses generated for
each VC.

• SPARK95 was developed, incorporating modular types,
and the 'Valid attribute.

• A facility for modeling volatile state allowed device
drivers and other similar low-level code to be
completely implemented in SPARK.

• A language annotation has been added to allow the user
to specify the predefined base-type from which a signed
Integer type is derived. This dramatically improves the

Simplifier's ability to discharge VCs arising from
Overflow_Check.

• The Simplifier was improved to handle VC forms that
arise from common SPARK idioms (for instance, a "for"
loop over an enumerated type.)

• The Simplifier was improved to simplify expressions
involving quantified predicates—these are important
since they are generated in connection with array types.

In addition, the computing power available for theorem proving
has increased dramatically in the intervening years. These
advances bring exception freedom proof into the area where it can
be deployed as a routine part of a development process, rather
than as a special activity that is only attempted in extreme cases.

For the purposes of this study, we have used three large, real-
world programs: the SPARK Examiner (which is, of course,
written almost entirely in SPARK), the SHOLIS software [7], and
another project—here denoted "Project R". Tests have been
carried out to measure

• The execution time of the Examiner (performing static
analysis and VC generation) and the Simplifier.

• The "hit rate" of the Simplifier - i.e. the ratio of RTC
VCs proven by the simplifier to the total number of
RTC VCs.

All tests were carried out using SPARK Examiner 6.1 and
Simplifier 2.06—the most recent versions shipping to SPARK
users—on a single 1.3GHz AMD Athlon processor running
Windows 2000. The results were as follows:

Table 2. Examiner and Simplifier Performance

Test Set Examiner SHOLIS Project R

Executable lines
(declarations and
statements)

56760 16388 22968

Analysis & VCG
time

4 mins 58
secs

4 mins 34
secs

2 mins 2
secs

Simplification
time

5 hours 19
mins

8 hours 14
mins

1 hour 48
mins

Total RTC VCs 20833 6741 10963

RTC VCs proven
by Simplifier

19127 6088 10017

Hit rate 91.8% 90.3% 91.4%

The hit rate matches our expectations, especially given that the
Examiner and Project R contain only the mandatory SPARK
annotations—there are very few explicit pre-conditions, post-
conditions and loop invariants, showing how effective RTC proof
can be on an "ordinary" SPARK program.

The performance of the Simplifier is encouraging. RTC proof for
programs of this size is within the range of a typical "overnight"
regression test and analysis run. We also note that a 1.3GHz
processor is now effectively obsolete (i.e. you can't buy 'em any
more!)—simplification times could almost certainly be halved
again with a more modern processor.

7. NEXT STEPS
Exception freedom proof can now be considered a mature
technology—several projects are using it as a routine part of their
software development strategy with no direct assistance from
Praxis. Work continues to improve the technology on several
fronts:

• Language expansion. SPARK continues to grow as a
language. A useful subset of tagged types was recently
added, for instance, although great care was taken to
statically eliminate all possible instances of Tag_Check.
The next phase of development will expand SPARK to
include the Ravenscar Profile. This introduces some
interesting new cases of run-time error that will have to
be dealt with:

o Priority ceiling violation,

o Executing a potentially blocking operation
within a protected operation,

o More than one task blocking on a single
protected entry or suspension object.

We plan to deal with these entirely statically through the
use of additional annotations and analyses performed by
the Examiner.

• Parallel Proof. Unlike any other approach to run-time
exception freedom that we know of, the VCs generated
by the Examiner are entirely independent of one
another, so the Simplifier can be applied to many of
them simultaneously, limited only by the number of
processors available. Simple analysis suggests a near-
linear speedup could be achieved—Project R, for
instance, took 1 hour 48 minutes hours to simplify on a
single computer. Given 10 such computers, we could
complete the same simplification in approximately 11
minutes plus some overhead for communication. This
seems worthwhile—most development projects have
between 10 and 100 PCs featuring 1GHz or better
processors, most of which do nothing most of the time!
While the Extreme Programming community [10] have
popularized the regular and pedantic application of
regression testing, we propose runtime exception proof
(or, for that matter, proofs of partial correctness) being
similarly used on a regular basis—all you need is CPU
cycles, and these are remarkably cheap. We term this
new style of verification Regression Proof. Initial trials
with a prototype parallel "make" tool for the Simplifier
have yielded encouraging results. We hope to field this
technology on more internal projects, and then with
customers, in the near future.

• A final area for further work is to simply improve the
Simplifier's "hit rate" by making its proof tactics more
powerful. The inexorable march of Moore's law means
we can implement ever-more powerful tactics, while
maintaining "wall clock" simplification times as they
are. This study has already highlighted some areas
where the Simplifier can be improved. For a project the
size of the Examiner, every 1% improvement in hit-rate
results in over 200 VCs that don't have to manually
inspected—a very worthwhile gain.

8. CONCLUSIONS
Program proof, once the domain of theoretical researchers, has
come of age. Using proof-based techniques, static proof of
exception freedom is tractable and easy for real developers of real
industrial systems right now! Many SPARK users are using these
techniques without any assistance from Praxis; some have even
independently reported their work [8].

The effectiveness of the process, especially the qualitative shift
from finding some possible run-time errors to proving their
absence, depends on the logical soundness of the programming
language being used and the need to avoid random values entering
the system. Efficiency is important because tools must be fast if
they are to be used, especially if they are to be used early enough
to provide real benefit.

Proving the absence of all run-time exceptions is a technique that
aligns very closely with the needs of the ComSec community
(Common Criteria), the Space Community, and
Military/Aerospace system developers (DO-178B). While
standards may not explicitly require this kind of analysis, it
makes very good technical and commercial sense to do it!

9. REFERENCES
[1] Jon Garnsworthy, Ian O'Neill, Barnard Carré. Automatic

Proof of the Absence of Run-Time Errors. In Ada: Towards
Maturity - Proceedings of the 1993 AdaUK conference. IOS
Press. ISBN 9051991428.

[2] RTCA-EUROCAE. Software Considerations in Airborne
Systems and Equipment Certification. DO-178B / ED-12B.

[3] Common Criteria for Information Technology Security
Evaluation. ISO Standard 15408. http://csrc.nist.gov/cc

[4] John Barnes. High Integrity Ada: The SPARK Approach.
Addison Wesley, 1997 (reprinted 2001) ISBN 0201175177.
http://www.sparkada.com/

[5] Ross Anderson. Security Engineering. Wiley, 2001. ISBN
0471389226.

[6] Robert Dewar, Olivier Hainque, Dirk Craeynest, Philippe
Waroquiers. Exposing Uninitialized Variables:
Strengthening and Extending Run-Time Checks in Ada.
Proceedings of Reliable Software Technologies - Ada
Europe 2002. Springer-Verlag LNCS 2361. pp. 193-204.

[7] Steve King, Jonathan Hammond, Roderick Chapman, Andy
Pryor. Is Proof More Cost-Effective than Testing? IEEE
Transactions on Software Engineering, Volume 26, Number
8, August 2000.

[8] Darren Foulger, Steve King. Using the SPARK toolset for
Showing the Absence of Run-Time Errors in Safety-Critical
Software. in Reliable Software Technologies - Ada-Europe
2001. Springer-Verlag LNCS 2043. pp. 229-240.

[9] Liz Whiting, Mike Hill. Safety Analysis of the Hawk In-
Flight Monitor. Presented at the 1999 ACM SIGPLAN
Workshop on Program Analysis for Software Tools and
Engineering, Toulouse, France.

[10] Kent Beck. Extreme Programming Explained. Addison
Wesley. ISBN 0201616416.

[11] Roderick Chapman, Alan Burns, Andy Wellings. Combining
Static Worst-Case Timing Analysis and Program Proof.
Real-Time Systems Journal. Volume 11, pp. 145-171.
Kluwer Academic Publishers, 1996.

[12] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software. IEEE Transactions on Software Engineering, vol.
19, no. 1, Jan. 1993, pp 3-12.

[13] Littlewood, Bev; and Strigini, Lorenzo: Validation of
Ultrahigh Dependability for Software-Based Systems.
CACM 36(11): 69-80 (1993)

[14] Littlewood, B: Limits to evaluation of software
dependability. In Software Reliability and Metrics
(Procedings of Seventh Annual CSR Conference, Garmisch-
Partenkirchen). N. Fenton and B. Littlewood. Eds. Elsevier,
London, pp. 81-110.

[15] Bergeretti and Carré: Information-flow and data-flow
analysis of while-programs. ACM Transactions on
Programming Languages and Systems 1985.

[16] Finnie, Gavin et al: SPARK95 - The SPADE Ada95 Kernel.
Edition 3.0, July 2002, Praxis Critical Systems

[17] http://pvs.csl.sri.com/

[18] http://www.polyspace.com/

[19] Taft et. al. Consolidated Ada Reference Manual: Language
and Standard Libraries. Springer-Verlag Berlin, January
2001. LNCS 2219. ISBN 3540430385.

