Rigorous Methods for Software Engineering
(F21RS-F20RS)

Andrew lreland
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Course Aims

» To promote an understanding of the issues involved in
building high integrity software intensive systems.

» To provide both practical and theoretical insights into
industrial strength tools and techniques that promote the
development of high integrity software intensive systems.

Course Road Map for Academic Year 2024-25

» The Teaching Team (Edinburgh & Dubai):
> Andrew Ireland [a.ireland@hw.ac.uk] and
Muhammad Najib [m.najib@hw.ac.uk]
» Hind Zantout [h.zantout@hw.ac.uk]
» This course is being taught to both UG (F20RS) and PGT
(F21RS) students.
> Note: the PGT coursework involves additional tasks compared
to the UG coursework.

Course Road Map for Academic Year 2024-25

» High integrity software engineering (weeks 1-5):
» Safe and secure code via structured programming
» Analysis techniques, including verification via formal proof
» SPARK programming language and toolkit (Linux and
Windows versions)

» Consolidation Week (week 6)

» Design and reasoning (weeks 7-11):

» Design level specification & analysis

» Specification via Promela

> Analysis via Spin model checker (access via Linux and
Windows)

> Revision Week (week 12)

Course Road Map for Academic Year 2024-25

» All course materials will be available via Canvas (Virtual
Learning Environment):
» Course Information
» Additional Reading Materials
» Core materials organized into weeks, e.g. Week 1, Week 2, etc.
» Assignments: specifications and submission links

> Assessment is by 40% Coursework (CW) and 60% Exam:
» CW1: Handout week 2 with deadline start of week 7 (20%)
» CW2: Handout week 7 with deadline start of week 12 (20%)
> An in-person invigilated Exam (60%)
» Reassessment for F21RS is by 100% Exam (there is no
reassessment for F20RS).

IMPORTANT: Authorship Declaration (Canvas Quiz)
Deadline for completion: 1pm (BST) Tuesday 17 Sept

Declaration of authorship AY23-24

Due 18 Sep at 22:59 Points O Questions 3 Time limit None

Instructions

Acadenmic integrity underpins all our educational activity at Heriot-Watt.

You are required to sign the Declaration of Authorship to confirm that the all work you have submitted for individual assessment OR the work you have contributed to a group
assessment, is entirely your own.

You will not be able to access the Assessment instructions and your work will not be marked if the Declaration of Authorship is not submitted.

Before making the declaration you should ensure that:

+ You have read, understood and followed the University's Regulations on plagiarism as published on the University’s website, that you are aware of the penalties that you will face
should you not adhere to the University Regulations.

You have read, understood and avoided the different types of plagiarism explained in the University guidance on Academic Integrity. and Plagiarism. S

Take the quiz

Failure to complete the Authorship Declaration prevents you from
submitting Coursework on Canvas.

Course Road Map for Academic Year 2024-25

» Delivery in Edinburgh:
> A weekly in-person 2-hour Class (with an interval).
» A weekly in-person 1-hour Programming Lab.
» Timetabled slots in Edinburgh:
> Class:
» Tuesday 2pm-4pm
»> Room 1.13 in the David Brewster (DB) building
» Programming Lab:
» Thursday 10am-1lam
» Either 2.50 (Linux) or 2.52 (Windows) in the Earl
Mountbatten (EM) building.
» Exception — no Tuesday Class in week 6 although there will
be an optional Programming Lab in week 6.

Motivation: Cost of Failure

Therac-25

Computer-controlled radiation
therapy machine

Developed by Atomic Energy
of Canada Limited (AECL) in
the early 1980s

Therac-25 relied heavily on
software to ensure safety
compared to its predecessors
- Therac-6 and Therac-20

Between 1985 and 1987 the
Therac-25 massively
overdosed six patients

Motivation: Therac-25 A Closer Look

/ \ Class3:

Datent (0
' « Initialized to 1

* Incremented on each

® | { testcycle

;== IL T |- non-zero denotes
| I | Set up test testing is incomplete
s » set to zero when
Operator Set up test complete

)
Q Patient treatment ‘ A
RADIATION

" 4
High Energy Beam

+ If Class3 reaches 255 then the next increment sets it to zero | 4 Test incomplete
« If the Operator selects the Patient treatment when this =
wraparound occurs then the Set up test will be incomplete Accident

Motivation: Software Weaknesses

) £ Common Weakness Enumeration
A A Communiry-Developed List of Software & Harchware Weakness Tipe

Home About CWE List Scoaring Community News Guidance Search

2020 CWE Top 25 Most Dangerous Software Weaknesses

Top25 Analysis Methodology Scoring Metrics On the Cusp Limitations Remapping

https://cwe.mitre.org/

Top 25 Weakness:

#5: Improper Restriction of Operations within the
Bounds of a Memory Buffer

#11: Integer Overflow or Wraparound

The Economics of Defect Detection

Cost

T T T
Requirements Coded Released

(Boehm, 1976)
Late life-cycle fixes are generally costly, i.e. can range from 40% to

100% more expensive than corrections in the early phases.

More of the Same?

» Dynamic analysis has been the main approach used by
industry in establishing the correctness of software intensive
systems.

» Dynamic analysis involves the execution of the system under
test — so conventionally corresponds to software testing.

» However, exhaustive testing is not possible for realistic
software intensive systems.

> Worse still, omissions and defects introduced early within the
development life-cycle are the most expensive to rectify if they
go undetected until testing and beyond ...

Complementary Methods: Rigorous and Formal

> Static analysis does not involve the execution of the system
under test — such methods operate instead directly on the
“representation” of the artifact under test, e.g. code,
assertions, contracts, design models, etc.

» Static analysis methods can potentially be applied early within
the development life-cycle.

» There exists a broad spectrum of static analysis methods, i.e.
from Lint — heuristic based checker for detecting generic
coding errors in C programs — to the use of mathematical
proof in verifying properties of programs.

» This course will focus mostly on the rigorous end of the
spectrum, and in particular on so called formal methods
which rely heavily on formal notations and reasoning.

» The power of formal reasoning lies in its ability to establish
evidence about a system's correctness in general, rather than
in terms of specific test cases.

Drivers: Business & Economic Related

Time + Money

-

Requirements \° Acceptance

Specification System Test

Design Integration Test

Unit Test

Conventional methods profile:
Formal methods profile: ™ - ---------

Health Warning

P There are no absolute guarantees.

» When applied correctly, formal methods have been
demonstrated to result in systems of the highest integrity.

» Correctness is only guaranteed with respect to a specification
— you need to validate the assumptions which under-pin the
specification.

» Formal methods complement rather than replace conventional
approaches, e.g. testing, simulation and prototyping.

» But formal methods are applied by humans who are error
prone — so tools are crucial.

Drivers: Safety Related Standards

vvyyy

vy

RTCA DO-178B and DO-178C (USA Civil Avionics)
Def Stan 00-55 (UK MoD)
ITSEC (IT Security Evaluation Criteria)

IEC 61508 (Generic “Programmable Systems”)

> |EC 601 (Medical Equipment)
> (Pr)EN 50128 (Railway Industry)

IEC 880 (Nuclear Power Control)
MISRA (Automotive Industry)
FDA (Medical Equipment)

Software Standards

» Software standards encapsulate the lessons learned by trial
and error on government and commercial projects.

» Standards will typically evolve and change over time.

» Standards are guidelines that can be tailored to the
characteristics of a particular project.

» Standards assist in the development of high quality software
while reducing time-to-market.

» Standards play a crucial role within the development of high
integrity software.

Formal Methods for Design & Code Generation

| 4

>

Z (Oxford) — model based formalism for specifying systems
(set theory based).

B-Method (ClearSy) — similar motivations to VDM, but
automatically generates sequential code, i.e. C, Ada.
Event-B (Systerel) — event based formalism for system-level
modelling that supports refinement.

VDM (IBM, IFAD, CSK) — model based formalism that
supports refinement, i.e. top-down incremental development
of systems.

Alloy (MIT) — a formal modelling language & model checker.

SPIN (NASA) — one of the most popular tools (model
checker) for verifying (and detecting bugs) in
concurrent/distributed system designs. (focus of weeks 7-11 —
theory and practice).

Formal Methods for Static Analysis of Code

v

Frama-C: specification and analysis for a subset of C (CEA
LIST & INRIA Saclay).

eCv - specification and analysis for a subset of C (Eschertech).
Spec#: specification and analysis of C# (Microsoft).

SPARK - specification and analysis for a subset of Ada (Altran
- formally Praxis) (focus of weeks 1-5 — theory and practice).

Formal Methods in Industry

» Microsoft Research - Static Device Verifier (SDV)
automatically checks code of Windows device drivers (i.e.

written in C).

» Ensures that a device driver interfaces correcting with the OS
kernel and guards against security threats.

» SDV represents a tight integration of automated reasoning
tools.

SDV: A Closer Look

\

\ Checker Theorem
\ Prover +
\\ Symbolic

Evaluation

P o e e \
el

Abstraction

Formal Methods in Industry

» SPARK projects: https://www.adacore.com/industries

» SPIN projects: http://spinroot.com/spin/success.html

» J. Woodcock and P.G. Larsen and J. Bicarregui and J.S.
Fitzgerald, Formal methods: Practice and Experience, ACM
Computing Surveys, Vol 41, No. 4, 2009. (available on

Canvas — see “Recommended Reading” folder with in the
Learning Materials).

https://www.adacore.com/industries
http://spinroot.com/spin/success.html

Summary

Recommended reading:

>

vVvvyVvvyVvyVvYvyy

Spin http://spinroot.com/

SPARK https://www.adacore.com/sparkpro
Frama-C: https://frama-c.com

eCv: http://eschertech.com/products/ecv.php
Z: http://www.zuser.org

B-Method http://www.systerel.fr

Event-B http://www.event-b.org/

VDM http://overturetool.org/

Alloy https://alloytools.org

Spec#:

https://www.microsoft.com/en-us/research/project/spec/

h
h
h
h
h
h
h
h
h
h

