
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Course Aims

▶ To promote an understanding of the issues involved in
building high integrity software intensive systems.

▶ To provide both practical and theoretical insights into
industrial strength tools and techniques that promote the
development of high integrity software intensive systems.

Course Road Map for Academic Year 2023-24

▶ The Teaching Team (Edinburgh & Dubai):
▶ Andrew Ireland [a.ireland@hw.ac.uk]
▶ Hind Zantout [h.zantout@hw.ac.uk]

▶ This course is being taught to both UG (F20RS) and PGT
(F21RS) students.

▶ Note: the PGT coursework involves additional tasks compared
to the UG coursework.

Course Road Map for Academic Year 2023-24

▶ High integrity software engineering (weeks 1-5):
▶ Safe and secure code via structured programming
▶ Analysis techniques, including verification via formal proof
▶ SPARK programming language and toolkit (Linux and

Windows versions)

▶ Consolidation Week (week 6)
▶ Design and reasoning (weeks 7-11):

▶ Design level specification & analysis
▶ Specification via Promela
▶ Analysis via Spin model checker (access via Linux and

Windows)

▶ Revision Week (week 12)

Course Road Map for Academic Year 2023-24

▶ All course materials will be available via Canvas (Virtual
Learning Environment):
▶ Course Information
▶ Additional Reading Materials
▶ Core materials organized into weeks, e.g. Week 1, Week 2, etc.
▶ Assignments: specifications and submission links

▶ Assessment is by 40% Coursework (CW) and 60% Exam:
▶ CW1: Handout week 2 with deadline start of week 7 (20%)
▶ CW2: Handout week 7 with deadline start of week 12 (20%)
▶ An in-person invigilated Exam (60%)

▶ Reassessment for F21RS is by 100% Exam (there is no
reassessment for F20RS).

IMPORTANT: Authorship Declaration (Canvas Quiz)
Deadline for completion – 18 Sept Deadline

Failure to complete the Authorship Declaration prevents you from
submitting Coursework on Canvas.

Course Road Map for Academic Year 2023-24

▶ Delivery in Edinburgh:
▶ A weekly in-person 2-hour Class (with an interval).
▶ A weekly in-person 1-hour Programming Lab.

▶ Timetabled slots in Edinburgh:
▶ Class:

▶ Tuesday 2pm-4pm
▶ Room 1.13 in the David Brewster (DB) building

▶ Programming Lab:
▶ Thursday 10am-11am
▶ Either 2.50 (Linux) or 2.52 (Windows) in the Earl

Mountbatten (EM) building.

▶ Exception – no Tuesday Class in week 6 although there will
be an optional Programming Lab in week 6.

Motivation: Cost of Failure

Motivation: Therac-25 A Closer Look

Motivation: Software Weaknesses

The Economics of Defect Detection

Cost

Requirements Coded Released

(Boehm, 1976)
Late life-cycle fixes are generally costly, i.e. can range from 40% to
100% more expensive than corrections in the early phases.

More of the Same?

▶ Dynamic analysis has been the main approach used by
industry in establishing the correctness of software intensive
systems.

▶ Dynamic analysis involves the execution of the system under
test – so conventionally corresponds to software testing.

▶ However, exhaustive testing is not possible for realistic
software intensive systems.

▶ Worse still, omissions and defects introduced early within the
development life-cycle are the most expensive to rectify if they
go undetected until testing and beyond ...

Complementary Methods: Rigorous and Formal

▶ Static analysis does not involve the execution of the system
under test – such methods operate instead directly on the
“representation” of the artifact under test, e.g. code,
assertions, contracts, design models, etc.

▶ Static analysis methods can potentially be applied early within
the development life-cycle.

▶ There exists a broad spectrum of static analysis methods, i.e.
from Lint – heuristic based checker for detecting generic
coding errors in C programs – to the use of mathematical
proof in verifying properties of programs.

▶ This course will focus mostly on the rigorous end of the
spectrum, and in particular on so called formal methods
which rely heavily on formal notations and reasoning.

▶ The power of formal reasoning lies in its ability to establish
evidence about a system’s correctness in general, rather than
in terms of specific test cases.

Drivers: Business & Economic Related

Requirements

Specification

Design

Code

Acceptance Test

System Test

Integration Test

Unit Test

Time + Money

Formal methods profile:
Conventional methods profile:

Health Warning

▶ There are no absolute guarantees.

▶ When applied correctly, formal methods have been
demonstrated to result in systems of the highest integrity.

▶ Correctness is only guaranteed with respect to a specification
— you need to validate the assumptions which under-pin the
specification.

▶ Formal methods complement rather than replace conventional
approaches, e.g. testing, simulation and prototyping.

▶ But formal methods are applied by humans who are error
prone — so tools are crucial.

Drivers: Safety Related Standards

▶ RTCA DO-178B and DO-178C (USA Civil Avionics)

▶ Def Stan 00-55 (UK MoD)

▶ ITSEC (IT Security Evaluation Criteria)
▶ IEC 61508 (Generic “Programmable Systems”)

▶ IEC 601 (Medical Equipment)
▶ (Pr)EN 50128 (Railway Industry)

▶ IEC 880 (Nuclear Power Control)

▶ MISRA (Automotive Industry)

▶ FDA (Medical Equipment)

Software Standards

▶ Software standards encapsulate the lessons learned by trial
and error on government and commercial projects.

▶ Standards will typically evolve and change over time.

▶ Standards are guidelines that can be tailored to the
characteristics of a particular project.

▶ Standards assist in the development of high quality software
while reducing time-to-market.

▶ Standards play a crucial role within the development of high
integrity software.

Formal Methods for Design & Code Generation

▶ Z (Oxford) – model based formalism for specifying systems
(set theory based).

▶ B-Method (ClearSy) – similar motivations to VDM, but
automatically generates sequential code, i.e. C, Ada.

▶ Event-B (Systerel) – event based formalism for system-level
modelling that supports refinement.

▶ VDM (IBM, IFAD, CSK) – model based formalism that
supports refinement, i.e. top-down incremental development
of systems.

▶ Alloy (MIT) – a formal modelling language & model checker.

▶ SPIN (NASA) – one of the most popular tools (model
checker) for verifying (and detecting bugs) in
concurrent/distributed system designs. (focus of weeks 7-11 –
theory and practice).

Formal Methods for Static Analysis of Code

▶ Frama-C: specification and analysis for a subset of C (CEA
LIST & INRIA Saclay).

▶ eCv - specification and analysis for a subset of C (Eschertech).

▶ Spec#: specification and analysis of C# (Microsoft).

▶ SPARK - specification and analysis for a subset of Ada (Altran
- formally Praxis) (focus of weeks 1-5 – theory and practice).

Formal Methods in Industry

▶ Microsoft Research - Static Device Verifier (SDV)
automatically checks code of Windows device drivers (i.e.
written in C).

▶ Ensures that a device driver interfaces correcting with the OS
kernel and guards against security threats.

▶ SDV represents a tight integration of automated reasoning
tools.

SDV: A Closer Look

Formal Methods in Industry

▶ SPARK projects: https://www.adacore.com/industries

▶ SPIN projects: http://spinroot.com/spin/success.html

▶ J. Woodcock and P.G. Larsen and J. Bicarregui and J.S.
Fitzgerald, Formal methods: Practice and Experience, ACM
Computing Surveys, Vol 41, No. 4, 2009. (available on
Canvas – see “Recommended Reading” folder with in the
Learning Materials).

https://www.adacore.com/industries
http://spinroot.com/spin/success.html

Summary

Recommended reading:

▶ Spin http://spinroot.com/

▶ SPARK https://www.adacore.com/sparkpro

▶ Frama-C: https://frama-c.com

▶ eCv: http://eschertech.com/products/ecv.php

▶ Z: http://www.zuser.org

▶ B-Method http://www.systerel.fr

▶ Event-B http://www.event-b.org/

▶ VDM http://overturetool.org/

▶ Alloy https://alloytools.org

▶ Spec#:
https://www.microsoft.com/en-us/research/project/spec/

h
h
h
h
h
h
h
h
h
h

