
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Getting Started with SPARK 2014

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

I Context and a little history.

I Accessing SPARK toolkit and an Ada compiler – Linux and
Windows.

I How to statically analyze, compile and execute SPARK code,
e.g. Hello World!

A Brief History of Ada

I In response to increased software development and
maintenance costs the US Defence Department in 1975
published a set of strict safety criteria for programming
languages that were to be used in their systems.

I None of the available languages met the criteria so a
competition was set-up to design a new language.

I The winner was Ada (1983) and became a ISO Standard.

I A major revision of the language was completed in 1995,
giving rise to Ada 95: revision included object-oriented
constructs, optional annexes, e.g. systems programming,
real-time systems, distributed systems, security, ...

I The last major revision came with Ada 2012, where the
language extensions included aspects and pragmas. These
allow a programmer to write both executable statements and
assertions, i.e. properties about the intended behaviour of
your code that can be verified statically.

Ada – Some Applications

I Ada is the most commonly used language for Air Traffic
Control Systems worldwide.

I Ada is used increasingly in commercial “fly-by-wire” aircraft
such as the Boeing 777 and Airbus.

I Ada is used within advanced avionics, i.e. fighter jets, and
many military command and control applications.

I Ada is used for embedded systems in nuclear power plants,
rail transportation systems, industrial process control, ...

An Advert for SPARK like Programming Language

“It is not too late! I believe that by careful pruning of the Ada
language, it is still possible to select a very powerful subset

that would be reliable and efficient in implementation and safe
and economic to use.”

Professor Tony Hoare,
1980 ACM Turing Award Lecture

What is SPARK?

I SPARK is a high level programming language aimed at high
integrity applications.

I SPARK was designed to exploit the strengths of Ada while
eliminating the potential for ambiguities and insecurities, e.g.
I functions in SPARK are true mathematical functions, i.e. can

not have side-effects, so any ambiguity in terms of order of
evaluation is eliminated.

I Pointers are prohibited.
I Aliasing is prohibited.

I SPARK was designed to support verification, both in terms of
mainstream static analysis, i.e. flow analysis, and formal proof.

I The amount of space a SPARK program requires at run-time
can be predicted via static analysis, e.g. guaranteed to have
no memory leakage.

Ada-SPARK Relationships

Ada

Ada 2012

SPARK 2014
SPARK 83, 95, 2005

The SPARK Approach

SPARK SPARK
Verification

Tools

SPARK
(verified)

Ada
Compiler

Executable
code

I The SPARK verification tools are applicable before coding is
complete, i.e. the contracts should proceed the coding.

I SPARK approach advocates “correctness-by-construction”.

I Note that adding contracts to existing Ada code, i.e.
“Sparking the Ada” – is not recommended!

SPARK – Some Applications

Accessing Ada and the SPARK Toolkit (Edinburgh)

I Linux:
I Available in the School Linux Lab (EMB 2.50).
I Remote access via X2GO for details see:

https://www.macs.hw.ac.uk/cs/faq.html#Qnx

I Windows:
I Available in the University Windows Lab (EMB 2.52).
I Remote access via KeyServer for details see:

https://www.hw.ac.uk/uk/services/is/it-essentials/

keyserver.htm

https://www.macs.hw.ac.uk/cs/faq.html#Qnx
https://www.hw.ac.uk/uk/services/is/it-essentials/keyserver.htm
https://www.hw.ac.uk/uk/services/is/it-essentials/keyserver.htm

Down loading Ada and the SPARK Toolkit

Use the Community 2020 version, which you can download from
https://www.adacore.com/download

https://www.adacore.com/download

Hello World!

pragma SPARK_Mode (On);

with Text_IO;

-- My first program (this is a comment)!

procedure Hello is

begin

Text_IO.Put_Line("Hello WORLD!");

end Hello;

A closer look at the language later, for now let’s see how to
analyze, compile and execute this code.

SPARK: Static Analysis and Compilation

I The SPARK tools can be run either via the:
I Linux command line OR
I Windows GNAT Programming Studio

I Here I will focus on the Linux command line version.

Linux Command Line: Basics

I Note that before you can use Ada or the SPARK toolkit
you need to type usegnat at the command line in order
to configure GNAT for Ada 2012. This only needs to be
done once per Linux shell window.

I Good practice to create a separate directory for each SPARK
program or application, and separate source and object files. I
recommend:

<<root-name>>

src -- source, e.g. ads/adb files

obj -- compilation and executable files

<<project-file-name>>.gpr -- project file

Linux Command Line: Basics

I A project file tells the SPARK tools where files are located
and provides configuration settings, e.g. compilation options.

I Here is a project file (myproject.gpr) for my Hello World
program:

project MyProject is

for Source_Dirs use ("src");

for Object_Dir use "obj";

for Main use ("hello.adb");

package Compiler is

for Default_Switches ("Ada") use ("-gnatwa");

end Compiler;

end MyProject;

I Main is the only program specific part of this project file.

I A copy of the above project file is located in:
http://www.macs.hw.ac.uk/~air/rmse/SPARK/code/

http://www.macs.hw.ac.uk/~air/rmse/SPARK/code/

Linux Command Line: Static Analysis

Static analysis is performed using the gnatprove command, e.g.

gnatprove -P myproject.gpr hello.adb

Phase 1 of 2: generation of Global contracts ...

Phase 2 of 2: flow analysis and proof ...

Summary logged in .../Hello/obj/gnatprove/gnatprove.out

Linux Command Line: Compilation and Execution

I The GNAT Ada gnatmake command automates the
compilation process, e.g.

gnatmake -P myproject.gpr

Compile

[Ada] hello.adb

Bind

[gprbind] hello.bexch

[Ada] hello.ali

Link

[link] hello.adb

The resulting executable has no file extension, e.g. hello and
can be found within the obj directory. To execute it, simply
type its name via the command line!

hello

Hello WORLD!

Additional Guidance

I Videos showing how to analyse and run the “Hello World”
program are available via the Week 1 module on Canvas, i.e.
I Video of “Hello World” in SPARK (Linux version)
I Video of “Hello World” in SPARK (Windows 10 version)

I Note that in GNAT Programming Studio:
I The same directory (i.e. folder) structure is used, i.e. src and

obj.
I However, the project file is automatically generated.

Summary

Learning outcomes:

I A brief history of Ada and its relationship with SPARK.

I How to access the SPARK toolkit and an Ada compiler.

I How to analyze, compile and execute SPARK code.

Summary

Recommended reading:

I “Building High Integrity
Applications with SPARK”
Mccormick, J.W. and
Chapin, P.C. Cambridge
University Press, 2015.

I SPARK 2014 User’s Guide:
https://docs.adacore.

com/spark2014-docs/

html/ug/

I AdaCore: SPARK Pro:
https://www.adacore.

com/sparkpro

https://docs.adacore.com/spark2014-docs/html/ug/
https://docs.adacore.com/spark2014-docs/html/ug/
https://docs.adacore.com/spark2014-docs/html/ug/
https://www.adacore.com/sparkpro
https://www.adacore.com/sparkpro

