
Rigorous Methods for Software Engineering
(F21RS-F20RS)

The SPARK Approach: Part 1

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh



Overview

I Basic building blocks of a SPARK program.

I Basic analysis: checking compliance with the SPARK subset
of Ada.



Basic Program Unit

I The basic building block of a program is the procedure.

I A procedure consists of a declaration part and a statement
part:

procedure <program_name> (<parameter_list>) is

<declarations>

begin

<statements>

end <program_name>;

Note the use of <...> to denote a place-holder for actual program
code.



Hello World – Revisited

with Text_IO;

-- My first program (this is a comment)!

procedure Hello is

begin

Text_IO.Put_Line("Hello WORLD!");

end Hello;

I Note that an empty parameter list does not contain brackets,
i.e. (), as is the case with Java, C, C++.

I A program will typically use a existing library resource, e.g.
such as the Put_Line procedure from the Text_IO library
resource (more details later).

I Such library resources will typically contain many procedures,
types, etc and therefore require a higher level of structuring ...



Variables and Predefined Types

I SPARK predefined types are: Integer, Float, Boolean,
Character, and String.

I Variables are declared by instantiating the following pattern:

<variable_seq> : <type> [:= <constant_expr>];

for example:

Count: Integer;
Found: Boolean:= False;
Weekly, Monthly: Float := 0.0;

Note that := is assignment and is used here to initialize the
variables Found, Weekly and Monthly.



Integer Types and Subtypes

I Specifying the valid range of an Integer type can help to
eliminate certain kinds of errors and makes it easier to reason
about the correctness of the code, e.g.

type A_grade is range 70 .. 100;

type B_grade is range 60 .. 69;

I However, combining variables of different types in an
expression requires explicit type conversion.

I A neater approach is to use a subtype, e.g.

subtype Index_Type is Integer range 1 .. 10;

I, J, K: Index_Type;

The base type of the subtype Index Type is Integer.

I Variables that have the same base type can occur within an
expression and without the need for type conversion.



Constants

I Constants are declared by instantiating the following pattern:

<variable_seq> : constant <type> := <constant_expr>;

for example:

Maximum: constant Integer := 100;

I There is an alternative form of the constant declaration:

<variable_seq> : constant := <static_expr>;

A <static_expr> is limited to expressions of a scalar type
and String type.

I Note that the type of <static_expr> is implicit.



Constants

I The implict typing of a <static_expr> is useful when
defining a type. For example, consider the type declarations:

Stack_Size: constant := 4;

type Pointer_Range is range 0..Stack_Size;

subtype Index_Range is

Pointer_Range range 1..Stack_Size;

The above would not be legal SPARK if Stack_Size is
declared as follows:

Stack_Size: constant Integer := 4;

That is, if Stack_Size is declared to be an Integer then it
cannot be used in the declaration of Index_Range. This is
because Index_Range is a subtype of Pointer_Range, and
the type Pointer_Range is distinct from the type Integer.



Attributes

I Given a scalar (numeric & enumeration) subtype, e.g.

subtype Index_Type is Integer range 1 .. 10;

then the first and last values (or attributes) can be accessed
via Index_Type’First and Index_Type’Last respectively.

Note that Index_Type’First is read as “index type tick
first”.



Formal Parameters To Procedures

in : the value of the actual parameter is copied to the
formal parameter. The formal parameter is treated
as a constant. Note if not specified then in is the
default mode.

in out : the actual parameter must be a variable that has a
value at the time the procedure is called. The value
can be used or changed within the procedure. At the
end of the procedure call the value of the formal
parameter is copied back to the actual parameter.

out : the actual parameter must be a variable. The
value of the actual parameter at the time the
procedure is called is ignored. At the end of the
procedure call the value of the formal parameter is
copied back to the actual parameter.



A Simple Procedure

procedure Int_Switch(X, Y: in out Integer)
is

T: Integer;
begin

T:=X;
X:=Y;
Y:=T;

end Int_Switch;

I X and Y are (formal) parameters of type Integer.

I T is a local variable of type Integer.

I The effective of the call Int_Switch(A, B) is to switch the
values of the actual parameters A and B.



A Simple Function

function Int_Min(X, Y: in Integer) return Integer
is
begin

if X > Y then
return(Y);

else
return(X);

end if;
end Int_Min;

I SPARK functions can not have side-effects:
I function parameters are constrained to have in mode
I modification of global state variables is prohibited (more

details later).

I Note that a SPARK function can have multiple return

statements. This represents a change from SPARK 2005
which allowed only a single return statement.



Building Larger Program Units

I This higher level of structuring, or abstraction, is provided by
packages.

I A large number of so called library packages, such as Text_IO
exist, however, the notion of a package provides a general
mechanism for structuring large software systems.

I While procedures support programming-in-the-small, packages
can be seen as supporting programming-in-the-large.

I A package has a specification and a body:
I A package specification provides an interface, it tells a user

what resources a package provides.
I A package body defines how the resources are implemented,

and is not visible to the user.



Package Specification

package <package_name> is

<declarations>

end <package_name>;

I Here the declarations provide enough information to use a
resource (subprogram) without revealing its implementation
details.

I Note that package specifications and bodies can be defined
within the same file, but “best practice” suggests keeping
them in separate files, i.e. foo.ads for the package
specification of foo and foo.adb for the package body of
foo.

I Note also that the file names need to be in lower case.



Package Body

package body <package_name> is

<declarations>

end <package_name>;

I Here the declarations provide the implementation details of
the resource (subprogram).

I Any constants, types, variables declared within the package
body are not accessible from outside the package.



Package Body

I An optional statement part can be included within the
package body, i.e.

package body <package_name> is

<declarations>

begin

<statements>

end <package_name>;

I If included, then the statement part is executed once when
the program using the package starts. This process is called
elaboration.



Different Roles for Packages

I Packages can be used to group together types and constants.

I Packages can be used to group together logically related
subprograms (procedures and functions).

I Packages can have “memory” and can therefore represent
objects with state.

I Packages can be used to construct abstract data types.



Packages of Types and Constants

package Distances is

subtype Dist is Integer range 1..Integer’Last;

Edin_Glas: constant Dist := 42;

Glas_Stir: constant Dist := 30;

Stir_Edin: constant Dist := 36;

end Distances;



Packages of Subprograms

package Volumes is

Pi: constant Float := 3.14159;

function Box_Car_Vol(L: Float;
W: Float;
H :Float) return Float;

function Tank_Car_Vol(L: Float;
R: Float) return Float;

end Volumes;



Packages of Subprograms

package body Volumes is

function Box_Car_Vol(L: Float;
W: Float;
H :Float) return Float is

begin
return L * W * H;

end Box_Car_Vol;

function Tank_Car_Vol(L: Float;
R: Float) return Float is

begin
return Pi * R * R * L;

end Tank_Car_Vol;

end Volumes;



A Simple Procedure (specification)

package Switch
is

procedure Int_Switch(X, Y: in out Integer);

end Switch;

I X and Y are (formal) parameters of type Integer.

I The intended effective of the call Int_Switch(A, B) is to
switch the values of the actual parameters A and B.



A Simple Procedure (body)

package body Switch
is

procedure Int_Switch(X, Y: in out Integer)
is

T: Integer;
begin

T:=X;
X:=Y;
Y:=T;

end Int_Switch;
end Switch;

I X and Y are (formal) parameters of type Integer.

I T is a local variable of type Integer.

I The effective of the call Int_Switch(A, B) is to switch the
values of the actual parameters A and B.



Accessing Package Entities

I As illustrated earlier, the with clause declares the packages
that the current program unit (procedure or package) requires
access to, i.e.

with <name_1>, ..., <name_2>;
<current_program_unit>

I Note that SPARK forces all references to entities declared in
other packages to be qualified with the package name, e.g.

with Switch;
package body Foo is

procedure Use_Int_Switch is
...
Switch.Int_Switch(A, B);
...

end Use_Int_Switch;
end Foo;



The use type clause

I When we declare a type, a set of operations is also defined.

I For example, consider the declaration of Index_Type within a
package A:

type Index_Type is range 1 .. 10;

Index_Type is associated with a distinct set of arithmetic
operators, e.g. +, −, =, > etc.

I When accessing a type from another package we must:
I Prefix the operators with the name of the package in which

they are defined, OR
I Include a use type clause which gives direct access to the

operators associated with the specified type, e.g.
use type A.Index_Type

A use clause is also available, which gives access to all resources
within a package.



A use type Example

package A is
type Index_Type is range 1 .. 10;
...

end A;

with A;
use type A.Index_Type;
package B
is

procedure Inc (X: in out A.Index_Type)
...

end B;

The code for this example is available via
http://www.macs.hw.ac.uk/~air/rmse/code/AB/

http://www.macs.hw.ac.uk/~air/rmse/code/AB/


Identifying SPARK Code

I A software system maybe constructed using a combination of
SPARK and full blown Ada 2012, i.e. where the safety and
security critical code is written in SPARK.

I One can specify the SPARK (and non-SPARK) parts using the
Ada pragma construct, i.e.

pragma SPARK_Mode (On)
package Switch
is

procedure Int_Switch(X, Y: in out Integer);

end Switch;

Note that a pragma denotes a directive that is used here by
the SPARK verification tools. We will encounter other uses of
the Ada pragma construct in time.



Identifying SPARK Code

I Note that pragma SPARK_Mode (Off) switches off the
SPARK analysis mode.

I Alternatively, one can use the aspect construct to allow for
finer control over the SPARK mode, i.e.

package Switch
is

procedure Int_Switch(X, Y: in out Integer)
with

SPARK_Mode => On;

end Switch;



Verifying Software Written in SPARK

I The SPARK tools can be run either via the command-line or
using the GNAT Programming Studio (GPS). For the
purposes of these notes we will focus on the command-line
interface.

I GNATprove is the SPARK Verification Tool.
I GNATprove supports 3 level of analysis:

I Language compliance – checks that the correct subset of Ada
has been used.

I Flow analysis – checks data flow (e.g. initialization of
variables) and information flow (e.g. consistency of code with
dependency relations).

I Formal proof – formally verifies code with respect to the: i)
absence of run-time errors and ii) assertions (e.g. pre- and
postconditions).



Running GNATprove at the Command Line

gnatprove -P myproject.gpr --mode=check -u switch.ads switch.adb

I -P flag specifies the project file, e.g. myproject.gpr,

I -u flag specifies specification files to analyse.

I -U flag indicates that all files in the search path (i.e. defined
within the project file) should be analysed.

I Specifying level of analysis:
I --mode=check indicates that code should be verified with

respect to the SPARK subet of Ada.
I --mode=flow indicates that code should be verified with

respect flow contracts.
I --mode=prove indicates that code should be verified with

respect to the i) absence of run-time errors and ii) assertions
(e.g. pre- and postconditions).



GNATprove: Summary of SPARK Analysis

I For flow and prove modes a summary table is generated, i.e.
./gnatprove/gnatprove.out

I The above summary table was generated for the switch
example (i.e. mode=flow).

I Note: flow analysis is the focus of the next lecture.



Summary

Learning outcomes:

I Understand the basic building blocks of a SPARK program.

I Understand programming in the large via packages.

I Understand how to check SPARK compliance, i.e. the SPARK
subset of Ada.



Summary
Recommended reading:

I “Building High Integrity Applications with SPARK”
Mccormick, J.W. and Chapin, P.C. Cambridge University
Press, 2015.

I “High Integrity Software: The SPARK Approach to Safety
and Security” Barnes, J. Addison-Wesley, 2003.

I AdaCore SPARK resources:
I SPARK 2014 User’s Guide:

https://docs.adacore.com/spark2014-docs/html/ug/
I AdaCore: SPARK Pro:

https://www.adacore.com/sparkpro

I Related approaches to high integrity software engineering:
I Frama-C: https://frama-c.com/index.html
I eCv: http://eschertech.com/products/ecv.php
I B-Method http://www.systerel.fr
I Eiffel: https://www.eiffel.com
I Spec#:

https://www.microsoft.com/en-us/research/project/spec/

https://docs.adacore.com/spark2014-docs/html/ug/
https://www.adacore.com/sparkpro
h
h
h
h
h

