
Rigorous Methods for Software Engineering
(F21RS-F20RS)

The SPARK Approach: Part 2

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh



Overview

▶ More details on the SPARK language.

▶ An introduction to SPARK contracts.



Contracts

▶ A contract allows a programmer to specify the intended
behaviour of a subprogram, i.e. what the subprogram is
intended to achieve without saying how it will be achieved.

▶ The notion of a contract has been around along time, i.e.
Assigning Meanings to Programs
Robert W. Floyd
Proceedings of Symposium on Applied Mathematics, 1969.

▶ Contracts appear in a number programming languages today,
e.g. Eiffel, C# (and Spec#), Frama-C, ...



Subprogram Contracts

▶ Contracts in SPARK may involve:
▶ data dependencies: specifies what global data is read and

written.
▶ flow dependencies: specifies what subprogram outputs

depend upon on subprogram inputs.
▶ preconditions: specifies logical constraints on the caller of a

subprogram.
▶ postconditions: specifies logical constraints on the functional

behaviour of a subprogram.
▶ contract cases: a complementary way of specifying pre- and

postconditions.



Subprogram Contracts

▶ A contract should be written before coding begins.

▶ The SPARK verification tools automatically check the
correctness of the code with respect to its contract, i.e. static
analysis.

▶ A contract is represented using the notion of an aspect – a
construct of Ada 2012 that allows properties of an entity to
be represented.



Data Dependency Contracts

▶ A data dependency contract describes what global data a
subprogram accesses, and how the data is used, i.e. in (read),
out (written), in out (read & written).

▶ Access to global data can easily go unnoticed by a
programmer, thus potentially leading to errors.

▶ SPARK addresses this issue by forcing a programmer to be
explicit about the use of global data within a contract.

▶ The Global aspect is used to represent a data dependency
contract, i.e.

Global => (...,

<mode> => <global_variable>,

...);

where <mode> can be Input, Output or In Out.

▶ When a subprogram has neither global inputs nor global
outputs, it can be specified using the null data dependencies,
i.e. Global => null;



The Global Aspect – Output

package Counter
is

Count : Integer:= 0;
procedure Reset(Value: in Integer)
with
Global => (Output => Count);

...
end Counter;
package body Counter
is

procedure Reset(Value: in Integer) is
begin

Count:=Value;
end Reset;

...
end Counter;

Note that the contract is associated with the package specification.



The Global Aspect – In Out

package Counter
is

Count : Integer:= 0;
procedure Inc
with

Global => (In_Out => Count);
...
end Counter;
package body Counter
is
...

procedure Inc is
begin

Count:=Count+1;
end Inc;

...
end Counter;



The Global Aspect – Input

package Counter
is

Count : Integer:= 0;
function Value return Integer
with
Global => (Input => Count);

end Counter;
package body Counter
is
...

function Value return Integer is
begin

return Count;
end Value;

end Counter;



The Global Aspect – Summary of Modes

▶ Global mode Input indicates that the global variable should
be completely assigned before calling the subprogram.

▶ Global mode Output indicates that the global variable should
be completely assigned by the subprogram (procedure) call.

▶ Global mode In Out indicates that the global variable should
be completely assigned before calling the subprogram
(procedure). And it can be assigned by the subprogram
(procedure) call.

Note that if the global state (see Abstract and Refined Aspects
below) is complex (i.e. multiple constitute parts) and an
assignment is partial (i.e. not all constitute parts are assigned),
then global mode In Out should be used.



Flow Dependency Contracts (Procedures)
▶ Flow analysis is concerned with the relationships between

values and computations.

▶ Variables that are used to communicate values into and out of
procedures, i.e. imported and exported values.

▶ A flow dependency contract can be used to describe the
relationship between imported and exported values.

▶ The Depends aspect is used to represent a flow dependency
contract, i.e.

Depends => (...,
<variable> => (..., <variable>, ...),
...);

When an output value does not depend on an input value
corresponding flow dependency should use the null input list, i.e.

Depends => (...,
<variable> => null,
...);



The Depends Aspect

package Switch
is

procedure Int_Switch(X, Y: in out Integer)
with
Depends => (X => Y, Y => X);

end Switch;
package body Switch
is

procedure Int_Switch(X, Y: in out Integer)
is

T: Integer;
begin

T:=X; X:=Y; Y:=T;
end Int_Switch;

end Switch;

Note: the exported value of X is derived from the imported value
of Y and the exported value of Y is derived from the imported
value of X.



Flow Dependency Contracts (Functions)

▶ A flow dependency contract can also be used to describe the
relationship between the inputs to a function and the resulting
value of the function.

▶ The general form of the Depends aspect for a functional
contract is as follows:

Depends => (...,
<func-id>’Result => (..., <variable>, ...),
...);



The Depends Aspect

package Inc_Value
is

type T is range -128 .. 128;

function Inc(X: T) return T
with
Depends => (Inc’Result => X);

end Inc_Value;
package body Inc_Value
is

function Inc(X: T) return T
is
begin

Return X+1;
end Inc;

end Inc_Value;



Why Use Global Variables?

▶ The use of global variables is usually seen as bad practice.

▶ However, within the context of packages, global variables can
have a useful role to play in terms of expressing state
information.

▶ SPARK is typically used within embedded software systems –
packages map onto physical devices, e.g. controllers, sensors,
actuators, where each device has associated state.

▶ By having global variables within a package body, a package
with “memory” can be created, i.e. a package with state.

▶ The procedures within the package can be used to change the
state, and the state may in turn effect the behaviour of the
subprograms within the package (finite state machines).



Arrays

▶ An array type is a random access composite type where the
components are all of the same type (subtype).

▶ An example use of an array (constrained) type:

subtype Index is Integer range 1 .. 7;
type Readings is array (Index) of Float;
New, Old: Readings;
...
New(1) := 25.3;
New(2) := 22.3;
...
Old := New;
...

▶ Note that assignment, equality (=) and inequality (/=) are
allowed with respect to arrays of the same type.



Packages with Memory

package Int_Stack
is

pragma Elaborate_Body;

Stack_Size: constant:=4;
type Pointer_Range is range 0..Stack_Size;
subtype Index_Range is

Pointer_Range range 1..Stack_Size;
type Vector is array(Index_Range) of Integer;
Data: Vector;
Pointer: Pointer_Range;
...

end Int_Stack;

The order in which packages are elaborated can effect the
meaning of an Ada program. The use of the pragma
Elaborate_Body eliminates this potential for ambiguity and is
enforced by SPARK when a declaration and the associated
initialization are split across package specification and body.



Packages with Memory

package Int_Stack

is
...
function Full return Boolean
with

Global => (Input => Pointer),
Depends => (Full’Result => Pointer);

procedure Push(X: in Integer)
with

Global => (In_Out => (Data, Pointer)),
Depends => (Data => (Data, Pointer, X),

Pointer => Pointer);

end Int_Stack;



Packages with Memory
package body Int_Stack
is

function Full return Boolean
is
begin

return Pointer = Stack_Size;
end Full;

procedure Push(X: in Integer)
is
begin

Pointer:= Pointer + 1;
Data(Pointer):= X;

end Push;

begin
Pointer:= 0;
Data:= Vector’(Index_Range => 0);

end Int_Stack;



Array Initialization

▶ Simultaneous assignment via aggregate construct:

Data:= Vector’(Index_Range => 0);

▶ What is wrong with the following:

Data(1):= 0;

Data(2):= 0;

Data(3):= 0;

Data(4):= 0;

▶ The flow analysis embodied within the SPARK tools treats an
array as a single entity, therefore it requires all elements to be
initialized simultaneously, e.g. when Data(1) is assigned the
value 0, the flow analysis spots that Data(2) is undefined.



Abstract Package Variables

▶ Note that the contract makes visible significant
implementation details, e.g. Data and Pointer.

▶ This problem is addressed by allowing an abstract package
variable at the specification level to be linked with a sequence
of concrete package variables within the associated body.

▶ Essentially the abstract package specification is refined within
the concrete package body.

▶ Note that if a subprogram specification makes reference to an
abstract package variable then the corresponding subprogram
body must have refined versions of the Global and Depends

aspects.



An Example Abstract Package Variable – Abstract State

package Int_Stack
with
Abstract_State => State

is
function Full return Boolean
with
Global => (Input => State),
Depends => (Full’Result => State);

procedure Push(X: in Integer)
with

Global => (In_Out => State),
Depends => (State => (X, State));

end Int_Stack;

Note that the name of the abstract state here is State, but any
legal variable identifier is allowable.



An Example Abstract Package Variable – Abstract State

package Int_Stack
with
Abstract_State => State

is
function Full return Boolean
with
Global => (Input => State),
Depends => (Full’Result => State);

procedure Push(X: in Integer)
with

Global => (In_Out => State),
Depends => (State => (X, State));

end Int_Stack;

Note also that the State depends on X and State. This is
because the exported State corresponds to the imported State

with the addition of X.



Refining Abstract Package Variables – Refined State

package body Int_Stack
with
Refined_State => (State => (Data, Pointer))

is
...
function Full return Boolean

with
Refined_Global => (Input => Pointer),
Refined_Depends => (Full’Result => Pointer)

is
begin

return Pointer = Stack_Size;
end Full;
...

end Int_Stack;

Whenever an Abstract State is used (.ads), an associated
Refined State is required (.adb).



Refining Abstract Package Variables – Refined State

package body Int_Stack
with
Refined_State => (State => (Data, Pointer))

is
...
procedure Push(X: in Integer)

with
Refined_Global => (In_Out => (Data, Pointer)),
Refined_Depends => (Data => (X, Data, Pointer),

Pointer => Pointer)
is
begin

Pointer:= Pointer + 1;
Data(Pointer):= X;

end Push;
...

end Int_Stack;



SPARK Tools – Checks on Abstract/Concrete State

▶ Each Abstract Global Input has at least one of its
constituents mentioned by the Concrete Global Inputs
(refined).

▶ Each Abstract Global In Out has at least one of its
constituents mentioned with mode Input and one with mode
Output (or at least one constituent with mode In Out) at the
concrete (refined) level.

▶ Each Abstract Global Output has to have ALL its
constituents mentioned by the Concrete Global Outputs
(refined).



Enumeration Type

▶ Enumeration types allow you to easily introduce meaningful
names into your programs for collections of entities.

▶ For example, the days of the week can be represented by the
enumeration type:

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

Today: Days;

...

Today:= Thu;

...

▶ The values within an enumeration type are ordered, e.g.
Mon < Tue < Wed < Thu < . . .



Records

▶ A record type is a composite type with named components.

▶ An example use of a record type:

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Reading is

record
Day: Days;
Value: Float;

end record;

A, B, C: Reading;
...
A.Day := Mon; A.Value := 32.2;
B.Day := Tue; B.Value := 23.4;
C := B;

▶ Note that assignment, equality (=) and inequality (/=) are
allowed with respect to records of the same type.



Abstract Data Types via Packages

package Int_Stack is

type Stack is private;

function Full(S: Stack) return Boolean
with
Depends => (Full’Result => S);

procedure Init(S: out Stack)
with
Depends => (S => null);

procedure Push(X: in Integer; S: in out Stack)
with
Depends => (S => (X, S));

private
...

end Int_Stack;



Abstract Data Types via Packages

package Int_Stack is
...
private

Stack_Size: constant := 4;
type Pointer_Range is range 0..Stack_Size;
subtype Index_Range is

Pointer_Range range 1..Stack_Size;
type Vector is array(Index_Range) of Integer;
type Stack is

record
Data: Vector;
Pointer: Pointer_Range;

end record;
end Int_Stack;

Note the private part is not accessible by the user, but must be
provided within the specification so that the compiler can reserve
appropriate storage.



Abstract Data Types via Packages

package body Int_Stack is

function Full(S: Stack) return Boolean is
begin

return S.Pointer = Stack_Size;
end Full;

procedure Init(S: out Stack) is
begin

S.Pointer:=0;
S.Data:=Vector’(Index_Range => 0);

end Init;

procedure Push(X: in Integer; S: in out Stack) is
begin

S.Pointer:=S.Pointer+1;
S.Data(S.Pointer):=X;

end Push;
end Int_Stack;



Conditional: if Statement

if X < Min then
Min := X;

end if;

if X < Y then
Min := X;

else
Min := Y;

end if;

if X < Min then
Pump := On;
Value := Close;

elsif X > Max then
Pump := Off;
Value := Open;

elsif Pump = Off then
Value := Close;

else
Value := Open;

end if;

Note that the elsif form provides an alternative to the nesting of
if-statements.



Conditional: case Statement

type Activity_Type is (Work, Gym, Party);
Activity: Activity_Type;
...
case Today is

when Mon .. Thu => Activity := Work;
when Fri => Activity := Gym;
when Sat | Sun => Activity := Party;

end case;

Char: Character;
...
case Char is

when ’a’ .. ’z’| ’A’ .. ’Z’ => Let_Cnt := Let_Cnt+1;
when ’0’ .. ’9’ => Digit_Cnt := Digit_Cnt+1;
when others => Unknown_Cnt := Unknown_Cnt+1;

end case;

Note that the when others clause is optional, but when present it
comes last.



Iteration: loop and while statements

loop
...
exit when <Condition>;
...

end loop;

while <Condition> loop
...
...
...

end loop;

▶ Note that the when clause is optional, i.e. one can simply
have an unconditional exit.

▶ Note that you can have multiple exit points.



Iteration: for statement

for <Ident> in [reverse] <SubType> loop ... end loop;

▶ Note that “[...]” denotes optional parts of the syntax.

▶ In the following the loop variable I counts up from 1 to N:

for I in Integer range 1 .. N loop
...

end loop;

▶ In the following the loop variable I counts down from N to 1:

for I in reverse Integer range 1 .. N loop
...

end loop;

Note that the loop variable (<Ident>) is local to the for-loop – the
variable can not also be declared in an outer block, i.e. eliminates
risk of confusion that can arise with shadow variables.



Summary

▶ Contracts involving Global and Depends.

▶ Packages with memory.

▶ Abstract and concrete package variables.

▶ Record and enumeration types.

▶ Abstract data types via packages.

▶ Flow of control constructs.


