
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Flow Analysis - How It Works

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh



Overview

▶ Begin to explore the levels of program analysis supported by
the SPARK tool-set.

▶ Specifically consider those aspects that under-pin the flow
analysis capabilities of the SPARK tool-set.

▶ Understanding the underling theory of flow analysis will assist
you with tasks T2 and T4 of Coursework 1.



Examiner’s Levels of Analysis

Data flow analysis: checks the correct usage of parameters and
global variables with respect to their modes; checks
that variables are not read before they are written;
checks for ineffective code (automatic).

Information flow analysis: checks for consistency between code and
contract (automatic).

Formal verification: uses logical assertions, represented via a
contract, in conjunction with the code to generate
verification conditions (i.e. logical conjectures). The
SPARK tool-set contains a theorem proving
capability which can automate the proof of a
significant percentage of verification conditions. But
in general, formal verification is semi-automatic.

Note that the levels should be seen as progressively more
sophisticated.



Fundamentals of Flow Analysis

▶ A purely symbolic form of analysis, i.e. no specific data values
are considered.

▶ Based upon a number of relationships between variables and
expressions.



Statements, Variables & Expressions

▶ For a statement S :
▶ V denotes the set of variables
▶ E denotes the set of expressions

▶ Note that a statement may be an atomic statement or a
compound statement, e.g. sequences, conditionals, ...

▶ Example:

X := Y * Z; W := X + 2;

within the above statement sequence, V = {W ,X ,Y ,Z}
and E = {Y ∗ Z ,X + 2}.



Classifying Variables

A variable is defined when it appears on the LHS of an
assignment, otherwise it is preserved. This gives rise to 2 sets:

▶ D the set of variables that S may define.

▶ P the set of variables that S may preserve.

Note the use of “may” – if S is conditional then not all paths may
traverse all assignments.



Examples

▶ Given the statement sequence:

X := Y * Z; W := X + 2;

we get D = {X ,W } and P = {Y ,Z}
▶ Given the conditional statement:

if X > Y then X := X + Y; else Y := Y + X;

we get D = {X ,Y } and P = {X ,Y }
Note that the intersection of D and P may be non-empty when
conditional statements are involved.



Some Dependency Relations

L(u, e) is true if the initial value of variable u may be used in
computing the value of expression e.

M(e, v) is true if e may be used in computing the final value
of variable v .

R(u, v) is true if the initial value of u may be used in
computing the final value of variable v .

Note: the phrase “may be used in computing” relates to values
of variables that occur within conditional expressions (if-then,
while, etc) as well as assignments (rhs).



Example Revisited

▶ Given:

X := Y * Z; W := X + 2;

where V = {W ,X ,Y ,Z} and E = {Y ∗ Z︸ ︷︷ ︸
e1

,X + 2︸ ︷︷ ︸
e2

}

▶ Relations L, M and R are defined:

Ltrue = {(y , e1), (z , e1), (y , e2), (z , e2)}
Mtrue = {(e1, x), (e1,w), (e2,w)}
Rtrue = {(y ,w), (z ,w), (y , x), (z , x), (y , y), (z , z)}

Note that L(x , e2) is false because the initial value of X is
overwritten before it is used in computing e2.



Relations As Binary Matrices

Ltrue = {(y , e1), (z , e1), (y , e2), (z , e2)}
Mtrue = {(e1, x), (e1,w), (e2,w)}
Rtrue = {(y ,w), (z ,w), (y , x), (z , x), (y , y), (z , z)}

L =


e1 e2

w 0 0
x 0 0
y 1 1
z 1 1

M =

(w x y z

e1 1 1 0 0
e2 1 0 0 0

)
R =


w x y z

w 0 0 0 0
x 0 0 0 0
y 1 1 1 0
z 1 1 0 1



Lij = 1, if L(vi , ej) is true, otherwise false
Mij = 1, if M(ei , vj) is true, otherwise false
Rij = 1, if R(vi , vj) is true, otherwise false



Diagonal Matrices: Defined & Preserved

▶ The defined and preserved relations can also be represented as
matrices:

D =


w x y z

w 1 0 0 0
x 0 1 0 0
y 0 0 0 0
z 0 0 0 0

 P =


w x y z

w 0 0 0 0
x 0 0 0 0
y 0 0 1 0
z 0 0 0 1


▶ Note that a 1 along the diagonal of the D matrix denotes a

variable that is defined, while a 1 along the diagonal of the P
matrix denotes a variable that is preserved.



An Important Relation

▶ A variable u may be used in computing the value of a variable
v in two ways:

1. u may be used in an expression that in turn is used by v OR
2. u and v may be the same variable, and the variable is a

member of the set P.

▶ Symbolically this can be expressed by:

R = LM or P

Note that the product of binary matrices is analogous to
matrix multiplication where multiplication is replaced by and
and addition is replaced by or, e.g. If N is the product of L
and M (with components Lij and Mjk) then:

Nik = (Li1 and M1k) or (Li2 and M2k) or . . . or (Lin and Mnk)



Sequences Of Statements

▶ Consider a statement S1 and associated relations D1, P1, L1,
M1, R1, and a statement S2 and associated relations D2, P2,
L2, M2, R2.

▶ Now for the composition statement S1; S2, the associated
relations are defined as follows:

D = D1 or D2

P = P1 and P2

L = L1 or R1L2

M = M1R2 or M2

R = R1R2



Switch Revisited

procedure Int_Switch(X, Y: in out Integer)
with
Depends => (X => Y, Y => X);

end Int_Switch;

procedure Int_Switch(X, Y: in out Integer)
is

T: Integer;
begin

T:=X; X:=Y; Y:=T;
end Int_Switch;

where V = {X ,Y ,T}, E = {X ,Y ,T} and the relations L, M, R
for the whole procedure are:

L =


X Y T

X 1 0 1
Y 0 1 0
T 0 0 0

M =


X Y T

X 0 1 1
Y 1 0 0
T 0 1 0

R =


X Y T

X 0 1 1
Y 1 0 0
T 0 0 0





Some Of The Examiner’s Rules

Rule 1: Within matrix M every expression (row) must have a
value of 1 for at least one exported variable (column).

Rule 2: Within matrix R every imported variable (row) must
have a 1 against at least one exported variable
(column).

Rule 3: The sub-matrix of R corresponding to the imported
and exported variables must be consistent with the
Depends aspect of the contract.

Note that matrix L provides a basis for detecting the use of
undefined variables.



A Buggy Version of Switch

procedure Int_Switch(X, Y: in out Integer)
with
Depends => (X => Y, Y => X);

end Int_Switch;

procedure Int_Switch(X, Y: in out Integer)
is

T: Integer;
begin

T:=X; X:=Y; Y:=X;
end Int_Switch;

L =


X Y X

X 1 0 0
Y 0 1 1
T 0 0 0

M =


X Y T

X 0 0 1
Y 1 1 0
X 0 1 0

R =


X Y T

X 0 0 1
Y 1 1 0
T 0 0 0





Ineffective Statements

M =


X Y T

X 0 0 1
Y 1 1 0
X 0 1 0


▶ Within M the row for expression 1 (X) has 0 against all the

exported variables (X and Y) – this violates Rule 1.

▶ This means the statement containing the expression
associated with the first row of M is ineffective, i.e.
T := X has no effect on the computation defined by
Int Switch.

▶ The GNATprove generated message:

switch.adb: ... warning: variable "T" is assigned but

never read

switch.adb: ... warning: possibly useless assignment

to "T", value might not be referenced

switch.adb: ... warning: unused assignment



Ineffective Importation

R =


X Y T

X 0 0 1
Y 1 1 0
T 0 0 0


▶ Within R the row for variable X has 0 against all the exported

variables – this violates Rule 2.

▶ This means that the imported value of X does not contribute
to the final value of any of the exported variables.

▶ The GNATprove generated message:

switch.ads: ... medium: missing dependency "null => X"

switch.ads: ... medium: missing self-dependency "Y => Y"

Note that null => X specifies that the initial value of X has
no effect on the execution of the procedure.



Inconsistency between Code and Contract

R ′ =


X Y

X 0 0 −
Y 1 1 −

− − −


where R ′ is the sub-matrix of R corresponding to the imported and
exported variables.

▶ Note that the Depends aspect states that the final value of Y
depends upon the initial value of X, but R ′ indicates no such
relation holds – violates Rule 3.

▶ The GNATprove generated message:

switch.ads: ... medium: incorrect dependency "Y => X"



Summary

Learning outcomes:

▶ Gain insight into how flow analysis can be
implemented.

▶ Construction of dependency relations for simple
program statements.

▶ Expressing and manipulating dependency
relations as binary matrices.

▶ Use of binary matrices in finding flow errors
within code.

Recommended reading:

Bergeretti, J.F. & Carré, B.A. Information-Flow
and Data-Flow Analysis of while-Programs,
ACM Transactions on Programming Languages
and Systems, ACM, New York, Vol. 7, 1985.


