Rigorous Methods for Software Engineering (F21RS-F20RS)

Flow Analysis - How It Works

Andrew Ireland
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Overview

- Begin to explore the levels of program analysis supported by the SPARK tool-set.
- Specifically consider those aspects that under-pin the flow analysis capabilities of the SPARK tool-set.
- Understanding the underling theory of flow analysis will assist you with tasks T2 and T4 of Coursework 1.

Examiner's Levels of Analysis

Data flow analysis: checks the correct usage of parameters and global variables with respect to their modes; checks that variables are not read before they are written; checks for ineffective code (automatic).
Information flow analysis: checks for consistency between code and contract (automatic).
Formal verification: uses logical assertions, represented via a contract, in conjunction with the code to generate verification conditions (i.e. logical conjectures). The SPARK tool-set contains a theorem proving capability which can automate the proof of a significant percentage of verification conditions. But in general, formal verification is semi-automatic.
Note that the levels should be seen as progressively more sophisticated.

Fundamentals of Flow Analysis

- A purely symbolic form of analysis, i.e. no specific data values are considered.
- Based upon a number of relationships between variables and expressions.

Statements, Variables \& Expressions

- For a statement S :
- V denotes the set of variables
- E denotes the set of expressions
- Note that a statement may be an atomic statement or a compound statement, e.g. sequences, conditionals, ...
- Example:

$$
\mathrm{X}:=\mathrm{Y} * \mathrm{Z} ; \mathrm{W}:=\mathrm{X}+2 \text {; }
$$

within the above statement sequence, $V=\{W, X, Y, Z\}$ and $E=\{Y * Z, X+2\}$.

Classifying Variables

A variable is defined when it appears on the LHS of an assignment, otherwise it is preserved. This gives rise to 2 sets:

- D the set of variables that S may define.
- P the set of variables that S may preserve.

Note the use of "may" - if S is conditional then not all paths may traverse all assignments.

Examples

- Given the statement sequence:

$$
\mathrm{X}:=\mathrm{Y} * \mathrm{Z} ; \mathrm{W}:=\mathrm{X}+2 \text {; }
$$

we get $D=\{X, W\}$ and $P=\{Y, Z\}$

- Given the conditional statement:

$$
\text { if } \mathrm{X} \text { > } \mathrm{Y} \text { then } \mathrm{X}:=\mathrm{X}+\mathrm{Y} \text {; else } \mathrm{Y}:=\mathrm{Y}+\mathrm{X} \text {; }
$$

$$
\text { we get } D=\{X, Y\} \text { and } P=\{X, Y\}
$$

Note that the intersection of D and P may be non-empty when conditional statements are involved.

Some Dependency Relations

$L(u, e)$ is true if the initial value of variable u may be used in computing the value of expression e.
$M(e, v)$ is true if e may be used in computing the final value of variable v.
$R(u, v)$ is true if the initial value of u may be used in computing the final value of variable v.
Note: the phrase "may be used in computing" relates to values of variables that occur within conditional expressions (if-then, while, etc) as well as assignments (rhs).

Example Revisited

- Given:

$$
\mathrm{X}:=\mathrm{Y} * \mathrm{Z} ; \mathrm{W}:=\mathrm{X}+2 \text {; }
$$

where $V=\{W, X, Y, Z\}$ and $E=\{\underbrace{Y * Z}_{e_{1}}, \underbrace{X+2}_{e_{2}}\}$

- Relations L, M and R are defined:

$$
\begin{aligned}
& L_{\text {true }}=\left\{\left(y, e_{1}\right),\left(z, e_{1}\right),\left(y, e_{2}\right),\left(z, e_{2}\right)\right\} \\
& M_{\text {true }}=\left\{\left(e_{1}, x\right),\left(e_{1}, w\right),\left(e_{2}, w\right)\right\} \\
& R_{\text {true }}=\{(y, w),(z, w),(y, x),(z, x),(y, y),(z, z)\}
\end{aligned}
$$

Note that $L\left(x, e_{2}\right)$ is false because the initial value of X is overwritten before it is used in computing e_{2}.

Relations As Binary Matrices

$$
\begin{aligned}
& L_{\text {true }}=\left\{\left(y, e_{1}\right),\left(z, e_{1}\right),\left(y, e_{2}\right),\left(z, e_{2}\right)\right\} \\
& M_{\text {true }}=\left\{\left(e_{1}, x\right),\left(e_{1}, w\right),\left(e_{2}, w\right)\right\} \\
& R_{\text {true }}=\{(y, w),(z, w),(y, x),(z, x),(y, y),(z, z)\} \\
& L=\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\left(\begin{array}{cc}
e_{1} & e_{2} \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right) M=\begin{array}{c}
w \\
e_{1}\left(\begin{array}{cccc}
1 & x & y & z \\
e_{2} & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) R=\begin{array}{c}
w \\
w \\
y \\
z
\end{array}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right) ~
\end{array}
\end{aligned}
$$

$L_{i j}=1$, if $L\left(v_{i}, e_{j}\right)$ is true, otherwise false $M_{i j}=1$, if $M\left(e_{i}, v_{j}\right)$ is true, otherwise false $R_{i j}=1$, if $R\left(v_{i}, v_{j}\right)$ is true, otherwise false

Diagonal Matrices: Defined \& Preserved

- The defined and preserved relations can also be represented as matrices:

$$
D=\begin{aligned}
& w \\
& w \\
& x \\
& y \\
& z
\end{aligned}\left(\begin{array}{llll}
w & x & y & z \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad P=\begin{gathered}
w \\
w \\
y \\
z
\end{gathered}\left(\begin{array}{cccc}
w & x & y & z \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Note that a 1 along the diagonal of the D matrix denotes a variable that is defined, while a 1 along the diagonal of the P matrix denotes a variable that is preserved.

An Important Relation

- A variable u may be used in computing the value of a variable v in two ways:

1. u may be used in an expression that in turn is used by v OR
2. u and v may be the same variable, and the variable is a member of the set P.

- Symbolically this can be expressed by:

$$
R=L M \text { or } P
$$

Note that the product of binary matrices is analogous to matrix multiplication where multiplication is replaced by and and addition is replaced by or, e.g. If N is the product of L and M (with components $L_{i j}$ and $M_{j k}$) then:

$$
N_{i k}=\left(L_{i 1} \text { and } M_{1 k}\right) \text { or }\left(L_{i 2} \text { and } M_{2 k}\right) \text { or } \ldots \text { or }\left(L_{i n} \text { and } M_{n k}\right)
$$

Sequences Of Statements

- Consider a statement S_{1} and associated relations D_{1}, P_{1}, L_{1}, M_{1}, R_{1}, and a statement S_{2} and associated relations D_{2}, P_{2}, L_{2}, M_{2}, R_{2}.
- Now for the composition statement $S_{1} ; S_{2}$, the associated relations are defined as follows:

$$
\begin{aligned}
D & =D_{1} \text { or } D_{2} \\
P & =P_{1} \text { and } P_{2} \\
L & =L_{1} \text { or } R_{1} L_{2} \\
M & =M_{1} R_{2} \text { or } M_{2} \\
R & =R_{1} R_{2}
\end{aligned}
$$

Switch Revisited

```
procedure Int_Switch(X, Y: in out Integer)
with
    Depends => (X => Y, Y => X);
end Int_Switch;
procedure Int_Switch(X, Y: in out Integer)
is
    T: Integer;
begin
    T:=X; X:=Y; Y:=T;
end Int_Switch;
```

where $V=\{X, Y, T\}, E=\{X, Y, T\}$ and the relations L, M, R for the whole procedure are:

$$
L=\begin{aligned}
& X \\
& X \\
& Y \\
& T
\end{aligned}\left(\begin{array}{lll}
1 & Y & T \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) M=\begin{array}{ccc}
X & Y & T \\
Y \\
T
\end{array}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) R=\begin{array}{lll}
X & Y & T \\
Y \\
T
\end{array}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Some Of The Examiner's Rules

Rule 1: Within matrix M every expression (row) must have a value of 1 for at least one exported variable (column).
Rule 2: Within matrix R every imported variable (row) must have a 1 against at least one exported variable (column).
Rule 3: The sub-matrix of R corresponding to the imported and exported variables must be consistent with the Depends aspect of the contract.
Note that matrix L provides a basis for detecting the use of undefined variables.

A Buggy Version of Switch

```
procedure Int_Switch(X, Y: in out Integer)
with
    Depends => (X => Y, Y => X);
end Int_Switch;
procedure Int_Switch(X, Y: in out Integer)
is
    T: Integer;
begin
        T:=X; X:=Y; Y:=X;
end Int_Switch;
```

$L=\begin{array}{ccc}X & Y & X \\ X \\ Y\end{array}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right) M=\begin{array}{cc}X & Y \\ Y \\ Y \\ X\end{array}\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right) R=\begin{array}{lll}X & Y & T \\ Y \\ T\end{array}\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$

Ineffective Statements

$$
M=\begin{gathered}
X \\
X \\
Y \\
X
\end{gathered}\left(\begin{array}{ccc}
0 & Y & T \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

- Within M the row for expression 1 (X) has 0 against all the exported variables (X and Y) - this violates Rule 1.
- This means the statement containing the expression associated with the first row of M is ineffective, i.e. $\mathrm{T}:=\mathrm{X}$ has no effect on the computation defined by Int_Switch.
- The GNATprove generated message:
switch.adb: ... warning: variable "T" is assigned but never read
switch.adb: ... warning: possibly useless assignment to "T", value might not be referenced
switch.adb: ... warning: unused assignment

Ineffective Importation

$$
R=\begin{gathered}
X \\
X \\
Y \\
T
\end{gathered}\left(\begin{array}{ccc}
0 & Y & T \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Within R the row for variable X has 0 against all the exported variables - this violates Rule 2.
- This means that the imported value of X does not contribute to the final value of any of the exported variables.
- The GNATprove generated message:
switch.ads: ... medium: missing dependency "null => X" switch.ads: ... medium: missing self-dependency "Y => Y" Note that null => X specifies that the initial value of X has no effect on the execution of the procedure.

Inconsistency between Code and Contract

$$
\left.R^{\prime}=\begin{array}{ccc}
X & Y \\
X \\
Y & \left(\begin{array}{cc}
0 & 0
\end{array}\right. \\
1 & 1 & - \\
- & - & -
\end{array}\right)
$$

where R^{\prime} is the sub-matrix of R corresponding to the imported and exported variables.

- Note that the Depends aspect states that the final value of Y depends upon the initial value of X , but R^{\prime} indicates no such relation holds - violates Rule 3.
- The GNATprove generated message:
switch.ads: ... medium: incorrect dependency "Y => X"

Summary

Learning outcomes:

- Gain insight into how flow analysis can be implemented.
- Construction of dependency relations for simple program statements.
- Expressing and manipulating dependency relations as binary matrices.
- Use of binary matrices in finding flow errors within code.

Recommended reading:

Bergeretti, J.F. \& Carré, B.A. Information-Flow and Data-Flow Analysis of while-Programs, ACM Transactions on Programming Languages and Systems, ACM, New York, Vol. 7, 1985.

