Rigorous Methods for Software Engineering
(F21RS-F20RS)
Industrial Strength Program Verification

Andrew lreland
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh



Overview

» Introduce the technique of program verification via the
SPARK tool-set.

» Foucs on exception freedom and functional verification.

» The material in this lecture will directly support you with the
formal verification tasks associated with the coursework.



Formal Verification of Code

I SPARK - Prover ‘ U
\V‘ counter
., examples

J

» Code is verified with respect to a formal specification
represented by assertions.

P> An assertion is a logical statement which can be inserted at
any point within the control flow of your program or within
the proof contract (i.e., pre- and postconditions).

» Verification is via mathematical proof, i.e., SPARK — Prove
..., what we refer to as Prove mode.



Formal Verification of Code

I SPARK | Prover - tﬂ
\Q‘ counter
., examples

J

Where automation fails, there are two possibilities, firstly:
» There is a bug in your code, and/or there is an inconsistency
between your code and its proof contract(s)/assertion(s).

» When a bug or inconsistency is identified, Prove mode
generates a counter example, i.e., an assignment to program
variables that makes an assertion false.



Formal Verification of Code

I SPARK - Prover ‘ tﬂ
At
Q counter
., examples

J

Where automation fails, there are two possibilities, secondly:

» The proof automation tools are not strong enough, i.e., in
general, program verification is undecidable so full automation
is not possible.

» Here human ingenuity is required, typically in the form of a
missing lemma or key proof step (e.g., a generalization step).



Formal Verification of Code

I SPARK | Prover - tﬂ
\Q‘ counter
., examples

J

For program verification by proof to be feasible within industry
context, the level of proof automation must be very high, i.e.,
typically greater than 95% of proof obligations are dealt with
automatically.



An Example of an Assertion

procedure Int_Dec(X: in out Integer)
is
begin
if X > 0 then X:= X-1; end if;
pragma Assert (X >= 0);
end Int_Dec;

P> Note that the Assert pragma allows an assertion to be
inserted within the code.

» Question: will the above assertion always be true?



An Example of an Assertion

procedure Int_Dec(X: in out Integer)
is
begin
if X > 0 then X:= X-1; end if;
pragma Assert (X >= 0);
end Int_Dec;

Within GNAT Studio using Prove mode we get:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

. assertion might fail, cannot prove X >= 0 (e.g., when X = -1)
[possible explanation: ... should mention X in a precondition]
Note that “when X = -1" is a counter example. Note also that

via Prove mode we are given a hint as to how to overcome the
failure, i.e., introduce a precondition (that excludes negative
integers). Preconditions are introduced in slide 13.



Constructing Assertions

Logical operators:
P and Q
PorQ
not P

Conditionals:

if P then Q
if P then Q else R

Quantification:
for all X in Y => P(X)
for some X in Y => P(X)

Note that quantification is required when verifying properties
involving ranges, e.g., for all elements of an array a given property
is true.



Exception Freedom Specification

>

| 2

Specifying what must be true in order to prove that no
run-time exceptions will occur.

To achieve this, the Prove mode automatically inserts
assertions corresponding to the places in the code where an
Ada compiler inserts run-time checks, e.g., checking before a
division that a divide-by-zero is not about to occur.

These assertions specify what conditions must be true so that
the run-time checks will not fail, i.e., thus proving exception
freedom.

By definition, SPARK eliminates many of the run-time
exceptions that can be raised within Ada. However, index,
range, division and overflow checks can still raise exceptions
in SPARK code.

Failed run-time checks may cause a program to crash with
potential safety implications. But such failures may also be
exploited by hackers, e.g., buffer overflows.



Integer Overflow: A Simple Example

package Inc_Value package body Inc_Value

is is
type T is range -128 .. 128; procedure Inc(X: in out T)
is
procedure Inc(X: in out T) begin
with X:= X+1;
Depends => (X => X); end Inc;
end Inc_Value; end Inc_Value;

Calling procedure Inc with a value of 128 will cause an overflow,
i.e., raise a Constraint_Error exception. As a consequence,
exception freedom is unprovable, i.e., assuming that X is in the
range —128...128, then we can not prove X 4+ 1 < 128.



Integer Overflow: A Simple Example

package Inc_Value package body Inc_Value

is is
type T is range -128 .. 128; procedure Inc(X: in out T)
is
procedure Inc(X: in out T) begin
with X:= X+1;
Depends => (X => X); end Inc;
end Inc_Value; end Inc_Value;

Within GNAT Studio using Prove mode a possible run-time
exception is identified:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
inc_value.adb: ... range check might fail (e.g., when X = T’Last)
[possible explanation: subprogram at inc_value.ads: 6
should mention X in a precondition]



Defence via Contract

package Inc_Value package body Inc_Value
is is
type T is range -128 .. 128; procedure Inc(X: in out T)
is
procedure Inc(X: in out T) begin
with X:= X+1;
Depends => (X => X); end Inc;
Pre => X < T’Last; end Inc_Value;

end Inc_Value;

» We can add a precondition (logical assertion) to the procedure
Inc using the Pre aspect, e.g., X < T’Last

> Prove mode assumes that a precondition is true when
checking the body of a procedure (or function).

» Prove mode checks that preconditions are true at each point
in the code where the procedure (or function) is called.



Defence via Contract

package Inc_Value package body Inc_Value

is is
type T is range -128 .. 128; procedure Inc(X: in out T)
is
procedure Inc(X: in out T) begin
with X:= X+1;
Depends => (X => X); end Inc;
Pre => X < T’Last; end Inc_Value;

end Inc_Value;

Using Prove mode to prove exception freedom:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
Summary logged in ... gnatprove/gnatprove.out



Defence via Code

package Inc_Value package body Inc_Value

is is

type T is range -128 .. 128; procedure Inc(X: in out T)
is

procedure Inc(X: in out T) begin

with if X < T’Last then

Depends => (X => X); X:= X+1;

end Inc_Value; end if;

end Inc;

end Inc_Value;

Using Prove mode to prove exception freedom:

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
Summary logged in ... gnatprove/gnatprove.out



Code versus Contract?

» Defensive coding adds to the complexity of the software and
incurs a run-time overhead.

» Contracts are a design-time defence — they are used to
establish the correctness of the code by formal argument with
no run-time overhead.

» Contracts promote modular verification, i.e., a divide and
conquer strategy.

» Defensive code is still important, e.g., validating inputs to a
system from unverified sources is essential. Given an invalid
input, a precondition will NOT prevent a run-time failure
from occurring.

Exercise: the example given on slide 6 gave rise to a proof failure, with a
counter example being offered by the proof tool. Add a precondition
(proof contract) to the specification (.ads) of the Int_Dec procedure
that eliminates this proof failure. (the solution is available via https:
//www.macs.hw.ac.uk/~air/rmse/SPARK/code/Solutions/Dec/)


https://www.macs.hw.ac.uk/~air/rmse/SPARK/code/Solutions/Dec/
https://www.macs.hw.ac.uk/~air/rmse/SPARK/code/Solutions/Dec/

Functional Specifications

Consider the Int_Switch subprogram from an input-output
perspective:

X =2 X =3
N = A
Y =3 Y =2
Input Output

> A functional specification describes the input-output
relationship of a subprogram.

» A functional specification is represented by assertions within a
contract, i.e., preconditions and postconditions.

» While preconditions constrain the inputs to a subprogram,
postconditions constraint the outputs.



A Functional Specification of Int_Switch in SPARK

procedure Int_Switch(X, Y: in out Integer)

with
Depends => (X => Y, Y => X),
Pre => true,
Post => (X = Y’01d and Y = X’01d);

procedure Int_Switch(X, Y: in out Integer) is
T: Integer;
begin
T:=X; X:=Y; Y:=T,;
end Int_Switch;
» Int_Switch is specified above by means of precondition (Pre)
and postcondition (Post) aspects.

» Note that X’01d denotes the initial value of X — X’01d is
known as a ghost variable.

» Likewise, Y’01d denotes the initial value of Y — where Y’014d
is a ghost variable.



A Functional Specification of Int_Switch in SPARK

procedure Int_Switch(X, Y: in out Integer)

with
Depends => (X => Y, Y => X),
Pre => true,
Post => (X = Y’01d and Y = X’01d);

procedure Int_Switch(X, Y: in out Integer) is
T: Integer;
begin
T:=X; X:=Y; Y:=T,;
end Int_Switch;
» The specification states that whenever Int_Switch is
executed, if it terminates then the final value of X will be

equal to the initial value of Y (i.e., Y?01d) and that the final
value of Y will be equal to the initial value of X (i.e., X’01d).



Functional Specification of Aggregations

> While X = Y’01d works for scalar parameters, a different
mechanism is required to specifying properties of aggregates,
i.e., array and record parameters

> delta aggregate provides such a mechanism.

» To illustrate, consider an array version of the
Integer_Switch procedure:

type Pair is array (1..2) of Integer;

procedure Int_Switch(P: in out Pair)
is

T: Integer;
begin

T:= P(1); P(1):= P(2); P(2):=T;
end Int_Switch;



Functional Specification of Aggregations

type Pair is array (1..2) of Integer;

procedure Int_Switch(P: in out Pair)

with
Depends => (P => P),
Pre => true,
Post => (P = (P’01d with delta 1 => P’01d(2),

2 => P’01d(1)));

procedure Int_Switch(P: in out Pair)
is

T: Integer;
begin

T:= P(1); P(1):= P(2); P(2):
end Int_Switch;

I
L



Functional Specification of Aggregations

type Pair is array (1..2) of Integer;

procedure Int_Switch(P: in out Pair)

with
Depends => (P => P),
Pre => +true,
Post => (P = (P’01d with delta 1 => P’01d(2),
2 => P’01d(1)));
Note that:

P = (P’01d with delta 1 => P’01d(2), 2 => P’01d(1))

states that the final value of P is equal to the initial value of P
(P’01d) with the first element (1) updated with the value of the
initial second element (P’01d(2)) and the second element (2)
updated with the initial value of the first element (P’01d(1)).



Functional Specification of Aggregations

Post => (P = (P’01d with delta 1 => P’01d(2),
2 => P’014(1)));

IMPORTANT NOTE: to use the delta operator shown above
within your proof contracts you will have to access the Ada 2020

compiler. This involves editing your project’s .gpr file to include
the following additional line:

package Compiler is for Switches ("Ada") use ("-gnat2020"); end

For example, foo.gpr:

project Foo is
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("Foo.adb");
package Compiler is
for Switches ("Ada") use ("-gnat2020");
end Compiler;
end Foo;



Int_Min Revisited

package Min is
function Int_Min(X, Y: in Integer) return Integer

with

Depends => (Int_Min’Result => (X, Y)),

Pre => true,

Post => (Int_Min’Result = (if X > Y then Y else X));
end Min;

package body Min is
function Int_Min(X, Y: in Integer) return Integer
is
begin
if X > Y then return(Y);
else return(X);
end if;
end Int_Min;
end Min;



Int_Min Revisited

function Int_Min(X, Y: in Integer) return Integer

with

Depends => (Int_Min’Result => (X, Y)),

Pre => true,

Post => (Int_Min’Result = (if X > Y then Y else X));

> Note that the <func-id>’Result notation is used both by
the Depends and Post aspects.

» The postcondition above should be read as follows:
The function returns Y if X is strictly greater than Y, oth-
erwise it returns X.



Integer Division (Int_Div)

» Computing 7 Int_Div 3 gives:
Quotient = 2
Remainder = 1

» Computation:

7-3=4
4-3=1
1-3=-2

Quotient equals the number of subtractions.
Remainder equals the result of the repeated subtractions.

Stop before a subtraction gives a negative result.



Int Div

package Div
is
procedure Int_Div(X, Y: in Integer; Q, R: out Integer);

end Div;

package body Div

is
procedure Int_Div(X, Y: in Integer; Q, R: out Integer)
is
begin
R:= X; Q:= 0;
while (Y <= R) loop
R:= R-Y; Q:= Q+1;
end loop;
end Int_Div;

end Div;



Int Div: Dependency Contract — Examine mode

procedure Int_Div(X, Y: in Integer; Q, R: out Integer)
with
Depends => (R => (X, V), Q => (X, Y));

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ... ...



Int Div: Proof Contract — Prove mode

procedure Int_Div(X, Y: in Integer; Q, R: out Integer)

with
Depends => (R => (X, V), Q => (X, Y)),
Pre => true;
Post = (X=R+ (Y *Q)and (R<Y));

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
. overflow check might fail (e.g., when R = Integer’Last and Y = -1)

Bug or feature of the algorithm?



Int Div: Proof Contract — Prove mode

procedure Int_Div(X, Y: in Integer; Q, R: out Integer)
is
begin

R:= X; Q:= 0;

while (Y <= R) loop

R:= R-Y; Q:= Q+1;

end loop;

end Int_Div;

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
. overflow check might fail (e.g., when R = Integer’Last and Y = -1)

The algorithm only works for positive divisors — a stronger
precondition is required, i.e., Y >0



Int Div: Strengthened Precondition — is not Enough

procedure Int_Div(X, Y: in Integer; Q, R: out Integer)

with
Depends => (R => (X, V), Q => (X, Y)),
Pre =>Y > 0;
Post = (X =R+ (Y *Q) and (R < Y));

Phase 1 of 2: generation of Global contracts ...

Phase 2 of 2: flow analysis and proof ...
. overflow check might fail (e.g., when Q = Integer’Last) ...
. postcondition might fail, cannot prove X = R + (Y * Q) ...
. overflow check might fail (e.g., when Q = 2 and ...
. overflow check might fail (e.g., when Q = -2 and Y = 2) ...

How could Q be negative?



Int Div: Strengthened Precondition — is not Enough

procedure Int_Div(X, Y: in Integer; Q, R: out Integer)

with
Depends => (R => (X, V), Q => (X, Y)),
Pre =Y > 0;
Post => (X =R+ (Y *Q)) and (R < Y));

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

[possible explanation: ... should mention Q in a loop invariant]
[possible explanation: ... should mention Q in a loop invariant]
[possible explanation: ... should mention Q in a loop invariant]

A loop invariant specifies the input-output relationship of a loop
i.e., a loop invariant must be true before and after each iteration.



Int_Div: Loop Invariant

R:= X; Q:= 0;

while (Y <= R) loop
pragma Loop_Invariant (X =R + (Y * Q));
R:= R-Y; Q:= Q+1;

end loop;

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

Note that a loop invariant is a special kind of assertion, hence the
special pragma. Note that in general the creation of loop
invariants cannot be automated (i.e., it is undecidable in general).

As a consequence, the formal verification of programs can at best
be semi-automatic.



Compositional Reasoning

procedure A procedure B
with with
Depends => ..., Depends => .
Pre => P_A, Pre => P_B,
Post => Q_A; Post => Q_B;
procedure A is procedure B is
begin begin
... B ...; e
end A; end B;

» Note that A calls B, therefore to reason about the correctness
of A with respect to its functional specification we require a
functional specification for B.

» The use of functional specifications (assertions) represents a
divide-and-conquer verification strategy, i.e., assertions allow
the overall verification task to be decomposed into a set of
smaller verification tasks.



Detector.Control: Functional Specification

procedure Control
with

Pre => True,
Post => (if Warning.Enabled then Sensor.Enabled);

procedure Control
is
begin
if Sensor.Enabled then Warning.Enable;
else Warning.Disable;
end if;
end Control;

Note that the definition of Control involves Warning.Enabled
Warning.Enable, Warning.Disable and Sensor.Enabled.



Sensor: Functional Specifications

procedure Write_Sensor(Value: in Boolean)
with

Pre => True,
Post => (State = Value);

function Enabled return Boolean
with

Pre => True,
Post => (Enabled’Result = State);

Note that State is of type Boolean.



Warning: Functional Specifications

procedure Enable
with

Pre => True,
Post => State;

procedure Disable
with

Pre => True,
Post => not(State);

function Enabled return Boolean
with

Pre => True,
Post => (Enabled’Result = State);

Note that State is of type Boolean.



Summary

Learning outcomes:
» Understand the nature of formal program verification.
» Understand how a program can be specified via assertions,
i.e., pre- and postconditions and loop invariants.
» Understand the notion of an exception freedom specification
(and verification), and why it is of importance to industry.
» Understand the notion of a functional specification (and
verification).
Remaining two lectures:
» How code and its specification are translated into a
mathematical problem, i.e., logical conjectures.

» How such mathematical problems are solved using formal
proof — includes a closer look at the role that loop invariants
play within program verification.



Summary

Recommended reading:

» C. Jones, P. O'Hearn and J. Woodcock, “Verified Software: A
Grand Challenge”, IEEE Computer, 39(4), pp. 93-95, 2006.

» J-C. Filliatre and A. Paskevich, “Why3 — Where Programs
Meet Provers”, In proceedings of Programming Languages
and Systems — (22nd ESOP’'13 & 16th ETAPS'13), Lecture
Notes in Computer Science (LNCS), vol 7792, 2013.

» R. Chapman and P. Amey, “Industrial Strength Exception
Freedom”, Proceedings of ACM SigAda, 2002.

» A. Ireland and B.J. Ellis and A. Cook and R. Chapman and
J. Barnes, “An Integrated Approach to High Integrity
Software Verification” Journal of Automated Reasoning:
Special Issue on Empirically Successful Automated Reasoning,
Kluwer, Vol 36(4), 2006. (see also MACS Technical Report
HW-MACS-TR-0027:



