
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Program Verification Part 1:
Specification & Verification Condition Generation

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

I Specifying correctness of imperative programs.

I Verification condition generation.

A Little History & Background

I Long history:
I Goldstine & von Neumann 1947
I Turing 1949
I Floyd 1967
I Hoare 1969

I Current applications:
I SPARK (Ada subset)
I Frama-C
I eCv (MISRA-C)
I Spec# (C#)
I ...

Correctness Specifications

Partial correctness:

I {P}C{Q}
I P and Q are propositions and C is code.
I IF P is true before C is executed AND the

execution of C terminates THEN Q is true after
the execution terminates.

Total correctness:

I [P] C [Q]
I IF P is true before C is executed THEN the

execution of C will terminate and Q will be true
on termination.

I total correctness = partial correctness +
termination

A Toy Programming Language

〈command〉 ::= 〈variable〉 := 〈term〉 |
〈command〉; . . . ; 〈command〉 |
if 〈statement〉 then 〈command〉 end if |
if 〈statement〉 then 〈command〉

else 〈command〉 end if |
while 〈statement〉 loop 〈command〉 end loop

I Variables are represented by single upper-case letters.

I Terms denote integer values, e.g. 42, 2+3, X+1.

I Statements denote boolean values and can be built up using
logical constants, i.e. true and false, terms and predicates,
e.g. =, /=, >=, <=, etc, as well as the logical operators and,
or, not.

Note: this “toy” programming language will enable us to cover the
main aspects of imperative program proof – it would take much
longer to cover the same ground using SPARK proof tools.

A Little Logic

I P ∧ Q: is true if P and Q are true.

I P ∨ Q: is true if either P or Q are true, otherwise false.

I P → Q: is true if whenever P is true Q is also true. If P is
false, then P → Q is true.

I ¬P: is true if P is false, and false if P is true.

Some Examples

{X = x ∧ Y = y}
T:= X;

X:= Y;

Y:= T;

{X = y ∧ Y = x}

[X ≥ 0 ∧ even(X)]
while X /= 0 loop

X := X - 2;

end loop
[X = 0]

I Note that x and y denote variables that are used to name the
initial values of X and Y respectively.

I Such variables are called auxiliary or ghost variables as they
do not appear within the code. Lower-case letters will be used
to denote auxiliary variables.

Which are Correct?

1. {X = x ∧ Y = y}
X := Y;
Y := X
{X = y ∧ Y = x}

2. {true}
if even(X) then X := X + 1 end if
{odd(X)}

3. [true]
while X /= 0 loop

X := X - 2
end loop
[X = 0]

Goal Oriented Program Verification

1. An annotated program C is developed where the annotations
are assertions (logical formulae) that express desired
conditions at various intermediate points.

2. A set of logical formulae, or verification conditions (VCs) is
generated from the annotated program.

3. The verification conditions are proved by a theorem proving
system.

Note that if all the generated VCs are proved then it follows that
the program is correct with respect to the annotations.

Annotations

In order for VC generation to be automatic requires that the
program is properly annotated, i.e. the program contains enough
assertions. A program is properly annotated if there exists an
assertion:

I Before each program command Ci (where i > 1) in a sequence
C1;C2; . . . ;Cn which is not an assignment command.

I After the reserved word loop within the while loop
construct, i.e. the loop invariant.

Note that the generation of loop invariants is undecidable in
general and remains a major bottle-neck in terms of fully
automating the process of verifying programs.

Quotient-Remainder Example

{true}
R:= X;

Q:= 0;

{R = X ∧ Q = 0}
while Y<=R loop

{X = R + (Y ∗ Q)} ←− loop invariant
R:= R - Y;

Q:= Q + 1;

end loop;
{X = R + (Y ∗ Q) ∧ R < Y }

A loop invariant is an assertion that is true before and after each
execution of the loop body.

Quotient-Remainder VCs

Given the annotated Quotient-Remainder program on the previous
slide, the process of verification condition generation (VCG)
would produce the following VCs:

true → (X = X ∧ 0 = 0)

(R = X ∧ Q = 0) → (X = R + (Y ∗ Q))

(X = R + (Y ∗ Q)) ∧ ¬(Y ≤ R) → (X = R + (Y ∗ Q) ∧ R < Y)

(X = R + (Y ∗ Q)) ∧ Y ≤ R) → (X = (R − Y) + (Y ∗ (Q + 1)))

Note that VCs are logical formulae — they contain no references
to programming constructs.

VCG - How it Works

I VCG is a recursive process, where the given annotated
program is decomposed repeatedly into simpler verification
tasks – each of which can be proved independently.

I This recursive process is defined for our toy programming
language by the following VC generation rules ...

Generating VCs for Assignment Commands
The VC generated by

{P}V := E{Q}

is
P → Q[E/V]

where Q[E/V] denotes the expression constructed by replacing all
occurrences of V by E within Q - known as the weakest
precondition.
Here the weakest precondition represents the set of all the states
such that if V := E is executed in anyone of the states then on
termination Q will be true.

Example: The VC generated by

{X = 0}X := X + 1{X = 1}

is
(X = 0)→ (X + 1) = 1

Generating VCs for if-then Conditionals

The VCs generated by

{P}if S then C end if{Q}

are

1. (P ∧ ¬S)→ Q

2. the VCs generated from:

{P ∧ S}C{Q}

Generating VCs for if-then-else Conditionals

The VCs generated by

{P}if S then C1 else C2 end if{Q}

are

1. the VCs generated from:

{P ∧ S}C1{Q}

2. the VCs generated from:

{P ∧ ¬S}C2{Q}

Generating VCs for Sequences

1. The VCs generated by

{P}C1;C2; . . . ;Cn−1; {R}Cn{Q}

(where Cn is not an assignment) are:
1.1 the VCs generated from:

{P}C1;C2; . . . ;Cn−1; {R}

1.2 the VCs generated from:

{R}Cn{Q}

2. The VCs generated by

{P}C1;C2; . . . ;Cn−1;V := E{Q}

are the VCs generated from:

{P}C1;C2; . . . ;Cn−1; {Q[E/V]}

Generating VCs for while-loop Commands

The VCs generated by

{P}while S loop {R}C end loop{Q}

are

1. P → R

2. R ∧ ¬S → Q

3. the VCs generated from:

{R ∧ S}C{R}

I Note that the assertion R appears as both a precondition and
a postcondition to the body of the loop, i.e. it is true before
and after each iteration of a loop. Such an assertion is called
the loop invariant.

I A loop has many invariants. However, the selection of an
“appropriate” invariant is crucial to the successful
construction of a verification proof.

Quotient-Remainder Revisited

(1) {true}
R:= X;

Q:= 0;

{R = X ∧ Q = 0}
while Y<=R loop

{X = R + (Y ∗ Q)}
R:= R - Y;

Q:= Q + 1;

end loop;
{X = R + (Y ∗ Q) ∧ R < Y }

Apply sequence generation to (1) giving ...

Quotient-Remainder Revisited

(2) {true}
R:= X;

Q:= 0;

{R = X ∧ Q = 0}

(3) {R = X ∧ Q = 0}
while Y<=R loop

{X = R + (Y ∗ Q)}
R:= R - Y;

Q:= Q + 1;

end loop;
{X = R + (Y ∗ Q) ∧ R < Y }

Quotient-Remainder Revisited

(2) {true}
R:= X;

Q:= 0;

{R = X ∧ Q = 0}

Apply sequence generation to (2):

(4) {true}
R:= X;

{R = X ∧ 0 = 0}

Apply assignment generation to (4) giving VC1:

true → (X = X ∧ 0 = 0)

Quotient-Remainder Revisited

(3) {R = X ∧ Q = 0}
while Y<=R loop

{X = R + (Y ∗ Q)}
R:= R - Y;

Q:= Q + 1;

end loop;
{X = R + (Y ∗ Q) ∧ R < Y }

Apply while generation to (3) giving rise to VC2 and VC3:

(R = X ∧ Q = 0) → (X = R + (Y ∗ Q))

(X = R + (Y ∗ Q)) ∧ ¬(Y ≤ R) → (X = R + (Y ∗ Q) ∧ R < Y)

and the VCs derived from (5) ...

Quotient-Remainder Revisited

(5) {X = R + (Y ∗ Q) ∧ Y ≤ R}
R:= R - Y;

Q:= Q + 1;

{X = R + (Y ∗ Q)}

Apply sequence generation to (5):

(6) {X = R + (Y ∗ Q) ∧ Y ≤ R}
R:= R - Y;

{X = R + (Y ∗ (Q + 1))}

Apply assignment generation to (6) giving rise to VC4:

(X = R + (Y ∗ Q)) ∧ Y ≤ R)→ (X = (R − Y) + (Y ∗ (Q + 1)))

[next lecture addresses how-to-prove VCs]

Learning Outcomes

I Understand assertion based program specification.

I Understand the distinction between partial and total
correctness.

I Understand the relationship between verification conditions
and program proof.

I Be able to derive verification conditions for a simple
imperative programming language.

Recommended Reading

I “High Integrity Software: The SPARK Approach to Safety
and Security” Barnes, J. Addison-Wesley 2003 [chapters 3
& 11]

I “Assigning meanings to programs”, Floyd, R.W.
Mathematical Aspects of Computer Science, Proceedings of
Symposia in Applied Mathematics 19, 1967.

I “Programming Language Theory and its Implementation”,
M.J.C.Gordon, Prentice Hall, 1988.

I “An axiomatic basis for computer programming”, Hoare,
C.A.R. Communications of the ACM, 12, 1969.

Appendix - Inference Rules for Imperative Program Proof

The proceeding VCG rules are underpinned by the following set of
inference rules. Note that the rules that follow can be used to
verify programs, however, a special purpose theorem prover would
be required. In contrast the VCG approach requires a general
purpose theorem prover.

The Assignment Axiom

{P[E/V]} V := E {P}

I Where V is an arbitrary variable, E is an expression and P is
a statement. Note that P[E/V] denotes the result of
substituting E for all occurrences of V in P.

I Some example instances of the assignment axiom:
{Y = 2}X := 2{Y = X}
{X + 1 = N + 1}X := X + 1{X = N + 1}
{A = B}X := A{X = B}

The Sequence Rule

{P} C1 {Q} {Q} C2 {R}
{P} C1;C2 {R}

Given:

{X = m ∧ Y = n}
R:=X; X:=Y

{R = m ∧ X = n}

{R = m ∧ X = n}
Y:=R

{Y = m ∧ X = n}

we can use the Sequence-rule to get:

{X = m ∧ Y = n}
R:=X; X:=Y; Y:=R

{Y = m ∧ X = n}

Conditional Rules

I If-Then rule:

{P ∧ S} C {Q} P ∧ ¬S → Q

{P} if S then C end if {Q}

I If-Then-Else rule:

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} if S then C1 else C2 end if {Q}

The While Rule

{P → R} {R ∧ S} C {R} {¬S ∧ R → Q}
{P} while S loop {R} C end loop {Q}

Logical Rules

I Precondition strengthening:

` P → P ′ ` {P ′} C {Q}
` {P} C {Q}

I Postcondition weakening:

` {P} C {Q ′} ` Q ′ → Q

` {P} C {Q}

Note: these rules are typically used in conjunction with the
proceedings program oriented inference rules.

