
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Program Verification Part 2:
Theorem Proving

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

I Logical arguments and proofs.

I Constructing proofs for VCs.

Logic and Validity of Arguments

I Logic is concerned with identifying valid arguments.

I Argument = Hypotheses + Conclusion

I Hypotheses are said to support the conclusion, e.g.
“︸ ︷︷ ︸

hypotheses

therefore︸ ︷︷ ︸
conclusion

”

I Both hypotheses and conclusion are denoted by statements
which have an associated truth value, i.e. true or false.

I An argument is valid if the conclusion is true whenever all
the hypotheses are true.

I A theorem is the name given to a valid argument.

Arguments and Verification Conditions

I When we specify the partial correctness of a program we are
expressing a logical argument in terms of assertions and code.

I When we generate the set of verification conditions for a
program specification we are expressing the logical argument
purely in terms of logical formulae, i.e.

Hypothesis1, . . .Hypothesisn︸ ︷︷ ︸
Givens

→ Conclusion︸ ︷︷ ︸
Goal

I When determining the validity of a verification condition
(argument) we will refer to the hypotheses as the givens and
the conclusion as our goal.

Validity via Proof

I A formal proof is a sequence of statements each of which
corresponds to i) a previously proved theorem or ii) an
instance of an axiom or iii) follows from earlier statements by
a proof rule:

A < B ↔ ¬(B ≤ A)
theorem

A = A
reflexivity

axiom

A = B P(A)

P(B)
substitution
proof rule

I Theorems will be implicitly universally quantified.

I Proof rules and axioms are templates which represent general
purpose chunks of valid arguments.

Strategies for Proof Construction

I Forwards proof: apply proof rules to axioms and known
theorems to derive new theorems until theorem-hood is
established for the conjecture (VC).

I Backwards proof: start from the conjecture (VC) and apply
proof rules backwards until you reach the level of axioms or
known theorems.

“The grand thing is to be able to reason backwards.”

Sir Arthur Conan Doyle, A Study in Scarlet

Backward Proof Construction

I Tautologies: goals that are always true, e.g. P ∨ ¬P, can be
replaced by true.

I Axioms: a goal that matches an axiom can be replaced by
true, e.g the goal N + 1 = N + 1 can be replaced by true
because it matches the reflexivity axiom.

I Hypotheses: a goal G (or subterm of G) can be replaced by
true if it matches a given hypothesis.

I Rewriting: a subterm L of a goal G can be replaced by R if
we know that L and R are equal (equivalent) or R → L. Such
knowledge comes from definitions, properties and givens.

Quotient-Remainder Specification

{true}
R:= X;

Q:= 0;

{R = X ∧ Q = 0}
while Y<=R loop
{X = R + (Y ∗ Q)}
R:= R - Y;

Q:= Q + 1;

end loop;
{X = R + (Y ∗ Q) ∧ R < Y }

Quotient-Remainder VCs

true → (X = X ∧ 0 = 0)

(R = X ∧ Q = 0) → (X = R + (Y ∗ Q))

(X = R + (Y ∗ Q)) ∧ ¬(Y ≤ R) → (X = R + (Y ∗ Q) ∧ R < Y)

(X = R + (Y ∗ Q)) ∧ Y ≤ R) → (X = (R − Y) + (Y ∗ (Q + 1)))

Definitions & Properties

A ∗ 0 = 0 (1)

A ∗ (B + 1) = A + (A ∗ B) (2)

A + 0 = A (3)

A < B ↔ ¬(B ≤ A) (4)

A + (B + C) = (A + B) + C (5)

A− B = A + (−B) (6)

(−A) + A = 0 (7)

Proof of VC1

Givens:

Goal: (X = X ∧ 0 = 0)
by reflexivity

true ∧ true
by tautology

true

Proof of VC2

Givens: R = X
Q = 0

Goal: X = R + (Y ∗ Q)
by given Q = 0

X = R + (Y ∗ 0)
by given R = X

X = X + (Y ∗ 0)
by (1) left-to-right

X = X + 0
by (3) left-to-right

X = X
by reflexivity

true

Proof of VC3

Givens: X = R + (Y ∗ Q)
¬(Y ≤ R)

Goal: X = R + (Y ∗ Q) ∧ R < Y
by given X = R + (Y ∗ Q)

true ∧ R < Y
by (4) left-to-right

true ∧ ¬(Y ≤ R)
by given ¬(Y ≤ R)

true ∧ true
by tautology

true

Proof of VC4

Givens: X = R + (Y ∗ Q)
Y ≤ R

Goal: X = (R − Y) + (Y ∗ (Q + 1))
by (2) left-to-right

X = (R − Y) + (Y + (Y ∗ Q))
by (5) left-to-right

X = ((R − Y) + Y) + (Y ∗ Q)
by (6) left-to-right

X = ((R + (−Y)) + Y) + (Y ∗ Q)

Proof of VC4 [more]

Givens: X = R + (Y ∗ Q)
Y ≤ R

Goal: . . .

X = ((R + (−Y)) + Y) + (Y ∗ Q)
by (5) right-to-left

X = (R + ((−Y) + Y)) + (Y ∗ Q)
by (7) left-to-right

X = (R + 0) + (Y ∗ Q)
by (3) left-to-right

X = R + (Y ∗ Q)
by given X = R + (Y ∗ Q)

true

A Conditional Program Specification

Prove the following:

{true} if even(N) then N:= N+1 end if {odd(N)}

given:

odd(X) ↔ ¬(even(X)) (8)

even(X) ↔ odd(X + 1) (9)

VC Generation

(1) {true} if even(N) then N:= N+1 end if {odd(N)}

Apply if-then generation to (1) giving:

(2) {true ∧ even(N)} N:= N+1 {odd(N)}

and VC1:

true ∧ ¬(even(N))→ odd(N)

Apply assignment generation to (2) giving VC2:

true ∧ even(N)→ odd(N + 1)

Proof of VC1

Givens: ¬(even(N))

Goal: odd(N)
by (8) left-to-right

¬(even(N))
by given ¬(even(N))

true

Proof of VC2

Givens: even(N)

Goal: odd(N + 1)
by (9) right-to-left

even(N)
by given even(N)

true

Use of Conditional Rewrite Rules

Prove the following:

{N ≥ 2}
if even(N) then N:= N-2 else N:= N-1 end if
{even(N)}

given:
(X = 0)→ (even(X) ↔ true) (10)

(X = 1)→ (even(X) ↔ false) (11)

(X > 1)→ (even(X) ↔ even(X − 2)) (12)

(X > 0)→ (odd(X) ↔ even(X − 1)) (13)

odd(X) ↔ ¬(even(X)) (14)

(X ≥ 2) ↔ (X > 1) (15)

(X ≥ 2) → (X > 0) (16)

VC Generation

I Then branch gives VC1:

((N ≥ 2) ∧ even(N))→ even(N − 2)

I Else branch gives VC2:

((N ≥ 2) ∧ ¬(even(N)))→ even(N − 1)

Proof of VC1

Givens: N ≥ 2
even(N)

Goal: even(N − 2)

given N ≥ 2 infer N > 1 using (15)

Givens: N ≥ 2
even(N)
N > 1

Goal: even(N − 2)

Proof of VC1 [more]

Givens: N ≥ 2
even(N)
N > 1

Goal: even(N − 2)

by (12)
even(N)

by given even(N)
true

Note that applying a conditional property, i.e. C → (. . .), involves
proving that the condition C holds within the given context. As a
consequence, we needed to infer N > 1 in order to apply (12).

Proof of VC2

Givens: N ≥ 2
¬(even(N))

Goal: even(N − 1)

given N ≥ 2 infer N > 0 using (16)

Givens: N ≥ 2
¬(even(N))

N > 0

Goal: even(N − 1)

Proof of VC2 [more]

Givens: N ≥ 2
¬(even(N))

N > 0

Goal: even(N − 1)

by (13)
odd(N)

by (14)
¬(even(N))

by given ¬(even(N))
true

Note that N > 0 is required in order to apply (13).

Verification of Nested Conditionals

{true}
if not (X = Y) then

W:= X

else
if Y = Z then

W:= Z

else
W:= Y

end if
end if
{W = X}

VC1 : ¬(X = Y)→ (X = X)
VC2 : ¬(¬(X = Y)) ∧ (Y = Z)→ (Z = X)
VC3 : ¬(¬(X = Y)) ∧ ¬(Y = Z)→ (Y = X)

Proof of VC2

Givens: ¬(¬(X = Y))
Y = Z

Goal: Z = X

given ¬(¬(X = Y)) infer X = Y by ¬(¬(X))↔ X

Givens: ¬(¬(X = Y))
Y = Z
X = Y

Goal: Z = X

Proof of VC2 [more]

Givens: ¬(¬(X = Y))
Y = Z
X = Y

Goal: Z = X
given X = Y

Z = Y
by given Y = Z

true
VC1 and VC3 are left as an exercise to the reader.

Summary

Learning outcomes:

I Understand the notion of a valid logical argument.

I Understand the notion of formal proof.

I Be able to prove simple VCs using a backward style of proof
based upon (conditional) rewriting.

Recommended reading:

I Dijkstra, E.W. A Discipline of Programming,
Prentice-Hall, 1976.

I Gordon, M.J.C. Programming Language Theory and its
Implementation, Prentice-Hall, 1988.

I Gries, D. The Science of Programming, Springer-Verlag, 1981.

