
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Promela (Part 1)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

I Basic building blocks of Promela programs.

I Executing Promela programs via iSpin

I Structured data types.

I Process definition, instantiation & execution.

I Concurrency and Promela programs.

I Non-deterministic behaviour & basic synchronization.

Note: Spin stands for Simple Promela Interpreter

Promela Programs

I The basic building blocks of Promela programs are:
I processes
I channels
I variables

I Processes model the behaviour of components of a system
and are by definition global objects.

I Channels and variables define the environment in which
processes exist and can be either local of global.

Process Types

I A Promela program is represented by a set of process
declarations.

I A process declaration begins with the keyword proctype and
contains:
I process identifier;
I formal parameter list (optional);
I sequence of local variable declarations & statements

I Syntactically a process declaration has the following form:

proctype name(/* formal parameter list */)
{

/* local declarations and statements */
}

Note: /* and */ delimit comments in Promela.

active proctype

I To instantiate a proctype that has no parameters, the
keyword active can be used:

active proctype name()
{

/* local declarations and statements */
}

Note that the empty paramember list is denotes by ().

I Multiple instances of the same proctype declaration can be
generated using an optional array suffix, i.e.

active [N] proctype name()
{

/* local declarations and statements */
}

where N must denote a positive number.

A Simple Example – Hello World Revisited with a Twist!

I A single instance version:

active proctype hello(){ printf("Hello\n") }
active proctype world(){ printf("World\n") }

I A multiple instances version:

active [4] proctype hello(){ printf("Hello\n") }
active [2] proctype world(){ printf("World\n") }

Note: the above will generate 4 instances of hello and 2
instances of world.

I All processes implicitly have a variable _pid.

I Each time a process is instantiated the value associated with
its _pid is one more than the last, i.e. the first process has its
_pid set to 0, the second to 1, etc.

Executing a Promela Program

I The execution of a Promela program is called a simulation.

I Spin supports three simulation modes, first we consider
random simulation, i.e. within the Simulate/Replay tab of
iSpin select Random.

I Technically, it is pseudo random simulation, i.e. it requires
a seed value, and for a given seed value the same behaviour
will be exhibited by your program – which is what you want
when debugging!

Hello World

Hello World

Within Simulate/Replay tab select Random – note that the
default seed value is 123.

Hello World

Press the (Re)Run button.

Hello World

Here the seed value is changed to 42.

Deterministic & Non-Deterministic Behaviour

This Hello World program is an exhibits non-deterministic
behaviour.

I Deterministic behaviour: a process is deterministic if for a
given start state it behaves in exactly the same way if supplied
with the same stimuli from its environment.

I Non-deterministic behaviour: a process is non-deterministic
if it need not always behave in exactly the same way each
time it executes from a given start state with the same stimuli
from its environment.

Hello World

I The execution of a Promela program is called a simulation.
I Spin also supports interactive simulation, i.e. within iSpin

select Interactive option.
I In Interactive option, every non-deterministic choice point

within a simulation is presented to the user – puts you back
into control!

–

Executability of Statements

I Promela does not make a distinction between a condition
and a statement, e.g. the simple boolean condition a == b

represents a statement in Promela.

I Promela statements are either executable or blocked. The
execution of a statement is conditional on it not being
blocked.

I Promela’s notion of statement executability provides the basic
means by which process synchronization can be achieved.

while (a != b) skip /* conventional busy wait */

(a == b) /* {\bf Promela} equivalent */

Variables and Basic Data Types

I Promela variables provide the means of storing information
about the system being modelled.

I A variable may hold global information on the system or
information that is local to a particular component (process).

I Promela supports five basic data types:
Name Size (bits) Usage Range

bit 1 unsigned 0 . . . 1
bool 1 unsigned 0 . . . 1
byte 8 unsigned 0 . . . 255
short 16 signed −215 − 1 . . . 215 − 1
int 32 signed −231 − 1 . . . 231 − 1

Variable Declarations

I Like all well-structured programming languages, Promela
requires that variables must be declared before they can be
used.

I Variable declarations follow the style of the C programming
language, i.e. a basic data type followed by one or more
identifiers and optional initializer:
byte count, total = 0;

An initializer must be an expression of the appropriate basic
type.

I By default all variables of the basic types are initialized to 0.
Note that as in C, 0 (zero) is interpreted as false while any
non-zero value is interpreted as true.

Structured Data Types

I Arrays – an array type is declared as follows:
int table[max]

Note that this generates an array of max-1 integers, i.e.
table[0], table[1], ... table[max-1]

I Enumerated Types – a set of symbolic constants is declared as
follows:

mtype = {LINE_CLEAR, TRAIN_ON_LINE, LINE_BLOCKED}

Note: a program can only contain one mtype declaration
which must be global.

I Structures – a record data type is declared as follows:
typdef msg {byte data[4], byte checksum}

Note: Structure access is as in C:
msg message; ... message.data[0]

Identifiers, Constants & Expressions

I Identifiers: An identifier is a single letter, a period symbol, or
underscore followed by zero or more letters, digits, periods or
underscores.

I Constants: A constant is a sequence of digits that represents
a decimal integer. Symbolic constants can be defined by
means of mtype or via a C-style macro definition, e.g.
#define MAX 999

I . . .

Identifiers, Constants & Expressions

I Expressions: An expression is built up from variables,
identifiers and constants using the following operators:

+, -, *, /, %, --, ++, arith
>, >=, <, <=, ==, !=, relational
&&, ||, !, logicals
&, |, ~, ^, >>, <<, bits
!, ?, channels
(), [], group/index

Processes as Automata
1. byte x = 2, y = 3;
2. active proctype A(){x = x + 1}
3. active proctype B(){x = x - 1; y = y + x}

I Press the Automata View button then select a process ID.

Processes as Automata
1. byte x = 2, y = 3;
2. active proctype A(){x = x + 1}
3. active proctype B(){x = x - 1; y = y + x}

I Each process is represented
as a distinct automata, i.e.
nodes and directed edges.

I Nodes denote states and
directed edges denote state
transitions.

I Each state transition is
labeled with the associated
statement in the code.

Processes as Automata
1. byte x = 2, y = 3;
2. active proctype A(){x = x + 1}
3. active proctype B(){x = x - 1; y = y + x}

I Each process is represented
as a distinct automata, i.e.
nodes and directed edges.

I Nodes denote states and
directed edges denote state
transitions.

I Each state transition is
labeled with the associated
statement in the code.

Concurrency via Interleaving

I Given a Promela program Spin
can explore all reachable states,
i.e. all possible interleaving of
atomic statements.

I The reachable states are
visualized opposite as s state
transition diagram.

I Nodes denote reachable states.

I Directed edges exist between
nodes if and only if there exists
statement that performs the
associated state transition.

More Non-Deterministic Behaviour

I Consider the following two process system:

byte state = 1;
active proctype P()

{ (state == 1) -> state = state + 1 }
active proctype Q()

{ (state == 1) -> state = state - 1 }

note that S1 -> S2 and S1; S2 are equivalent.

I Note that if process P (or Q) terminates before process Q (or
P) begins execution then Q (or P) will be blocked forever on
the condition, i.e. (state == 1).

I Note that if both P and Q execute their respective conditions
(i.e. (state == 1)) then both processes will terminate and
the final value of state will be equal to 1.

I But in general the final value of state is unpredictable, i.e. it
can be either 0, 1 or 2.

Atomic Sequences

I Promela provides another means of avoiding the undesirable
interleaving problem illustrated above via the atomic

operator.

I Consider the following refinement to the two process system:

byte state = 1;
active proctype P()

{ atomic{ (state == 1) -> state = state + 1 } }
active proctype Q()

{ atomic{ (state == 1) -> state = state - 1 } }

I The final value of the global variable state will be either 2 or
0, depending upon which process executes.

I Note that an atomic sequence restricts the level of
interleaving so reduces the complexity when it comes to
validating a Promela model.

Summary

Learning outcomes:

I To be able to understand and construction
simple Promela programs exploiting both local
and global data objects;

I To understand the Promela model for
concurrent process execution;

I To be able to model synchronous behaviour
between processes;

Recommended reading:

I Spin homepage:
http://spinroot.com

I Inspiring applications of Spin:
http://Spinroot.com/spin/success.html

http://spinroot.com
http://Spinroot.com/spin/success.html

