Rigorous Methods for Software Engineering
(F21RS-F20RS)
Promela (Part 2)

Andrew lreland
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Overview

» Control flow constructs.
» Channel based process communication.

» Assertions.

Control Flow

» In the “Promela I" lecture three ways for achieving control
flow were introduced:

» Statement sequencing;
» Atomic sequencing;
» Concurrent process execution.
» Promela supports three additional control flow constructs:
» Case selection
» Repetition
» Unconditional jumps

Case Selection

> What follows is an example of case selection involving two
statement sequences:
if
(n%21'=0) ->n=n+1;
(n % 2 == 0) -> skip;
fi
Note that each statement sequence is prefixed by a ::. The
executability of the first statement (guard) in each sequence
determines sequence is executed.
» Guards need not be mutually exclusive:
if
(x >= y) -> max = x;
(y >= x) -> max = y;
fi

Note: if x and y are equal then the selection of which
statement sequence is executed is decided at random, giving
rise to non-deterministic choice.

Repetition

> What follows is an example of repetition involving two
statement sequences:
do
(x>y) >x=x-y;9q=q+ 1;
(y > x) -> break;
od
Note that the first statement sequence denotes the body of
the loop while the second denotes the termination condition.
» Termination, however, is not always a desirable property of a
system, in particular, when dealing with reactive systems:
do
(level > max) -> outlet = open;
(level < min) -> outlet = close;
od

Unconditional Jumps

» Promela supports the notion of an unconditional jump via
the goto statement.
» Consider the following refinement of the division program
given above:
do
(x>>y) >x=x-y; q=q+ 1;
(y > x) -> goto done;
od;
done:
skip
Note that done denotes a label. A label can only appear
before a statement. Note also that a goto, like a skip, is
always executable.

Timeouts

P Reactive systems typically require a means of
aborting/rebooting when a system deadlocks. Promela
provides a primitive statement called timeout which enables
such a feature to be modelled.

» To illustrate, consider the following process definition:

proctype watchdog ()

{
do
:: timeout -> guardl!reset
od

}

The timeout condition becomes true when no other
statements within the overall system being modelled are
executable.

Exceptions

» Another useful exception handling feature is supported by the
unless statement which takes the following general form:

{ statements-1 } unless { statements-2 }
Execution begins with statements-1. Before execution of
each statement the executability of the first statement within
statements-2 is checked. If the first statement is executable
then control is passed to statements-2. If however the
execution of statements-1 terminates successfully then
statements-2 is ignored.

» Consider an alternative watchdog process:
proctype watchdog ()

{ do

process_data() unless guard?reset; process_reset()
od

}

Message Channels

» So far global variables have provided the only means of
achieving communication between distinct processes.

» However, Promela supports message channels which
provide a more natural and sophisticated means of modelling
inter-process communication (data transfer).

» A channel can be defined to be either local or global. An
example of a channel declaration is:
chan in_data = [8] of { byte }
which declares a channel that can store up to 8 messages of
type byte.

» Multiple field messages are also possible:
chan out_data = [8] of { byte, bool, chan }

Sending Messages

» Sending messages is achieved by the ! operator, e.g.
in_data ! 4;
This has the effect of appending the value 4 onto the end of
the in_data channel.

» If multiple data values are to be transferred via each message
then commas are used to separate the values, e.g.
out_data ! x + 1, true, in_data;
where x is of type byte.

> Note that the executability of a send statement is dependent
upon the associated channel being non-full, e.g. the following
statement will be blocked:
in_data ! 4;
unless in_data contains at least one empty location.

Receiving Messages

P Receiving messages is achieved by the 7 operator, e.g.
in_data 7 msg;
This has the effect of retrieving the first message (FIFO)
within the in_data channel and assigning it to the variable
msg.

» If multiple data values are to be transferred via each message
then commas are used to separate the values, e.g.
out_data 7 valuel, value2, value3;

> Note that the executability of a receive statement is
dependent upon the associated channel being non-empty, e.g.
the following statement will be blocked:
in_data 7 value;
unless in_data contains at least one message.

Some Observations & Notations

» If more data values are sent per message than can be stored
by a channel then the extra data values are lost, e.g.
in_data ! msgl, msg2;
here the msg2 will be lost.

> If fewer data values are sent per message than are expected
then the missing data values are undefined, e.g.

out_data ! 4, true;

out_data 7 x, y, z;
here x and y will be assigned the values 4 and true
respectively while the value of z will be undefined.

> Alternative (& equivalent) notations:

out_data'!expl,exp2,exp3; out_data!expl(exp2,exp3);
out_data?varl,var2,var3; out_data?varl(var2,var3);

Additional Channel Operations

» Determining the number of messages in a channel is achieved
by the len operator, e.g.
len(in_data)
If the channel is empty then the statement will block.

» The empty, full operators determine whether or not
messages can be received or sent respectively, e.g.
empty(in_data); full(in_data)

> Non-destructive retrieve:
out_data 7 [x, y, z]
Returns 1 if out_data?x,y,z is executable otherwise 0.
Purely evaluation, i.e. no message retrieved.

run and init

» The operator run provides an alternative way of instantiating
a process type.

» The the use of run is typically restricted to init — a special
process that has no parameters and is the first process to be
executed.

> init is analogous to the main function within a C program.

» An init process takes the form:

init { /* local declarations and statements */ }

The simplest and may be one of the least useful of Promela
programs takes the form:

init { skip }

Note: skip denotes the null statement.

Hello World revisited

proctype hello(O{ printf("Hello\n") }
proctype world(){ printf("World\n") }
init { atomic{ run hello(); run world () } }

> Note that the use of atomic ensures that all enclosed
processes are instantiated before any of the process begin to
execute.

Processes with Parameters

> Note also that init and run allow us to instantiate process
types with parameters.

> Consider the following:

proctype A(byte x)
{

X = x+1;

printf ("The value of x is %d\n", x)
}

init { atomic{ run A(9);
run A(99);
run A(199) }}

> What will be the effect of running this program?

The effect is ...

Spin Version 6.4.3 — 16 December 2014 :: iSpin Version 1.1.4 — 27 November 2014
Edit/View | Simulaie / Replay | Verification | Swarm Run | <Help> | Save Session | Restore Session | <Quit>

_
Mode A Full Channel Output Filtering (reg. sxps) a0
& Random, with seed: [123 @ blocks new messages process ids: spin p s
Interactive (for resolution of all nondeterminism) loses new messages S
MSC+stmnt
~ MSC max text width [20
- MsC update delay [25 tracked variable: |

Guided, with trail: [A3.pml.trail browse
var names:

S =

initial steps skipped:
maximum number of steps:

W Track Data Values (this can be slow) track scaling:

proctype A(byte x)
{
x=x+1;
printf("The value of x is %d\n", x)

init { atomic{ run A(9);
run A(99);
run A(189) }}
creates proc 0

) creates proc 1 (A)
3.pml:8 (state 1) [(run A(9))]

A"; WUE
A3.pmil:4 (state 1)
A3 nmi:d (state 1
A3
AR

[The value of x s 10
proc 1 (A:

Channels as Parameters

» Consider the following:
proctype A(chan q1)

{ chan q2;
ql?q92; q2!'99
}
proctype B(chan gforb)
{ int x;

qforb?x; x++;
printf ("x == %d\n", x)
}
init {chan gname = [1] of { chan };
chan gforb = [1] of { int };
run A(gname); run B(gforb);
gname !qforb

}
> What will be the effect of running this program?

The effect is ...

Edit/View

Simulate / Replay [Verification ‘ Swarm Run] <Help> ‘ Save Session ‘ Restore Session

<Quit>

initial steps skipped: o
maximum number of steps:
¥ Track Data Values (this can be slow)

Mode A Full Channel
* Random, with seed 123 * blocks new messages process ids
Interactive (for resolution of all nondeterminism) loses new messages
queue ids: |
Guided, with trail: [ABchan. pml.trail browse MSC+stmnt
var names:

MSC max text width [20

MSC update delay 25 tracked variable: |

10000
track scaling:

Output Filtering (reg. exps.)

Background command executed
pin -p -s - -X -v-n123 -[-g -u10000 /

prociype A(chan at)

q17q2 q2‘99

prociype B{chan gforb)
i

qrmwx Xt+;
printf("x == %d\n", x)

}
init {chan gname = [1] of { chan };

chan gforb = [1] of { int };
run Afgname); run Bgforb);
gnamelgforb

Message Sequence Chart
(MSC)

able values,

(2):x

step 71 (root) creates proc 0 (init:)
100 proc 0 init::1) creates proc 1 (A)
1) ABchan.pmi-13 (state 1) [(run A{gname))]
1) creates proc 2 (B)
) ABchan.pmi:13 (state 2 L (run Bgforb))]
3) [anamelgforb]
n.pml:4 (St’iEE 1) [a17g2]

proc
proc
proc
proc
proc
proc

8 proc
8 proc
8 proc
8: proc O (init: htermlmtes

processes created

BB (queves, step

Observations on MSCs

>

>

Provides a graphical presentation of inter-process
communication over time.

Each process is associated with a vertical time line within a
MSC, i.e. moving down the MSC corresponds to the passing
of time.

The temporal ordering of events is represented by the relative
ordering of arrows between process execution lines.

The start of an arrow denotes the relative point in time when
a process sends a message to a channel while the arrow head
denotes the relative point in time when the message is
removed from the channel by a process.

The vertical distance between the start of an arrow and the
arrow head represents the relative time that the associated
message was stored in the channel.

Clicking on a step within the MSC will highlight the
corresponding position within the code, data and channel
panels.

Rendezvous Communication

» Our discussion of message channels so far has implicitly
focussed upon asynchronous communication between
processes, e.g.
chan name = [N] of { byte }
where N is a positive constant that defines the number of
locations allocated to the channel.

» However, synchronous communication between processes can
be achieved by setting N to be 0, e.g.
chan name = [0] of { byte }
This is known as a rendezvous, a channel where a message
can be passed but not stored, e.g. name!2 is blocked until a
corresponding name?msg is executable.

> Note: rendezvous communication is binary.

A Rendezvous Example

» Consider the following:
#define msgtype 33
chan name = [0] of { byte, byte }
active proctype AQ)
{ name !msgtype (124) ; name!msgtype(121) }
active proctype BQ)
{ byte state;
name?msgtype (state)
}

» Channel name is a global rendezvous. Both A and B will
synchronous on their first statements. The effect will be to
transfer the value 124 from A to the local variable state
within B. Further execution is blocked because the second
send within A has no matching receive within B.

Dijkstra's Semaphores

#define p O
#define v 1

chan sema = [0] of { bit };
active proctype semaphore ()
{ do
semalp -> sema?v
od
}
active [3] proctype user()
{ sema?p;
/* critical section */
sema!v;
/* non-critical section */
skip

MSC for Dijkstra's Semaphore Example

semaphore:1:0

III\ user:1:3
120

i

171 /
110 \u5er:1:1

1720

i
1M /
110 user:1:2

T

i

11

Assertions

» While the Spin simulator does not represent a formal analysis
tool, it does provide a limited form support for verification in
terms of assertion checking, i.e. the checking of local and
global system assertions during particular simulation runs.

» An assertion is a statement which can be either true or false.

» Interleaving assertion evaluation with code execution provides
a simple yet very useful mechanism for checking desirable as
well as erroneous behaviour with respect to our models.

» The syntax for an assertion within Promela takes the form:
assert(<logical-statement>)
for example:
assert(!(doors == open && lift == moving))

» Within Promela we can express local assertions as well
global system assertions.

Local Assertions

byte state = 1;

active proctype A() { (state == 1) -> state = state + 1;
assert(state == 2)

}

active proctype B() { (state == 1) -> state = state - 1;
assert(state == 0)

}

Will the assertion checking succeed or fail?

Local Assertion - Violation

byte state = 1;

active proctype A() { (state == 1) -> state = state + 1;
assert(state == 2)

1smti\.fe proctype B() { (state ==

1) > state = state - 1;
assert(state == 0)

00 =1 0 Un = 0a PO —|

[variable values, o mot) creates proc 0 (A)
: 1 ,B

P RwN oo

: proc 1 (B:1) ABstate.pml:7 (st
6: proc 0 (A:1) ABstate.pml:5 (sta
2 processes created

Global Assertions

> A global assertion or system invariant is a property that is
true in the initial system state and remains true in all possible
execution paths.

» To express a system invariant within Promela one must define
a monitor process that contains the desired system invariant.

» Running an instance of the monitor process along with the
rest of the system model means that the global assertion can
be checked at any point during the execution.

» Note that in the case of a simulation the checking is not
exhaustive, this is achieved within verification mode.

Semaphores Revisited

#define p O
#define v 1
byte count = 0;
chan sema = [0] of { bit };
active proctype semaphore(){
do
semal!p —> sema?v
od}
active [3] proctype user(O{
/* non-critical section */
sema?p;
count = count + 1;
/* critical section */
count = count - 1;
sema!v;
/* non-critical section */
skip}
active proctype monitor ()
{ do :: assert(count == || count == 1) od}

Semaphores Revisited

1 | semaphore:1:0
z #define p 0 1

3 #define v 1 4

4 byte count;

5 chan sema = [0] of { bit }; 5

(2 5

7 active proctype semaphore(){ 7 user1:3
8 do =

tz] 1 semalp - semary

10 od 2

11 active [3] proctype user(){ 12

12 /* non-critical section */ 13

13 sema?p; 13

14 count = count + 1;

15 /* critical section */ 2z

16 count = count - 1; 22

17 semaly;

18 /* non-critical section */

19 skip}

20 active proctype monitor() I=

21 { do:assert{count== 0| count== 1) od}

Summary

Learning outcomes:

» To be able to understand and construct simple
programs exploiting Promela’s control flow
constructs, including timeout and unless.

» To be able to understand and construct
asynchronous and synchronous behaviour
between processes using message channels;

» Understand how to construct and use both local
and global system assertions with in the context
of the Spin simulator.

Recommended reading:

» Spin homepage:
http://spinroot.com

> Books on Spin and model checking in
general:
http://spinroot.com/spin/books.html

http://spinroot.com
http://spinroot.com/spin/books.html

