
Rigorous Methods for Software Engineering
(F21RS-F20RS)
Promela (Part 2)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

▶ Control flow constructs.

▶ Channel based process communication.

▶ Assertions.

Control Flow

▶ In the “Promela I” lecture three ways for achieving control
flow were introduced:
▶ Statement sequencing;
▶ Atomic sequencing;
▶ Concurrent process execution.

▶ Promela supports three additional control flow constructs:
▶ Case selection
▶ Repetition
▶ Unconditional jumps

Case Selection

▶ What follows is an example of case selection involving two
statement sequences:

if
:: (n % 2 != 0) -> n = n + 1;
:: (n % 2 == 0) -> skip;
fi

Note that each statement sequence is prefixed by a ::. The
executability of the first statement (guard) in each sequence
determines sequence is executed.

▶ Guards need not be mutually exclusive:

if
:: (x >= y) -> max = x;
:: (y >= x) -> max = y;
fi

Note: if x and y are equal then the selection of which
statement sequence is executed is decided at random, giving
rise to non-deterministic choice.

Repetition

▶ What follows is an example of repetition involving two
statement sequences:

do
:: (x >= y) -> x = x - y; q = q + 1;
:: (y > x) -> break;
od

Note that the first statement sequence denotes the body of
the loop while the second denotes the termination condition.

▶ Termination, however, is not always a desirable property of a
system, in particular, when dealing with reactive systems:

do
:: (level > max) -> outlet = open;
:: (level < min) -> outlet = close;
od

Unconditional Jumps

▶ Promela supports the notion of an unconditional jump via
the goto statement.

▶ Consider the following refinement of the division program
given above:

do
:: (x >= y) -> x = x - y; q = q + 1;
:: (y > x) -> goto done;
od;

done:
skip

Note that done denotes a label. A label can only appear
before a statement. Note also that a goto, like a skip, is
always executable.

Timeouts

▶ Reactive systems typically require a means of
aborting/rebooting when a system deadlocks. Promela
provides a primitive statement called timeout which enables
such a feature to be modelled.

▶ To illustrate, consider the following process definition:

proctype watchdog ()
{

do
:: timeout -> guard!reset
od

}

The timeout condition becomes true when no other
statements within the overall system being modelled are
executable.

Exceptions

▶ Another useful exception handling feature is supported by the
unless statement which takes the following general form:
{ statements-1 } unless { statements-2 }

Execution begins with statements-1. Before execution of
each statement the executability of the first statement within
statements-2 is checked. If the first statement is executable
then control is passed to statements-2. If however the
execution of statements-1 terminates successfully then
statements-2 is ignored.

▶ Consider an alternative watchdog process:

proctype watchdog ()
{ do
process_data() unless guard?reset; process_reset()
od

}

Message Channels

▶ So far global variables have provided the only means of
achieving communication between distinct processes.

▶ However, Promela supports message channels which
provide a more natural and sophisticated means of modelling
inter-process communication (data transfer).

▶ A channel can be defined to be either local or global. An
example of a channel declaration is:
chan in_data = [8] of { byte }

which declares a channel that can store up to 8 messages of
type byte.

▶ Multiple field messages are also possible:
chan out_data = [8] of { byte, bool, chan }

Sending Messages

▶ Sending messages is achieved by the ! operator, e.g.
in_data ! 4;

This has the effect of appending the value 4 onto the end of
the in_data channel.

▶ If multiple data values are to be transferred via each message
then commas are used to separate the values, e.g.
out_data ! x + 1, true, in_data;

where x is of type byte.

▶ Note that the executability of a send statement is dependent
upon the associated channel being non-full, e.g. the following
statement will be blocked:
in_data ! 4;

unless in_data contains at least one empty location.

Receiving Messages

▶ Receiving messages is achieved by the ? operator, e.g.
in_data ? msg;

This has the effect of retrieving the first message (FIFO)
within the in_data channel and assigning it to the variable
msg.

▶ If multiple data values are to be transferred via each message
then commas are used to separate the values, e.g.
out_data ? value1, value2, value3;

▶ Note that the executability of a receive statement is
dependent upon the associated channel being non-empty, e.g.
the following statement will be blocked:
in_data ? value;

unless in_data contains at least one message.

Some Observations & Notations

▶ If more data values are sent per message than can be stored
by a channel then the extra data values are lost, e.g.
in_data ! msg1, msg2;

here the msg2 will be lost.

▶ If fewer data values are sent per message than are expected
then the missing data values are undefined, e.g.

out_data ! 4, true;
out_data ? x, y, z;

here x and y will be assigned the values 4 and true

respectively while the value of z will be undefined.

▶ Alternative (& equivalent) notations:

out_data!exp1,exp2,exp3; out_data!exp1(exp2,exp3);
out_data?var1,var2,var3; out_data?var1(var2,var3);

Additional Channel Operations

▶ Determining the number of messages in a channel is achieved
by the len operator, e.g.
len(in_data)

If the channel is empty then the statement will block.

▶ The empty, full operators determine whether or not
messages can be received or sent respectively, e.g.
empty(in_data); full(in_data)

▶ Non-destructive retrieve:
out_data ? [x, y, z]

Returns 1 if out_data?x,y,z is executable otherwise 0.
Purely evaluation, i.e. no message retrieved.

run and init

▶ The operator run provides an alternative way of instantiating
a process type.

▶ The the use of run is typically restricted to init – a special
process that has no parameters and is the first process to be
executed.

▶ init is analogous to the main function within a C program.

▶ An init process takes the form:

init { /* local declarations and statements */ }

The simplest and may be one of the least useful of Promela
programs takes the form:

init { skip }

Note: skip denotes the null statement.

Hello World revisited

proctype hello(){ printf("Hello\n") }

proctype world(){ printf("World\n") }

init { atomic{ run hello(); run world () } }

▶ Note that the use of atomic ensures that all enclosed
processes are instantiated before any of the process begin to
execute.

Processes with Parameters

▶ Note also that init and run allow us to instantiate process
types with parameters.

▶ Consider the following:

proctype A(byte x)
{

x = x+1;
printf("The value of x is %d\n", x)

}

init { atomic{ run A(9);
run A(99);
run A(199) }}

▶ What will be the effect of running this program?

The effect is ...

Channels as Parameters

▶ Consider the following:

proctype A(chan q1)
{ chan q2;

q1?q2; q2!99
}
proctype B(chan qforb)
{ int x;

qforb?x; x++;
printf("x == %d\n", x)

}
init {chan qname = [1] of { chan };

chan qforb = [1] of { int };
run A(qname); run B(qforb);
qname!qforb
}

▶ What will be the effect of running this program?

The effect is ...

Observations on MSCs

▶ Provides a graphical presentation of inter-process
communication over time.

▶ Each process is associated with a vertical time line within a
MSC, i.e. moving down the MSC corresponds to the passing
of time.

▶ The temporal ordering of events is represented by the relative
ordering of arrows between process execution lines.

▶ The start of an arrow denotes the relative point in time when
a process sends a message to a channel while the arrow head
denotes the relative point in time when the message is
removed from the channel by a process.

▶ The vertical distance between the start of an arrow and the
arrow head represents the relative time that the associated
message was stored in the channel.

▶ Clicking on a step within the MSC will highlight the
corresponding position within the code, data and channel
panels.

Rendezvous Communication

▶ Our discussion of message channels so far has implicitly
focussed upon asynchronous communication between
processes, e.g.
chan name = [N] of { byte }

where N is a positive constant that defines the number of
locations allocated to the channel.

▶ However, synchronous communication between processes can
be achieved by setting N to be 0, e.g.
chan name = [0] of { byte }

This is known as a rendezvous, a channel where a message
can be passed but not stored, e.g. name!2 is blocked until a
corresponding name?msg is executable.

▶ Note: rendezvous communication is binary.

A Rendezvous Example

▶ Consider the following:

#define msgtype 33
chan name = [0] of { byte, byte }
active proctype A()
{ name!msgtype(124); name!msgtype(121) }
active proctype B()
{ byte state;

name?msgtype(state)
}

▶ Channel name is a global rendezvous. Both A and B will
synchronous on their first statements. The effect will be to
transfer the value 124 from A to the local variable state
within B. Further execution is blocked because the second
send within A has no matching receive within B.

Dijkstra’s Semaphores

#define p 0
#define v 1

chan sema = [0] of { bit };
active proctype semaphore()
{ do

:: sema!p -> sema?v
od

}
active [3] proctype user()
{ sema?p;

/* critical section */
sema!v;
/* non-critical section */
skip

}

MSC for Dijkstra’s Semaphore Example

Assertions

▶ While the Spin simulator does not represent a formal analysis
tool, it does provide a limited form support for verification in
terms of assertion checking, i.e. the checking of local and
global system assertions during particular simulation runs.

▶ An assertion is a statement which can be either true or false.

▶ Interleaving assertion evaluation with code execution provides
a simple yet very useful mechanism for checking desirable as
well as erroneous behaviour with respect to our models.

▶ The syntax for an assertion within Promela takes the form:
assert(<logical-statement>)

for example:
assert(!(doors == open && lift == moving))

▶ Within Promela we can express local assertions as well
global system assertions.

Local Assertions

byte state = 1;

active proctype A() { (state == 1) -> state = state + 1;
assert(state == 2)

}
active proctype B() { (state == 1) -> state = state - 1;

assert(state == 0)
}

Will the assertion checking succeed or fail?

Local Assertion - Violation

Global Assertions

▶ A global assertion or system invariant is a property that is
true in the initial system state and remains true in all possible
execution paths.

▶ To express a system invariant within Promela one must define
a monitor process that contains the desired system invariant.

▶ Running an instance of the monitor process along with the
rest of the system model means that the global assertion can
be checked at any point during the execution.

▶ Note that in the case of a simulation the checking is not
exhaustive, this is achieved within verification mode.

Semaphores Revisited

#define p 0
#define v 1
byte count = 0;
chan sema = [0] of { bit };
active proctype semaphore(){

do
:: sema!p -> sema?v
od}

active [3] proctype user(){
/* non-critical section */
sema?p;
count = count + 1;
/* critical section */
count = count - 1;
sema!v;
/* non-critical section */
skip}

active proctype monitor()
{ do :: assert(count == 0 || count == 1) od}

Semaphores Revisited

Summary

Learning outcomes:

▶ To be able to understand and construct simple
programs exploiting Promela’s control flow
constructs, including timeout and unless.

▶ To be able to understand and construct
asynchronous and synchronous behaviour
between processes using message channels;

▶ Understand how to construct and use both local
and global system assertions with in the context
of the Spin simulator.

Recommended reading:

▶ Spin homepage:
http://spinroot.com

▶ Books on Spin and model checking in
general:
http://spinroot.com/spin/books.html

http://spinroot.com
http://spinroot.com/spin/books.html

