Rigorous Methods for Software Engineering
(F21RS-F20RS)
Spin — Formal Analysis (Part 1)

Andrew lreland
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Overview

» Introduce Spin's formal analysis capabilities via iSpin.

» Focus upon Spin’s support for assertion verification and
deadlock/livelock detection.

Going Beyond Simulation

» So far we have looked at Spin's simulation capabilities, i.e.
the random (or interactive) exploration of the state space.

» While simulation is very useful at giving earlier feedback on a
design, it can never prove that a design is bug free, i.e.
correct with respect to its specification.

» Spin’'s formal analysis capabilities provide such a correctness
guarantee, it has been said:

“.. formal analysis reaches the parts
simulation can not reach.”

» Spin’s formal analysis corresponds to the fast and exhaustive
search of the state space.

Formal Analysis within Spin

» Assertion verification:

» local process assertions
» global system assertions

» Validation labels:

» success without termination
» productive progress

» Temporal verification:

» Linear Temporal Logic (LTL)
(also referred to as linear-time temporal logic)

Local Assertions Revisited

byte valuel = 1, value2 = 2, value3 = 3;

active proctype A() { value3

}

active proctype B() { value2

3

value3 + value?2;
assert(value3 == 5)

value2 + valuel;
assert(value3 == 5)

» Using Spin’s simulator, will assertion checking succeed or fail?

> Let's take a look at a couple of simulation runs ...

First Simulation Run

Spin Version 6.4.3 — 16 December 2014 :: iSpin Version 1.1.4 - 27 November 2014
Edit/View | Simulate/Replay | Verification | Swarm Run | <Help> | Save Session | Restore Session | <Quit>

Mode A Full Channel Qutput Filtering (reg. exps.)
* Random, with seed: * blocks new messages process ids:
Interactive (for resolution of all nond loses new messages

' queue ids:
Guided, with trail: [value.pml.trail browse MSC+stmnt =
= MSC max text width |20

MSC update delay [25 " tracked variable:

- T var names:

initial steps skipped: |

maximum number of steps: |10000

v Track Data Values [this can be slow) track scaling:
byte valueT = 1, value2 = 2, value3 = 3;

active proctype A() { value3 = value3 + value2;
assert(value3 ==5)

)

active proctype B() { value2 = value2 + valuel;
asseri(value3 ==

]

1
2
3
4
5
6
7
8
9

[variable valu proc
proc
proc
proc 1(B:
proc 0 (A:1) value.pml 4 (state 2) |
proc 1 (B:1) value.pml:7 (state 2) [assert((
proc
proc 0 (A:
sses created

value2
value3

SRBERENZDS

n

Second Simulation Run

Spin Version 6.4.3 — 16 December 2014 :: iSpin Version 1.1.4 — 27 November 2014
Edit/View | Simulate/Replay | Verification | Swarm Run | <Help> | Save Session | Restore Session | <Quit>

A Full Channel Qutput Filtering (reg. exps.)
Random, with seed: * blocks new messages process ids: [

Interactive (for resolution of all nondeterminism loses new messages
queue ids:

% Guided, with trail: [value.pml.trail " browse MSC+stmnt -
MSC max text width 20

MSC update delay 25 tracked variable: |

_ "~ var names:
initial steps skipped: 0
maximum number of steps: 10000
v Track Data Values (this can be slow) track scaling:
byte valuel = 1, value2 = 2, value3 = 3;
active proctype A() { value3 = value3 + value2;

assert{ value3==5)

}

active proctype B() { value2 = value2 + value1;
assert{ value3==5)

}

1
2
3
4
5
6
7
8
9

[variable values, step 1] ng statement merging

proc 1 (B:1) .pml:6 (state 1) [value2 = (value2+value1)]
valuel : b el : 2

Ispm
finrnraceac: 2

2: proc 1 (B
2: proc 0 (A
2 processes created
Exit-Status 0

Simulation vs Verification
Initialization:

valuel = 1, value2 = 2, value3 = 3;

Simulation 1: Simulation 2:
A: value3 = value3 + value2; B: value2 = value2 + valuel;
B: value2 = value2 + valuel; B: assert(value3 == 5);
A: assert(value3 == 5);
B: assert(value3 == 5);
b == 3 ==

» A simulation run will only explore one execution trace.
> A verification run will explore all execution traces.

Next: performing verification within iSpin ...

Setting Verification Parameters

Safety: safety - invalid endstates (deadlocks); assertion
violations.

Liveness: non-progress cycles; acceptance cycles; enforce weak
fairness.

Never Claims: relates to LTL reasoning (more details later).
Storage Mode: exhaustive; hash-compact; bitstate/supertrace.

Search Mode: depth-first - partial order reduction; iterative search
(shortest trail); breadth first; report unreachable
code.

Running a Verification (Assertion Correctness)

Spin Version 6.4.3 - 16 December 2014 :: iSpin Version 1.1.4 - November 201
Edit/View | Simulate / Replay|

Bwarm Run | <Help> | Save Session | Restore Session

Safety Storage Mode Search Mode

* safety exhaustive = depth-first search

v + invalid endstates (deadlock) " + minimized automata (slow) ¥ + partial order reduction
W + assertion violations + collapse compression + bounded context switching
+ xr/xs assertions hash-compact bitstatefsupertrace with boun
Never Claims + iterative search for short trail
non-progress cycles * do not use a never claim or It| property breadth-first search
acceptance cycles use claim W + partial order reduction
enforce weak fairness constraint claim name (opt)

¥ report unreachable code

7= 2, value3 = 3; il verification result:

‘rpan.out

‘byte valueT = 1, value:

active proctype A() { value3 = value3 + value2;
assert(value3 ==

)

active proctype B() { value2 = value2 + valuei;
assert(valued ==

}

€000~ O U1 5 G N =]

Running a Verification (Assertion Correctness)

1. Set verification parameters: within the "Safety" panel
select the "assertion violations" second on the list (see
slide 10).

2. Select “Run” button: Output will be generated within the
"verification result" panel (see slide 12). Either

» a successful verification (no violations) or
» an unsuccessful verification (violations) will be reported.

In the case of an unsuccessful verification you will be invited to

’

‘replay the error-trail, goto Simulate/Replay and select “Run”".

The Guided (simulation), with trail mode runs the failure
trace (counter-example) generated by the verification run.

Running a Verification (Assertion Correctness)

“byte valueT = 1, value2 = 2, valfenems

pan:1: assertion violated (value3==5) (at depth 1)
active proctype A() { value3 = value3 + value2; [ﬂn wrote value pml ir; o i ’

assert(value3 ==5)
- 16 December 2014)

rch not completed

rtial Order Reduction

}

active proctype B() { value2 = value2 + valuet;
assert(value3 ==5)

]

© 00~ 0 01 = o ha =

space search for:

never claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State -vector 28 byte, depth reached 1, errors: 1
2 states, stored

0 (resolved)

Stats on memory usage (in Megabyte:
0.000 equivalent memory usage for states (stored™(State-vector + overhead))
0.292 actual memory usage for states
1"E 000 memory used f h table (-w24)
memory used for DF\ 2k (-m10000)
1"8 730 total actual memory usage

pan: elapsed time 0 seconds
To replay the errol , goto Simulate/Replay and select "Run"

Running a Guided Simulation

Spin Version 6.4.3 — 16 December 2014 :: iSpin Ver: mber 2014
Verification | Swarm Run | <Help> | Save Session | Restore Session | <Quit>

Edit/View | Simulate / Replay

A Full Channel Output Filtering (reg. exps.)
123 * blocks new messages process ids: |

Random, with seed:

Interactive ifor) loses new messages
queue ids:

[— -1
Ba var names: |

* Guided, with trail: [value.pml.trail

MSC max text width |20

initial steps skipped: |0 EE it o | ki
maximum number of steps: ‘IDDDD MSC:lipdate delay. bracked vaneble: |

¥ Track Data Values (this can be slow) track scaling:
byte valuel = 1, value2 = 2, value3 = 3; |

active proctype A{) { value3 = value3 + value2;
assert(value3 == 5)

active proctype B() { value2 = value2 + valuel;
assert(value3 == 5)
}

000~ O) U1 = GO NI —]

[variable values, step

valuel
value2 L ner Areartifhnlind _EY

value3d

) value.pml:7 (state 2)
) value.pmli:3 (state 1)

TrainWare: An Unsafe Railway Network

Tunnel AB

Station A

Station B

Tunnel BC

Station C

Tunnel CD

Station D

A Promela Model of TrainWare

chan TunnelAB
chan TunnelBC
chan TunnelCD
chan TunnelDA

[2] of { byte
[2] of { byte
[2] of { byte
[2] of { byte

B]

b

proctype Station(chan in_track, out_track) {
byte train;
do :: in_track?train; out_track!train od }

proctype Setup(chan track; byte train) { track!train }

init { atomic{ run Setup(TunnelBC, 1);
run Setup(TunnelDA, 2);
run Station(TunnelDA, TunnelAB);
run Station(TunnelAB, TunnelBC);
run Station(TunnelBC, TunnelCD);
run Station(TunnelCD, TunnelDA)} }

A Global Safety Assertion for TrainWare

> Safety Assertion:

“A tunnel can only be occupied by one train at a time.”

chan TunnelAB = [2] of { byte
chan TunnelBC = [2] of { byte
chan TunnelCD = [2] of { byte
chan TunnelDA = [2] of { byte

b

b

b

]

b

proctype Monitor() { assert(nfull(TunnelAB) &&
nfull (TunnelBC) &&
nfull (TunnelCD) &&
nfull (TunnelDA))}

init { atomic{ run Monitor(); ... }}

» See next 2 frames for Spin’s verification failure ...

TrainWare: Safety Assertion Violation

|pan.out

(Spin Version 6.4.3 -- 16 December 2014)
ing: Search not completed

out_track)
Warning: S
+ Partial Order Reduction
. Full statespace search for:
rackltrain never claim - (not selected)
assertion violations +
cycle checks - (disabled by -DSAFETY)

invalid end states +

train)
State-vector 112 byte, depth reached 59, errors: 1
238 states, stored

159 states, matched
397 transitions (= stored+matched)

TunnelAB) && nful{TunnelBC) && 6 atomic steps
ICD) && nfull(TunnelDA)) } hash conflicts:

0 (resolved)

on memory usage (in Megabytes)
equivalent memory usage for states (stored”(State-vector + overhead))

S
introduce train 1 before station G *{ 0.032 iva
introduce train 2 before station A */ 0.29 1 actual memory usage for states
128.000 memory used for hash table (-w24)
nelAB); ."" station A 0.534 memory used for DFS stack -m10000}
nelBC); f statlun B2 128.730 total actual memory usage

Tunne\CD) stat\un C

me\DA}] stat\uﬂ D
pan: elapsed time 0 seconds
goto Simulate/Replay and select "Run

To replay the error-ir;

TrainWare: Guided Simula

= sy

o { byte];
of { byte ;
of { byte);
of { byte

1in_track, out_track)

rain; out_trackltrain

track; byte train)

ssert(nfull(TunnelAB) && nfull(
ifull(TunnelCD) && nful(Tunn

3BC, 1); /* introduce train 1 be
DA, 2); /* introduce train 2 be

1elDA, TunnelAB); /* station A

1elAB, TunnelBC); /* station B

=

tiQn

a2
12
172
412
3 B
37
B
]
41

Validation Labels: End State Labels

» When modelling non-terminating systems how can we judge
whether a process is in a deadlock state or an acceptable
waiting state?

» End-state labels provide a solution, they allow the designer to
explicitly indicate valid end-states.

» Definition of a valid end-state:

» Every instantiated process has either terminated or is blocked
at a statement that is labelled as an end-state.
» All message channels are empty.

» An end-state label is any label with the prefix "end", e.g.

end, end_1,...

Semaphores Revisited

» Consider again Dijkstra's semaphore solution to the problem
of ensuring mutual exclusion (see Promela Part 2), in
particular the definition of the semaphore process:

proctype semaphore(){do ::sema!p -> sema?v od}

with the "Invalid endstates (deadlock)" verification
option selected, this definition will result in a failed
verification.

» The failure is because the semaphore process will block until
another user process starts-up. Such desirable blocking is
indicated to the verifier via an end-state label, e.g.

proctype semaphore(){end: do ::sema!p -> sema?v od}

this revised definition will lead to a successful verification.

Validation Labels: Progress-State Labels

» Progress-state labels allow a designer to explicitly define a
notion of progress and thus verify that certain events do
actually occur (a progress-state label has a "progress"
prefix).

> A verification fails if there exists an infinite execution cycle
that does not pass a progress-state label (non-progress
cycle), e.g. assuming that count is initially 0 then the
following fails:

do
(count >= 0) -> count = count+1;
(count == 9) -> progress: count = 0;

od

On the other hand, the following will succeed:

do
(count < 9) -> count = count+1;
(count == 9) -> progress: count = 0;

od

Validation Labels: Acceptance-State Labels

P> Accept-state labels allow a designer to be able to verify that
certain events do not happen infinitely often (an accept-state
label has an "accept" prefix).

» A verification will fail if there exists an execution that visits an
accept-state label infinitely often (acceptance cycle), e.g.
assuming that count is initially O then the following fails:

do
(count >= 0) -> count = count+l;
(count == 9) -> accept: count = 0;
od
On the other hand, the following will succeed:

accept: do
(count < 9) -> count = count+1l;
(count == 9) -> break;
od

Summary of Validation Labels

» Checking for:
» invalid end-states is a safety property.
» non-progress cycles is a liveness property.
P acceptance cycles is a liveness property.
Note: acceptance is the converse of non-progress, i.e. an
acceptance cycle denotes a computation that visits an
accept label infinitely often whereas a non-progress cycle
denotes a computation that does not visit a progress label
infinitely often.
» Using validation labels requires that the appropriate options
are enabled via the "Liveness" panel of the verification tab
(see next slide).

Liveness Panel in iSpin

Liveness Never Claims + iterative search for shor

non-progress cycles + do not use a never claim or It property breadth-first search
+ acceptance cycles " use claim v + partial order reduction

enforce weak fairness constraint claim name (opt

v report unreachable code

are-vecior U pDyie, aepin reacneda £U, error

I O

2 byte count = 0; 21 states, stored {42 visited)

3 9 atched

4 active proctype A{) g ions (= visited+matched)
5

6 hash conflicts:

7 count < 9) -= count = count+1;

8 iz (count == 9) -> break Stats on memory usage (in Megabyte
) od 0.001 equivalent memory usage for
10 } 0.292 actual memuw us 5
11

12 D 534 memory used for D |

13 128.730 total actual memory usage

unreached in pmcty pe. A

Summary

Learning outcomes:
» To understand the difference between simulation
and verification.
» To be able to use iSpin to verify assertions,
both local (process) and global (system).
» To be able to use iSpin to detect deadlocks
(invalid end-states) and livelocks (non-progress
& acceptance cycles).
Recommended reading:
» Spin homepage:
http://spinroot.com
» Spin on-line material:
http://spinroot.com/spin/Man/

http://spinroot.com
http://spinroot.com/spin/Man/

