Rigorous Methods for Software Engineering (F21RS-F20RS) Spin – Formal Analysis (Part 1)

Andrew Ireland Department of Computer Science School of Mathematical and Computer Sciences Heriot-Watt University Edinburgh

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

- Introduce Spin's formal analysis capabilities via iSpin.
- Focus upon Spin's support for assertion verification and deadlock/livelock detection.

(ロ)、(型)、(E)、(E)、 E) の(()

Going Beyond Simulation

- So far we have looked at Spin's simulation capabilities, *i.e.* the random (or interactive) exploration of the state space.
- While simulation is very useful at giving earlier feedback on a design, it can never prove that a design is bug free, *i.e.* correct with respect to its specification.
- Spin's formal analysis capabilities provide such a correctness guarantee, it has been said:

"... formal analysis reaches the parts simulation can not reach."

Spin's formal analysis corresponds to the fast and exhaustive search of the state space.

Formal Analysis within Spin

Assertion verification:

- local process assertions
- global system assertions
- Validation labels:
 - success without termination
 - productive progress
- Temporal verification:
 - Linear Temporal Logic (LTL) (also referred to as linear-time temporal logic)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local Assertions Revisited

Using Spin's simulator, will assertion checking succeed or fail?
Let's take a look at a couple of simulation runs ...

- ロ ト - 4 回 ト - 4 □

First Simulation Run

		n	Spin V	ersion 6.4.3	16 December 2	014 :: iSpin Version	1.1.4 27 N	ovember 2014
Edit/View	Simulate / Replay	Verification	Swarm Run	<help></help>	Save Session	Restore Session	<quit></quit>	
Edit/View Simulate / Replay Verification Swarm Run Mode I Image: State of the state of th				<help> Save Session Restore Session A Full Channel Output Filteri blocks new messages DSC+stmnt Output Silteri MSC max text width 20 Var names: tracked variab MSC update delay 25 track scaling:</help>			(reg. exps.)	(Re)Run Stop Rewind Step Forward Step Backward
5 } 6 ao 7 8 } 9	ctive proctype B() {	value2 = value assert(value3	2 + value1; == 5)					1
-] [variable.a	volues step 21	品 0.	proc - (troo	t:) creates r	$\alpha = 0$			
value3 = 5 5 value3 = 5 5								

Second Simulation Run

Spin V	ersion 6.4.3 16 December 2	2014 :: iSpin Version 1.1.4 27	November 2014				
Edit/View Simulate / Replay Verification Swarm Run	<help> Save Session</help>	Restore Session <quit></quit>					
Mode ○ Random, with seed: 2 ○ Interactive (for resolution of all nondeterminism) • Guided, with trail: [value.pml.trail browse] initial steps skipped: 0 maximum number of steps: 10000 ♥ Track Data Values (this can be slow) 1 1 byte value1 = 1, value2 = 2, value3 = 3; 2 active proctype A() { value3 = value3 + value2; 4 assert(value3 == 5) 5 } 6 active proctype B() { value2 = value3 + value1; 7 assert(value3 == 5) 9 }	A Full Channel • blocks new messages 6 loses new messages MSC+stmnt MSC max text width 20 MSC update delay 25	Output Filtering (reg. exps.) process ids: queue ids: var names: tracked variable: track scaling:	(Re)Run Stop Rewind Step Forward Step Backward				
[variable values, step 1] using statement merging 1: proc 1 (B:1) value.pml:6 (state 1) [value2 = (value2+value1)] value2 = 3 spin: text of failed assertion: assert((value3==5)) value3 = 3 2: processes: proc 1 (B:1) value.pml:7 (state 2) 2: processes: created 2: processes: created Exit-Status 0							

Simulation vs Verification

Initialization:

value1 = 1, value2 = 2, value3 = 3;

Simulation 1: Simulation 2:

A: value3 = value3 + value2; B: value2 = value2 + value1; B: value2 = value2 + value1; B: assert(value3 == 5); A: assert(value3 == 5); B: assert(value3 == 5);

5 == 5 3 == 5

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A simulation run will only explore one execution trace.
 A verification run will explore all execution traces.
 Next: performing verification within iSpin ...

Setting Verification Parameters

- Safety: safety invalid endstates (deadlocks); assertion violations.
- Liveness: non-progress cycles; acceptance cycles; enforce weak fairness.

Never Claims: relates to LTL reasoning (more details later).

Storage Mode: exhaustive; hash-compact; bitstate/supertrace.

Search Mode: depth-first - partial order reduction; iterative search (shortest trail); breadth first; report unreachable code.

Running a Verification (Assertion Correctness)

	Spin Version 6.4.3	16 Decembe	r 2014 :: iSpin	Version 1.1.4 27 No	wember 2014		
Edit/View Simulate / Replay Verification	Swarm Run <help> S</help>	ave Session	Restore Sessi	on <quit></quit>			
Safety	Storage Mode			Search Mode			
safety	exhaustive			 depth-first search 			
+ invalid endstates (deadlock)	🗆 + minimized automata (slow)			+ partial order reduction			
+ assertion violations	+ collapse compression	+ collapse compression			kt switching		
+ xr/xs assertions	hash-compact C bitstate	hash-compact 🔿 bitstate/supertrace			with bound: 0		
Elveness	Never C	Never Claims			for short trail		
non-progress cycles	 do not use a never claim of 	 do not use a never claim or ltl property 					
C acceptance cycles	🔿 use claim	🗇 use claim			luction		
enforce weak fairness constraint	claim name (opt):			✓ report unreachable code			
	Run	Stop	0	Save Result in:	pan.out		
1 byte value 1 = 1, value 2 = 2, value 2 active proctype A() { value 3 = value 4 assert(value 5 } 6 active proctype B() { value 2 = value 7 assert(value 8 } 9	3 = 3; ie3 + value2; 3 == 5) ie2 + value1; 3 == 5)	ver	ification result				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Running a Verification (Assertion Correctness)

- 1. Set verification parameters: within the "Safety" panel select the "assertion violations" second on the list (see slide 10).
- Select "Run" button: Output will be generated within the "verification result" panel (see slide 12). Either
 - a successful verification (no violations) or
 - an unsuccessful verification (violations) will be reported.

In the case of an unsuccessful verification you will be invited to

'replay the error-trail, goto Simulate/Replay and select "Run"'.

The **Guided (simulation), with trail** mode runs the failure trace (counter-example) generated by the verification run.

Running a Verification (Assertion Correctness)

		Run	Stop	Save Result in:	pan.out	
1 2 3 4 5 6 7 8 9	byte value1 = 1, value2 = 2, value3 = active proctype A() { value3 = value3 = } active proctype B() { value2 = value2 = assert(value3 == }	5, value2; 5) value1; 5)	File Sortion pan:1: assertion pan:1: assertion pan:1: assertion pan:1: assertion (Spin Version (Warning: Sear + Pa Full statespace Pull statespace evec asse cycle State-vector 28 2 states, a 2 states, a 0 states, n 0 states, n 0 states, n 1 states, n 0 states, n 1 states, n 0 states, n	n violated (value35) e onl trail 5.4.3 16 December 2 ch not completed ritial Order Heduction : search for: r claim (not sele tifton violations +- checks (disablet d end states + 3 byte, depth reached 1 latered a facthed ns (- stored+matched) sleps 0 (resolved) ory used for hash table ory used for Mash table ory used for DFS stad actual memory usage me 0 seconds rror-trail, goto Simulate	(at depth 1) 2014) 2014) d by -DSAFETY) I, errors: 1) or states (stored*(States) ates (stored*(States) (stored*(States)) e (~w24) k (-m10000)	ate-vector + overhead)) Rum*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Running a Guided Simulation

TrainWare: An Unsafe Railway Network

A Promela Model of TrainWare

do :: in_track?train; out_track!train od }

proctype Setup(chan track; byte train) { track!train }

```
init { atomic{ run Setup(TunnelBC, 1);
    run Setup(TunnelDA, 2);
    run Station(TunnelDA, TunnelAB);
    run Station(TunnelAB, TunnelBC);
    run Station(TunnelBC, TunnelCD);
    run Station(TunnelCD, TunnelDA)} }
```

A Global Safety Assertion for TrainWare

Safety Assertion:

"A tunnel can only be occupied by one train at a time."

init { atomic{ run Monitor(); ... }}
> See next 2 frames for Spin's verification failure ...

TrainWare: Safety Assertion Violation

Run	Stop	Save Result in:	pan.out		
	pan:1: a	ssertion violated ((((!q	_full(TunnelAB))&&(!	q_full(TunnelE	3C)))&&(!q_full(TunnelCD)))
out_track)	pan: wro (Spin Ve Warning	ote trainware-monitor. ersion 6.4.3 16 Dece Search not complete + Partial Order Red	pml.tráil ember 2014) ed uction		
rack!train	Full state	espace search for: never claim - (assertion violations cycle checks - (invalid end states +	not selected) + disabled by -DSAFET	TY)	
train) FunnelAB) && nfull(TunnelBC) &&	State-ve 238 159 397 6 a	ctor 112 byte, depth r states, stored states, matched transitions (= stored+) tomic steps	eached 59, errors: 1 matched)		
ICD) && nfull(TunneIDA)) } introduce train 1 before station C */ introduce train 2 before station A */ neIAB); /* station A */ neIAB); /* station B */ , TunneICD; /* station C */ ineIDA)} /* station D */	hash cor Stats on 0.032 0.291 128.00 0.534 128.73	nflicts: 0 (resolve memory usage (in M equivalent memory actual memory usag 0 memory used for ha memory used for D 0 total actual memory	d) egabytes): usage for states (store je for states ish table (-w24) =S stack (-m10000) usage	ed*(State-vec	tor + overhead))
	pan: ela To repla	psed time 0 seconds y the error-trail, goto s	Simulate/Replay and s	select "Run"	

TrainWare: Guided Simulation

Validation Labels: End State Labels

- When modelling non-terminating systems how can we judge whether a process is in a **deadlock** state or an acceptable waiting state?
- End-state labels provide a solution, they allow the designer to explicitly indicate valid end-states.
- Definition of a valid end-state:
 - Every instantiated process has either terminated or is blocked at a statement that is labelled as an end-state.

- All message channels are empty.
- An end-state label is any label with the prefix "end", e.g. end, end_1,...

Semaphores Revisited

Consider again Dijkstra's semaphore solution to the problem of ensuring mutual exclusion (see *Promela Part 2*), in particular the definition of the semaphore process:

proctype semaphore(){do ::sema!p -> sema?v od}
with the "Invalid endstates (deadlock)" verification
option selected, this definition will result in a failed
verification.

The failure is because the semaphore process will block until another user process starts-up. Such desirable blocking is indicated to the verifier via an end-state label, *e.g.*

proctype semaphore(){end: do ::sema!p -> sema?v od}
this revised definition will lead to a successful verification.

Validation Labels: Progress-State Labels

- Progress-state labels allow a designer to explicitly define a notion of progress and thus verify that certain events do actually occur (a progress-state label has a "progress" prefix).
- A verification fails if there exists an infinite execution cycle that does not pass a progress-state label (non-progress cycle), e.g. assuming that count is initially 0 then the following fails:

```
do
:: (count >= 0) -> count = count+1;
:: (count == 9) -> progress: count = 0;
od
```

On the other hand, the following will succeed:

```
do
:: (count < 9) -> count = count+1;
:: (count == 9) -> progress: count = 0;
od
```

Validation Labels: Acceptance-State Labels

- Accept-state labels allow a designer to be able to verify that certain events do not happen infinitely often (an accept-state label has an "accept" prefix).
- A verification will fail if there exists an execution that visits an accept-state label infinitely often (acceptance cycle), e.g. assuming that count is initially 0 then the following fails:

On the other hand, the following will succeed:

```
accept: do
    :: (count < 9) -> count = count+1;
    :: (count == 9) -> break;
    od
```

Summary of Validation Labels

Checking for:

- invalid end-states is a safety property.
- non-progress cycles is a liveness property.
- acceptance cycles is a liveness property.

Note: acceptance is the converse of **non-progress**, *i.e.* an acceptance cycle denotes a computation that visits an accept label infinitely often whereas a **non-progress cycle** denotes a computation that does not visit a **progress label** infinitely often.

 Using validation labels requires that the appropriate options are enabled via the "Liveness" panel of the verification tab (see next slide).

Liveness Panel in iSpin

Liveness		Never	Never Claims		+ iterative search for shore	
C non-progress cycles		 do not use a never clain 	• do not use a never claim or Itl property			
 acceptanc 	acceptance cycles Cuse cla		use claim		+ partial order reduction	
enforce we	ak fairness constraint	claim name (opt):	1	✓ report unreachable	code	
		Run	Stop	Save Result in:	pan	
1 byte 3 acti 5 { 6 acco 7 9 10 } 12 13	e count = 0; ve proctype A() ept: do :: (count < 9) -> cou :: (count == 9) -> bro od	unt = count+1; eak	State-vect 21 stat 9 stat 51 tra 0 ato hash confl Stats on m 0.292 128,000 0.534 128.730 unreached pan: claps No errors	or 20 byte, deptn reached 2 tes, stored (42 visited) tes, matched nsitions (– visited+ matched mic steps idts: 0 (resolved) hemory usage (in Megabyte equivalent memory usage for st memory used for DFS stac total actual memory usage tin proctype A (0 of 8 states) ed time 0 eccends found did you verify all cl	es): or states ates e (-w24) k (-m100	

Summary

Learning outcomes:

- To understand the difference between simulation and verification.
- To be able to use iSpin to verify assertions, both local (process) and global (system).
- To be able to use iSpin to detect deadlocks (invalid end-states) and livelocks (non-progress & acceptance cycles).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recommended reading:

Spin homepage:

http://spinroot.com

Spin on-line material: http://spinroot.com/spin/Man/