
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Spin – Formal Analysis (Part 1)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

I Introduce Spin’s formal analysis capabilities via iSpin.

I Focus upon Spin’s support for assertion verification and
deadlock/livelock detection.

Going Beyond Simulation

I So far we have looked at Spin’s simulation capabilities, i.e.
the random (or interactive) exploration of the state space.

I While simulation is very useful at giving earlier feedback on a
design, it can never prove that a design is bug free, i.e.
correct with respect to its specification.

I Spin’s formal analysis capabilities provide such a correctness
guarantee, it has been said:

“... formal analysis reaches the parts
simulation can not reach.”

I Spin’s formal analysis corresponds to the fast and exhaustive
search of the state space.

Formal Analysis within Spin

I Assertion verification:
I local process assertions
I global system assertions

I Validation labels:
I success without termination
I productive progress

I Temporal verification:
I Linear Temporal Logic (LTL)

(also referred to as linear-time temporal logic)

Local Assertions Revisited

byte value1 = 1, value2 = 2, value3 = 3;

active proctype A() { value3 = value3 + value2;
assert(value3 == 5)

}
active proctype B() { value2 = value2 + value1;

assert(value3 == 5)
}

I Using Spin’s simulator, will assertion checking succeed or fail?

I Let’s take a look at a couple of simulation runs ...

First Simulation Run

Second Simulation Run

Simulation vs Verification
Initialization:

value1 = 1, value2 = 2, value3 = 3;

Simulation 1:

A: value3 = value3 + value2;

B: value2 = value2 + value1;

A: assert(value3 == 5);

B: assert(value3 == 5);

5 == 5

Simulation 2:

B: value2 = value2 + value1;

B: assert(value3 == 5);

3 == 5

I A simulation run will only explore one execution trace.

I A verification run will explore all execution traces.

Next: performing verification within iSpin ...

Setting Verification Parameters

Safety: safety - invalid endstates (deadlocks); assertion
violations.

Liveness: non-progress cycles; acceptance cycles; enforce weak
fairness.

Never Claims: relates to LTL reasoning (more details later).

Storage Mode: exhaustive; hash-compact; bitstate/supertrace.

Search Mode: depth-first - partial order reduction; iterative search
(shortest trail); breadth first; report unreachable
code.

Running a Verification (Assertion Correctness)

Running a Verification (Assertion Correctness)

1. Set verification parameters: within the "Safety" panel
select the "assertion violations" second on the list (see
slide 10).

2. Select “Run” button: Output will be generated within the
"verification result" panel (see slide 12). Either
I a successful verification (no violations) or
I an unsuccessful verification (violations) will be reported.

In the case of an unsuccessful verification you will be invited to

‘replay the error-trail, goto Simulate/Replay and select “Run”’.

The Guided (simulation), with trail mode runs the failure
trace (counter-example) generated by the verification run.

Running a Verification (Assertion Correctness)

Running a Guided Simulation

TrainWare: An Unsafe Railway Network

Station A Station B

Tunnel AB

Station C

Tunnel BC

Station D

Tunnel CD

Tunnel DA

A Promela Model of TrainWare

chan TunnelAB = [2] of { byte };
chan TunnelBC = [2] of { byte };
chan TunnelCD = [2] of { byte };
chan TunnelDA = [2] of { byte };

proctype Station(chan in_track, out_track) {
byte train;
do :: in_track?train; out_track!train od }

proctype Setup(chan track; byte train) { track!train }

init { atomic{ run Setup(TunnelBC, 1);
run Setup(TunnelDA, 2);
run Station(TunnelDA, TunnelAB);
run Station(TunnelAB, TunnelBC);
run Station(TunnelBC, TunnelCD);
run Station(TunnelCD, TunnelDA)} }

A Global Safety Assertion for TrainWare

I Safety Assertion:

“A tunnel can only be occupied by one train at a time.”

chan TunnelAB = [2] of { byte };
chan TunnelBC = [2] of { byte };
chan TunnelCD = [2] of { byte };
chan TunnelDA = [2] of { byte };
...
proctype Monitor() { assert(nfull(TunnelAB) &&

nfull(TunnelBC) &&
nfull(TunnelCD) &&
nfull(TunnelDA))}

init { atomic{ run Monitor(); ... }}

I See next 2 frames for Spin’s verification failure ...

TrainWare: Safety Assertion Violation

TrainWare: Guided Simulation

Validation Labels: End State Labels

I When modelling non-terminating systems how can we judge
whether a process is in a deadlock state or an acceptable
waiting state?

I End-state labels provide a solution, they allow the designer to
explicitly indicate valid end-states.

I Definition of a valid end-state:
I Every instantiated process has either terminated or is blocked

at a statement that is labelled as an end-state.
I All message channels are empty.

I An end-state label is any label with the prefix "end", e.g.
end, end 1,...

Semaphores Revisited

I Consider again Dijkstra’s semaphore solution to the problem
of ensuring mutual exclusion (see Promela Part 2), in
particular the definition of the semaphore process:

proctype semaphore(){do ::sema!p -> sema?v od}

with the "Invalid endstates (deadlock)" verification
option selected, this definition will result in a failed
verification.

I The failure is because the semaphore process will block until
another user process starts-up. Such desirable blocking is
indicated to the verifier via an end-state label, e.g.

proctype semaphore(){end: do ::sema!p -> sema?v od}

this revised definition will lead to a successful verification.

Validation Labels: Progress-State Labels

I Progress-state labels allow a designer to explicitly define a
notion of progress and thus verify that certain events do
actually occur (a progress-state label has a "progress"

prefix).

I A verification fails if there exists an infinite execution cycle
that does not pass a progress-state label (non-progress
cycle), e.g. assuming that count is initially 0 then the
following fails:

do
:: (count >= 0) -> count = count+1;
:: (count == 9) -> progress: count = 0;
od

On the other hand, the following will succeed:

do
:: (count < 9) -> count = count+1;
:: (count == 9) -> progress: count = 0;
od

Validation Labels: Acceptance-State Labels

I Accept-state labels allow a designer to be able to verify that
certain events do not happen infinitely often (an accept-state
label has an "accept" prefix).

I A verification will fail if there exists an execution that visits an
accept-state label infinitely often (acceptance cycle), e.g.
assuming that count is initially 0 then the following fails:

do
:: (count >= 0) -> count = count+1;
:: (count == 9) -> accept: count = 0;
od

On the other hand, the following will succeed:

accept: do
:: (count < 9) -> count = count+1;
:: (count == 9) -> break;
od

Summary of Validation Labels

I Checking for:
I invalid end-states is a safety property.
I non-progress cycles is a liveness property.
I acceptance cycles is a liveness property.

Note: acceptance is the converse of non-progress, i.e. an
acceptance cycle denotes a computation that visits an
accept label infinitely often whereas a non-progress cycle
denotes a computation that does not visit a progress label
infinitely often.

I Using validation labels requires that the appropriate options
are enabled via the "Liveness" panel of the verification tab
(see next slide).

Liveness Panel in iSpin

Summary

Learning outcomes:

I To understand the difference between simulation
and verification.

I To be able to use iSpin to verify assertions,
both local (process) and global (system).

I To be able to use iSpin to detect deadlocks
(invalid end-states) and livelocks (non-progress
& acceptance cycles).

Recommended reading:

I Spin homepage:
http://spinroot.com

I Spin on-line material:
http://spinroot.com/spin/Man/

http://spinroot.com
http://spinroot.com/spin/Man/

