
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Spin – Formal Analysis (Part 2)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Overview

I Introduce temporal logic.

I Focus on SPIN’s temporal reasoning capabilities, i.e. model
checking.

The Story So Far ...

I Verifying properties with respect to particular points within a
process execution (local assertions) or across the whole
execution of a system (global assertions).

I Verifying properties with respect to complete execution cycles,
both desirable (end-states & no non-progression cycles) and
undesirable (acceptance cycles).

I But what if we want to reason about how properties change
over time, i.e. reason about the temporal ordering of events?
This calls for temporal logic.

Linear Temporal Logic (LTL)

I LTL = Propositional Logic + Temporal Operators
I Propositional constants:

true, false
any name that starts with a lowercase letter

I Propositional operators:

&& conjunction || disjunction
-> implication ! negation

I Temporal operators:

[] always <> eventually U until

Some Generic Temporal Properties

I Invariance (safety): []p

During any execution trace all states satisfy p, e.g.
[]!(doors==open && lift==moving)

I Response: [](p -> <>q)

Every state that satisfies p is eventually followed by a state
that satisfies q, e.g [](call lift -> <>(lift arrives))

I Precedence: [](p -> (q U r))

Every state that satisfies p is followed by a sequence of states
that satisfy q and the sequence is terminated with a state that
satisfies r, e.g.

[](start lift ->(lift running U stop running)

Temporal Reasoning in iSPIN

I Step 1: Embed LTL formulas in your Promela program, i.e.

ltl [<name>] { <formula> }

For example:

ltl p1 { [] p }

ltl p2 { [](p -> <> q) }

ltl p3 { [](p -> (q U r)) }

I Step 2: Propositional conditions are defined via macros, e.g.

#define p (x > y)

#define q (len(in_data) < max)

#define r (x > 0 && x < max)

I Step 3: Within the Verification tab select use claim (see
Never Claims section) and select acceptance cycles (see
Liveness section), then click the Run button.

Note: LTL formula can be selectively enabled via the claim name
(opt) field, i.e. enter the ID of a LTL formula, e.g. p2.

TrainWare Revisited: Safety Property

[] (len(TunnelAB) < 2 &&
len(TunnelBC) < 2 &&
len(TunnelCD) < 2 &&
len(TunnelDA) < 2)

This property should hold on all executions, i.e. always the case
that none of the tunnels is occupied by more than one train.

#define q (len(TunnelAB) < 2 &&

len(TunnelBC) < 2 &&

len(TunnelCD) < 2 &&

len(TunnelDA) < 2)

ltl p1 { [] q }

Note that LTL formula cannot make use of empty, nempty, full,
nfull.

TrainWare Revisited: Verification Set-up

TrainWare Revisited: Verification Run and Result

Modelling Hardware

-
-
-
-
-

-load

-in1

-in2

-done

- a

- b

- quo

- rem

Integer Division

Note: based upon an example by Mike Gordon (Cambridge
Computer Lab, http://www.cl.cam.ac.uk/users/mjcg).

Modelling Input-Output Relation

-
-
-
-
-

-load

-in1

-in2

-done

- a

- b

- quo

- rem

::(load==1) -> a = in1; b = in2;
quo = 0; rem = a;
done = 0;

::(load!=1) -> if
::(rem>=b) -> rem = rem-b;

quo = quo+1;
::(b>rem) -> done = 1
fi

Complete Model of Division Algorithm

byte in1, in2;
byte a, b, quo, rem;
bit load = 0, done = 1;

proctype quo_rem()
{

do
::(load == 1) -> a = in1; b = in2;

quo = 0; rem = a; done = 0;
::(load != 1) -> if

:: (rem >= b) -> rem = rem-b;
quo = quo+1;

:: (b > rem) -> done = 1
fi

od
}

Modelling Hardware Environment

I Environment (env) initiates register (a, b, quo, rem)
initialization by setting load to 1.

I While load is 1, hardware (quo rem) sets registers using the
input values (in1, in2), done is set to 0 when complete.

I Environment (env) initiates calculation by setting load to 0,
load is held at this value until done becomes 1.

proctype env()
{
in1 = 7; in2 = 2; load = 1; /* init inputs */
done == 0; load = 0; done == 1; /* read results */
printf("quotient = %d\n", quo);
printf("remainder = %d\n", rem)
}
init { atomic{ run quo_rem(); run env() }}

Verifying Responsiveness

I Desired property:
I In every state in which load is 1, a equals in1 and b equals

in2, then eventually done will become 1 and the registers will
satisfy (a == ((quo * b) + rem)).

I []((load == 1 && in1 == a && in2 == b) ->

<> (done == 1 && a == ((quo * b) + rem)))

I Verification failure:
I LTL verifier will fail to prove this property because SPIN’s

default execution model does not guarantee fairness.
I In particular, if env never gets to set load to 0 then the

calculation will never progress beyond the initialization phase.

Fairness

I Fairness is a special case of liveness and relates to the how the
underlying process scheduler deals with contention, i.e. clients
competing for the same computational resource.

I Notions of fairness:
I Weak-fairness (just): a process that continuously makes a

request will eventually be serviced.
I Strong-fairness (compassionate): a process that makes a

request infinitely often will eventually be serviced.

Specifying Weak Fairness in SPIN

I SPIN supports a weak-fairness model that can be selected via
the “Liveness” panel of the “Verification” tab of iSPIN, i.e.
“enforce weak fairness constraint”.

I Alternatively, the weak-fairness requirement can be expressed
explicitly within the LTL property:

[](done == 0 -> load == 0) ->
[]((load == 1 && in1 == a && in2 == b) ->

<> (done == 1 && a == ((quo * b) + rem)))

Note that the extra condition ensures that whenever done is
set to 0 then load will be 0, i.e. the env process will not be
continuously blocked. Of course it is up to the implementor to
ensure this assumption becomes a reality!

Integer Division: Verification Result

Summary

Learning outcomes:

I To be able to understand & write temporal
properties expressed in LTL.

I To be able to use iSPIN to verify temporal
properties of system models.

I To understand the notion of fairness and how it
relates to the behaviour of a system model.

Next lecture: How a Model Checker Works.

Recommended reading:

I “The Model Checker SPIN”, G.J. Holzmann,
IEEE Transactions on Software Engineering, Vol
23 (5), 1997. [available via
http://spinroot.com/spin/theory.html]

http://spinroot.com/spin/theory.html

