Rigorous Methods for Software Engineering (F21RS-F20RS) Spin – Formal Analysis (Part 2)

Andrew Ireland Department of Computer Science School of Mathematical and Computer Sciences Heriot-Watt University Edinburgh

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview

- Introduce temporal logic.
- Focus on SPIN's temporal reasoning capabilities, *i.e.* model checking.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Verifying properties with respect to particular points within a process execution (local assertions) or across the whole execution of a system (global assertions).
- Verifying properties with respect to complete execution cycles, both desirable (end-states & no non-progression cycles) and undesirable (acceptance cycles).
- But what if we want to reason about how properties change over time, *i.e.* reason about the temporal ordering of events? This calls for **temporal logic**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear Temporal Logic (LTL)

- LTL = Propositional Logic + Temporal Operators
- Propositional constants:
 - true, false
 - any name that starts with a lowercase letter

Propositional operators:

- && conjunction|| disjunction-> implication! negation
- Temporal operators:
 - [] always <> eventually U until

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some Generic Temporal Properties

Invariance (safety): []p

During any execution trace all states satisfy p, e.g.

[]!(doors==open && lift==moving)

Response: [] (p -> <>q)

Every state that satisfies p is eventually followed by a state that satisfies q, e.g [](call_lift -> <>(lift_arrives))

Precedence: [](p -> (q U r))

Every state that satisfies p is followed by a sequence of states that satisfy q and the sequence is terminated with a state that satisfies r, *e.g.*

[](start_lift ->(lift_running U stop_running)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Temporal Reasoning in iSPIN

Step 1: Embed LTL formulas in your Promela program, i.e.

ltl [<name>] { <formula> }

For example:

ltl p1 { [] p }
ltl p2 { [](p -> <> q) }
ltl p3 { [](p -> (q U r)) }

Step 2: Propositional conditions are defined via macros, e.g. #define p (x > y) #define q (len(in_data) < max) #define r (x > 0 && x < max)</p>

Step 3: Within the Verification tab select use claim (see Never Claims section) and select acceptance cycles (see Liveness section), then click the Run button.

Note: LTL formula can be selectively enabled via the **claim name (opt)** field, i.e. enter the ID of a LTL formula, e.g. p2.

TrainWare Revisited: Safety Property

[] (len(TunnelAB) < 2 &&
 len(TunnelBC) < 2 &&
 len(TunnelCD) < 2 &&
 len(TunnelCD) < 2 &&
 len(TunnelDA) < 2)</pre>

This property should hold on **all executions**, *i.e.* always the case that none of the tunnels is occupied by more than one train.

#define q (len(TunnelAB) < 2 && len(TunnelBC) < 2 && len(TunnelCD) < 2 && len(TunnelCD) < 2 && len(TunnelDA) < 2)</pre>

ltl p1 { [] q }

Note that LTL formula cannot make use of empty, nempty, full, nfull.

TrainWare Revisited: Verification Set-up

	Spin Version 6.4.3 16 December	r 2014 :: iSpin Versi	on 1.1.4 27 No	wember 2014		
Edit/View Simulate / Replay Verification	Swarm Run <help> Save Session</help>	Restore Session	<quit></quit>			
Safety	Storage Mode		Search Mode			
○ safety	exhaustive		depth-first search			
+ invalid endstates (deadlock)	+ minimized automata (slow)		+ partial order reduction			
+ assertion violations	+ collapse compression		+ bounded context switching			
+ xr/xs assertions	○ hash-compact ○ bitstate/supertrace		with bound: 0			
Liveness	Never Claims		+ iterative search for short trail			
C pop-progress cycles	C do not use a never claim or Itl property		O breadth-first search			
 acceptance cycles 	• use claim		+ partial order reduction			
enforce weak fairness constraint	claim name (opt):		✓ report unreachable code			
	Run Sto	p Sa	ave Result in:	pan.out		
223 chan TunnelAB = [2] of { byte }; 244 chan TunnelBC = [2] of { byte }; 25 chan TunnelDC = [2] of { byte }; 26 chan TunnelDA = [2] of { byte }; 27 #define q (len(TunnelAB) < 2 & 1	en(TunneIBC) < 2 && len(TunneICD) < t_track) xkltrain	2)				

TrainWare Revisited: Verification Run and Result

Modelling Hardware

Note: based upon an example by Mike Gordon (Cambridge Computer Lab, http://www.cl.cam.ac.uk/users/mjcg).

Modelling Input-Output Relation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Complete Model of Division Algorithm

```
byte in1, in2;
byte a, b, quo, rem;
bit load = 0, done = 1;
proctype quo_rem()
Ł
    do
    ::(load == 1) \rightarrow a = in1; b = in2;
                      quo = 0; rem = a; done = 0;
    ::(load != 1) -> if
                       :: (rem >= b) -> rem = rem-b;
                                        quo = quo+1;
                       :: (b > rem) -> done = 1
                      fi
    od
```

Modelling Hardware Environment

- Environment (env) initiates register (a, b, quo, rem) initialization by setting load to 1.
- While load is 1, hardware (quo_rem) sets registers using the input values (in1, in2), done is set to 0 when complete.
- Environment (env) initiates calculation by setting load to 0, load is held at this value until done becomes 1.

```
proctype env()
{
    in1 = 7; in2 = 2; load = 1;    /* init inputs */
    done == 0; load = 0; done == 1;    /* read results */
    printf("quotient = %d\n", quo);
    printf("remainder = %d\n", rem)
}
init { atomic{ run quo_rem(); run env() }}
```

Verifying Responsiveness

Desired property:

In every state in which load is 1, a equals in1 and b equals in2, then eventually done will become 1 and the registers will satisfy (a == ((quo * b) + rem)).

Verification failure:

- LTL verifier will fail to prove this property because SPIN's default execution model does not guarantee fairness.
- In particular, if env never gets to set load to 0 then the calculation will never progress beyond the initialization phase.

Fairness

- Fairness is a special case of liveness and relates to the how the underlying process scheduler deals with contention, *i.e.* clients competing for the same computational resource.
- Notions of fairness:
 - Weak-fairness (just): a process that continuously makes a request will eventually be serviced.
 - Strong-fairness (compassionate): a process that makes a request infinitely often will eventually be serviced.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Specifying Weak Fairness in SPIN

- SPIN supports a weak-fairness model that can be selected via the "Liveness" panel of the "Verification" tab of iSPIN, i.e. "enforce weak fairness constraint".
- Alternatively, the weak-fairness requirement can be expressed explicitly within the LTL property:

Note that the extra condition ensures that whenever done is set to 0 then load will be 0, *i.e.* the env process will not be continuously blocked. Of course it is up to the implementor to ensure this assumption becomes a reality!

Integer Division: Verification Result

	Spin Version 6.4.3 16 D	ecember 2014 :: iSp	in Version 1.1.4 27 No	ovember 2014	í de la companya de la
Edit/View Simulate / Replay Verification	Swarm Run <help> Save</help>	Session Restore	Session <quit></quit>		
Safety	Storage Mode		Search Mode		
🔿 safety	exhaustive		• depth-first search		
+ invalid endstates (deadlock)	invalid endstates (deadlock) 🛛 + minimized automata (slow)		+ partial order reduction		
+ assertion violations	+ collapse compression		+ bounded context switching		
+ xr/xs assertions	C hash-compact C bitstate/sup	hash-compact C bitstate/supertrace		with bound: 0	
Liveness	Never Claims		+ iterative search for short trail		Trappi
 non-progress cycles 	C do not use a never claim or Itl property		O breadth-first search		Option
 acceptance cycles 	 use claim 		+ partial order reduction		
enforce weak fairness constraint	claim name (opt):	m name (opt):		✓ report unreachable code	
	Run	Stop	Save Result in:	pan.out	
a bit load = 0, done = 1; bit load = 0, done = 0; #define q (load == 0) 6 #define q (load == 1) 8 #define q (load == 1) 8 #define q (load == 1) 9 #define q (load == 1) 10 #define q (load == 1) 11 #define q (load == 1) 12 #define q (load == 1) 13 proctype quo_rem() 15 { 16 do 17 :: (load == 1) -> a = in1; b = in 18 quo = 0; rem = a; 19 :: (load == 1) -> if 20 :: (rem >= b) -> re 21 :: (b > rem) -> do 22 fi	b))))) -> <> (t && u)) } 12; done = 0; m = rem-b; quo = quo+1 re = 1	unreached in p quo (2 ol unreached in p quo quo quo quo quo (5 ol unreached in ii (0 ol unreached in g (1 ol vo errors foum	roctype quo reim rem lit.pml.21, state 1: rem lit.pml.24, state 1: 13 states) voctype env rem lit.pml:28, state 5 rem lit.pml:28, state 7 rem lit.pml:29, state 7 rem lit.pml:30, state 9 9 states) nit 4 states) laim p1 n.prv.tmp:10, state 13, 13 states) mc Concords d - did you verify all da	2, "done = 1" 8, "-end-" "(lotone==1))" "printf(quotent = % "printf(remainder = "-end-" "-end-"	եմ՛ո',զսօ)՝ %d՛ո',rem)՝՝

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Summary

Learning outcomes:

- To be able to understand & write temporal properties expressed in LTL.
- To be able to use iSPIN to verify temporal properties of system models.
- To understand the notion of fairness and how it relates to the behaviour of a system model.

Next lecture: How a Model Checker Works.

Recommended reading:

 "The Model Checker SPIN", G.J. Holzmann, IEEE Transactions on Software Engineering, Vol 23 (5), 1997. [available via http://spinroot.com/spin/theory.html]