Rigorous Methods for Software Engineering
(F21RS-F20RS)
Spin — Formal Analysis (Part 2)

Andrew lreland
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Overview

» Introduce temporal logic.

» Focus on SPIN’s temporal reasoning capabilities, i.e. model
checking.

The Story So Far ...

» Verifying properties with respect to particular points within a
process execution (local assertions) or across the whole
execution of a system (global assertions).

» Verifying properties with respect to complete execution cycles,
both desirable (end-states & no non-progression cycles) and
undesirable (acceptance cycles).

» But what if we want to reason about how properties change
over time, i.e. reason about the temporal ordering of events?
This calls for temporal logic.

Linear Temporal Logic (LTL)

» LTL = Propositional Logic + Temporal Operators
» Propositional constants:

true, false
any name that starts with a lowercase letter

» Propositional operators:
&& conjunction || disjunction
-> implication ! negation
» Temporal operators:
[1 always <> eventually U until

Some Generic Temporal Properties

» Invariance (safety): [Ip
During any execution trace all states satisfy p, e.g.
[1!(doors==open && lift==moving)
» Response: [1(p -> <>q)
Every state that satisfies p is eventually followed by a state
that satisfies q, e.g [1(call lift -> <>(lift_arrives))
» Precedence: [J(p > (q U r))

Every state that satisfies p is followed by a sequence of states
that satisfy q and the sequence is terminated with a state that
satisfies r, e.g.

[1(start_1ift ->(lift_running U stop_running)

Temporal Reasoning in iSPIN

» Step 1: Embed LTL formulas in your Promela program, i.e.

1tl [<name>] { <formula> }
For example:

1tl1pt { 0 p}
1tl p2 { [O@p > <> @ }
1tl p3 { [I1(p > (@ U) }
» Step 2: Propositional conditions are defined via macros, e.g.
#define p (x > y)
#define q (len(in_data) < max)
#define r (x > 0 && x < max)
» Step 3: Within the Verification tab select use claim (see
Never Claims section) and select acceptance cycles (see
Liveness section), then click the Run button.

Note: LTL formula can be selectively enabled via the claim name
(opt) field, i.e. enter the ID of a LTL formula, e.g. p2.

TrainWare Revisited: Safety Property

[] (len(TunnelAB) < 2 &&
len(TunnelBC) < 2 &&
len(TunnelCD) < 2 &&
len(TunnelDA) < 2)

This property should hold on all executions, i.e. always the case
that none of the tunnels is occupied by more than one train.

#define q (len(TunnelAB) < 2 &&
len(TunnelBC) < 2 &&
len(TunnelCD) < 2 &&
len(TunnelDA) < 2)

1t1 p1t { [1 q %}

Note that LTL formula cannot make use of empty, nempty, full,
nfull.

TrainWare Revisited: Verification Set-up

Spin Versi .4.3 — 16 Dacen r 2014 :: iSpin Version 1.1.4 - 27 November 2014

Search Mode
= depth-first search
W + partial order reduction
+ bounded context switching
with bound: |0
+ iterative search for short trail

[Veticaton | fowam Run | <Holp>—| Save Secsian | Restare Session | <Qui>§
Safety Storage Mode
~ safety = exhaustive
¥ + invalid endstates (deadlock) " + minimized automata (slow)
¥ + assertion violations + collapse compression
+ xrfxs assertions hash-compact bitstate/supertrace
Liveness Never Claims

a never claim or Itl property

acceptance cycles use claim
ERTOT RIS c E

ETOpt): |

€55 constraint

chan TunnelAB = [2] of { byte };
chan TunnelBG = [2] of { byte };
chan TunnelCD = [2] of { byte };
chan TunnelDA = [2] of { byte };

breadth-first search
W + partial order reduction

v report unreachable code

-
ipan.out

#define q (len(TunnelAB) < 2 && len(TunnelBC) < 2 && len(TunnelCD) < 2)
tpt{dq}

proctype Station(chan in_track, out_track)

byte train;

do
:1in_track?train; out_trackltrain
od

Bl verif

TrainWare Revisited: Verification Run and Result

Spin Version

6 December 2014 :

Version 1 November 2014

Swarm Aun | <Help> | Save Session | Restore Session | <Quit>

Edit/View | Simulate / Replay | Verification
Safety Storage Mode
safety * exhaustive
¥ + invalid endstates (deadlock} + minimized automata (slow}
¥ + assertion violations + collapse compression
+ xrjxs assertions hash-compact | © bitstate/supertrace
Liveness Never Claims
non-pragress cycles do nat use a never claim o It praperty
% acceptance cycles % use claim
enforce wesk faimess constraint
22
23 chan TunnelAB = [2] of { byte }:
24 chan TunnelBC = (2] of { byte }.
25 chan TunnelCD = [2] nf{hyt ¥
26 chan TunnelDA = [2] of { byte };
27
28 H#define q (len(TunnelAB) < 2 && len(TunnelBC) < 2 && len(TunnelCD) < 2)
29
30 ltpt{0q}
31
32 proctype Station(chan in_track, out_track)
33
34 byte train;
35
36 do
| 4 in_track?train; out_tracklirain
38 od
39 i
40
41 proctype Setup(chan track; byte train)
42
43 trackltrain;
44 }
45
46 init { atomic{
47 run Setup(TunnelBC, 1); /* introduce train 1 before station C */
48 run Setup(TunnelDA, 2); /* introduce train 2 before station A */
49
50 run Station(TunnelDA, TunnelAB); /* station A */
51 run Station(TunnelAB, Tunne\BC) /* station B */
52 run Station(station C */
(station D */

lg’i run Station(TunnelCD, Tunne\DA))

Search Mode
& depth-first search.
¥ + partial order reduction

+ bounded context switching

md: B Show
with bound: |0 Eng d
+ iterative search for short trail Trapping Parameter

Optior Selting

breadth-first search
v + partial order reduction
¥ report unreachable code

|pan.out

: assertion violated 1
TunnelCD)<2)))) (at depth
pan: wrote trainware.pml.

(Spin Version 6.4.3 -- 16 December 2014)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never claim +(F
assertion violations + (if within scope of claim)
acceptance cycles + (fairess disabled)
invalid end states - abled by never claim)

State-vector 112 byte, depth reached 110, errors: 1
58 tes, stored

st
2 states, matched
7 U transitions (= stored+matched)
5 atomic steps
hash conflicts:

0 (resolved)

Stats on memory usage (in Megabytes):
0.008 equivalent memory usage for states (stored(State-vector + overhead))
0.290 actual memory usage for sta
128.000 memory used for hash table (
534 memory used for DFS stack (
128.730 total actual memory usage

pan: elapsed time 0 seconds.
| To replay the error-trail, goto Simulate/Replay and select

in Version 1.1.4 -

Restore Session | <Quit>

A Full Channel Output Filtering (reg. exps.) Background command executed:
+ blocks new messages i [bin -p -5 -1 -X -v -n123 -1 -g -k trainware.pm
I PricESSICS il u1UUUO trainware.pml
oses new messages
queue ids: [
MSC+stmnt
MSC max text width[200 Ve names: I
T A P [T0000 MSC update delay [25 tracked variable: \.
¥ Track Data Values (this can be slow) track scaling: | Save in: msc.ps
t#define q (len(TunnelAB) < 2 && len(TunnelBC) | : 63
< 2 && len(TunnelCD) < 2)
59 65
30 lipl{0a} 67
31 69
g% proctype Station(chan in_track, out_track) 5
34 byte train; 73
35
36 do =
37 z:in_track?train; out_trackltrain ”
38 od 79
o ! a
41 proctype Setup(chan track; byte train) 83
42 85
43 trackltrain; 87
44)
45 89
46 init { atomic{ 91
47 run Setup(TunnelBC, 1); /* introduce train 1 93
before station G */
4 run Setup(TunnelDA, 2); /* introduce train 2 95
before station A */ 97
49 99
50 run Station(TunnelDA, TunnelAB); /* station
A/ 101
run Station(TunnelAB, TunnelBC); /* station 103
/ 105
52 run Station(TunnelBC, TunnelCD); /* station
C*l 107
53 run Station(TunnelCD, TunnelDA)} /* statio

N R e e e AT
- (p1:1) _spin_nvr.tmp:4 (state 4) [(1); 1 , step 1871
tal 1

[variable values, step 105] i
s ”
ation(3) :train Station: I)n’m\.v'avepr ('?:e 1) [in_track?train]

ion(4):tre

: (Tunnell
(TunnelDA)
i (TunnelAB)
(TunnelcD) :

1 a
: J oc 4 (St 7) [out_track!train]
1

Station(6):train in_track?train]

out_trackltrain]

Modelling Hardware

D

Integer Division

load —

quo
inl —f
in2 —f rem

Note: based upon an example by Mike Gordon (Cambridge
Computer Lab, http://www.cl.cam.ac.uk/users/mjcg).

Modelling Input-Output Relation

-done
::(load==1) -> a = inl; b = in2;
quo = 0; rem = a;
done = 0;

::(load!=1) -> if

:: (rem>=b) -> rem = rem-b
quo = quo+l; quo

::(b>rem) -> done = 1

. fi
in2 —f rem

e
B o0
=
o
l l YYVY {

Complete Model of Division Algorithm

byte inl, in2;
byte a, b, quo, rem;
bit 1load = 0, done = 1;

proctype quo_rem()
{
do
::(load == 1) -> a = inl; b = in2;
quo = 0; rem = a; done = 0;
::(load != 1) -> if
(rem >= b) -> rem = rem-b;
quo = quo+i;
(b > rem) -> done =1
fi
od

Modelling Hardware Environment

» Environment (env) initiates register (a, b, quo, rem)
initialization by setting load to 1.

» While load is 1, hardware (quo_rem) sets registers using the
input values (in1, in2), done is set to O when complete.

» Environment (env) initiates calculation by setting load to 0,
load is held at this value until done becomes 1.

proctype env()

{
inl = 7; in2 = 2; load = 1; /* init inputs */
done == 0; load = 0; done == 1; /* read results */
printf ("quotient = %d\n", quo);

printf ("remainder = %d\n", rem)

}

init { atomic{ run quo_rem(); run env() }}

Verifying Responsiveness

» Desired property:

» In every state in which load is 1, a equals inl and b equals
in2, then eventually done will become 1 and the registers will
satisfy (a == ((quo * b) + rem)).

» [1((load == 1 && inl == a && in2 == b) ->

<> (done == 1 && a == ((quo * b) + rem)))

> Verification failure:
» LTL verifier will fail to prove this property because SPIN’s
default execution model does not guarantee fairness.
» In particular, if env never gets to set load to O then the
calculation will never progress beyond the initialization phase.

Fairness

> Fairness is a special case of liveness and relates to the how the
underlying process scheduler deals with contention, i.e. clients
competing for the same computational resource.
» Notions of fairness:
> Weak-fairness (just): a process that continuously makes a
request will eventually be serviced.

» Strong-fairness (compassionate): a process that makes a
request infinitely often will eventually be serviced.

Specifying Weak Fairness in SPIN

» SPIN supports a weak-fairness model that can be selected via
the “Liveness” panel of the “Verification” tab of iSPIN, i.e.
“enforce weak fairness constraint”.

P Alternatively, the weak-fairness requirement can be expressed

explicitly within the LTL property:
[1(done == 0 -> load == 0) ->
[1((load == 1 && inl == a && in2 == b) ->
<> (done == 1 && a == ((quo * b) + rem)))

Note that the extra condition ensures that whenever done is
set to O then load will be 0, i.e. the env process will not be
continuously blocked. Of course it is up to the implementor to
ensure this assumption becomes a reality!

Integer Division: Verification Result

Edit/View | Simulate / Repla

v + invalid endstates (deadlock)
¥ + assertion violations.
+ xr/xs assertions

Spin Versio

Bwarm Run

6.4.3 — 16 December 2014 ::
<Help> | Save Session | Restore Session

B

<Quit>

Safety
* exhaustive

* use claim

Storage Mode

+ minimized automata (slow)

+ collapse compression
hash-compact bitstate/supertrace with bound:
Liveness Never Claims

* acceptance cycles

by P g2 never claim or Itl property

Search Mode
« depth-first search
v + partial order reduction

+ bounded context switching

+ iterative search for short trail

breadth-first search
¥ + partial order reduction

alrness constraint claim name (opt): |

— — — — (D 00 ~J O3 U1 = L0 [=

ropoo

byte ini, in2;
byte a, b, quo, rem;
bit load = 0, done = 1;

#define p (done =:
#define q (load

0)

#define r (load == 1

#define s ((in1 == a) && (in2 == b))
#define t (done 1

#define u (a == ((quo * b) + rem))

Hpl {0 (p=>q) [(ir 8&s) ><> (t &&u))}

?roctype quo_rem()

do
iz (load == 1) > a=in1; b= in2;
quo = 0; rem = a; done = 0;
iz (load 1= 1) -> if
(rem >= b) -> rem = rem-b; quo = quo+1
(b > rem) -> done =1

od

Iv report unreachable code
128.925 total actual memory usage

unreached in proctype quo |

quu em_ltl. pml:24,
2 of 18 states
umeached in proctype env
quo_rem_lt.pml:28,
quo_rem_tl | pml "B

(5 of 9 states)
unreached in init
(0 of 4 states)
unreached in claim p1
spin_nvr.tmp:10, state 13, "
of 13 state

did you verify all claims?

27 November 2014

ipan,out

Summary

Learning outcomes:

» To be able to understand & write temporal
properties expressed in LTL.

» To be able to use iSPIN to verify temporal
properties of system models.

» To understand the notion of fairness and how it
relates to the behaviour of a system model.

Next lecture: How a Model Checker Works.
Recommended reading:

» “The Model Checker SPIN”, G.J. Holzmann,
IEEE Transactions on Software Engineering, Vol
23 (5), 1997. [available via
http://spinroot.com/spin/theory.html |

http://spinroot.com/spin/theory.html

