
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Automata Based Model Checking:
How It Works (Part 1)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh



Overview

I Finite state automata and Büchi automata.

I Promela and automata.

I Constructing asynchronous and synchronous products.

I Turning finite computations into infinite computations.



Finite State Automata

I Labels (L)

I States (S)

I Transitions (T)

I Initial states (I)

I Final states (F)

A finite state automaton (FSA) is a mathematical representation
of a system (i.e. computation): A FSA is represented in terms of
states and transitions:

I A state denotes a specific phase within a system.

I A transition defines how states change over time.



Finite State Automata

L: {a, b}
S: {S1, S2}
T: {(S1, a,S1), (S1, b, S2), (S2, a,S1)}
I: {S1}
F: {S2}



Finite State Automata

I Which of the following words will the
automaton Accept and Reject?
b
abbaa
bb
a
ab
aabab



Finite State Automata

I Accept words:
b
ab
aabab

I Reject words:
a
bb
abbaa



Finite State Automata

I A regular automaton accepts a word if and only if there is a
computation that ends in a final state (i.e. an accept state).

I A Büchi automaton accepts word if and only if there is a
computation that visits a final state (i.e. an accept state)
infinitely often - an acceptance cycle.



Promela and Automata

A Promela process can be represented as an automaton, e.g.

ltl R { <>(x == 2) }

int x = 0;

active proctype P(){
do
:: !(x % 2) -> x = x+1;
od}

active proctype Q(){
do
:: (x % 2) -> x = x-1;
od}

Note that % denotes the modulo operator, i.e. the statement
(X % 2) in Promela is equivalent to stating that X is odd.



Promela and Automata

A LTL property can also be represented as an automaton, e.g.

<>(x == 2) [](x != 2)



Constructing an Asynchronous Product

Combining two automata (i.e. processes) so that their transitions
are interleaved gives rise to an automaton that is known as the
asynchronous product:

I Each state within the asynchronous product denotes a
composite state, involving one state from each of the two
component automata (i.e. processes).

I Each transition within the asynchronous product denotes an
individual transition from one of the component automata
(i.e. processes).



Constructing an Asynchronous Product - An Example



Pruning Unreachable States – An Example

I The process of constructing a product will often give rise to
unreachable states.

I Unreachable states are analogous to unreachable code and
should be pruned.



Expanding a Finite State Automaton - An Example

I Note that the automaton on the right is known as an
expanded finite state automaton as it includes the variable
assignments associated with a state.

I Although all Promela data types are finite, an explicit
expansion may lead to space issues – more later (Part 2).



Exploiting Repeated States - An Example

Note that when an expansion results in a repeated state then a
loop is introduced.



Constructing a Synchronous Product

Combining two processes (i.e. automata) so that their transitions
are joint gives rise to an automaton that is known as the
synchronous product:

I Each state within the synchronous product denotes a
composite state, involving one state from each of the two
component automata (i.e. processes).

I Each transition within the synchronous product denotes a
joint transition involving one transition from each of the two
component automata (i.e. processes).



Constructing a Synchronous Product – An Example

Note that the transition from state R1 to state R2 never occurs.



Stutter Steps: Turning the Finite into the Infinite

I Part 2 will explain how the Büchi automaton representation
and the notion of an acceptance cycle provide the logical
foundation for the verification technique known as model
checking.

I Problem:
I A Büchi automaton either accepts or rejects infinite inputs,

i.e. it represents an infinite computation.
I If a model (i.e. Promela program) represents a finite

computation, i.e. it terminates or deadlocks, then how can it
be represented as a Büchi automaton?

I Solution:
I Add an extra transition to each terminating state Sk

associated with the model, i.e. (Sk , ..., Sk).
I Label each of these transitions with skip, i.e. (Sk , skip, Sk).

Such extra transitions, so called stutter steps, turn a finite
computation into an infinite computation without affecting
the semantics, i.e. skip is equivalent to true.



Stutter Steps: Turning the Finite into the Infinite

byte x = 2;

active proctype P()
{

do
:: (x > 1) -> x = x-1;
od

}

Note that process P deadlocks with x equal to 1, i.e. process P
represents a finite computation.



Stutter Steps: Turning the Finite into the Infinite

The expanded finite state automaton (above right) clearly
shows the finite nature of process P.



Stutter Steps: Turning the Finite into the Infinite

Note that the semantics of P and P’ are equivalent. Note also that
typically stutter steps are left implicit for presentation purposes.



Summary
Learning outcomes:

I Understand the notions of a finite state automaton
and a Büchi automaton and how they are used to
represent Promela models and LTL properties.

I Understand the notion of a expanded finite state
automaton and how to construct them.

I Understand notions of an asynchronous product
and a synchronous product and how to construct
them.

I Understand the notion of a stutter step and how it
can be used to turn a finite computation into an
infinite computation while preserving the semantics.

Recommended reading:
I “Model Checking”, E.M. Clarke, O. Grumberg, D.A.

Peled, MIT Press, 1999.
I “Practical Formal Methods Using Temporal Logic”,

M. Fisher, Wiley, 2011.
I Büchi Store: http://buchi.im.ntu.edu.tw/

http://buchi.im.ntu.edu.tw/

