
Rigorous Methods for Software Engineering
(F21RS-F20RS)

Automata Based Model Checking:
How It Works (Part 2)

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh



Overview

I The verification problem.

I The model checking solution to the verification problem.



A Verification Problem

M , S0 |= P

I Informally, M denotes a Promela model with initial state S0

while P denotes an LTL property.

I The logical operator |= means “... satisfies ...”, it is
analogous to saying “program M executes correctly for test
case P.”

I But model checking is much more powerful than testing, i.e.
it is equivalent to exhaustive testing!

I If the above statement is correct, then starting in state S0,
ALL possible executions of M satisfy P.



A Verification Problem – An Algorithmic Solution

M , S0 |= P

I Prove P by searching for a counter-example, i.e. a path from
the initial state S0 to a state within M where ¬P is true.

I If a counter-example is not found then P is true

else P is false.

An counter-example is a very useful aid for debugging, i.e. it
denotes a simulation trace that illustrates a bug.



Model Checking – An Algorithmic Solution



Model Checking - An Algorithmic Solution



A Worked Example – Promela View

ltl R { [](x < 2) }

int x = 0;

active proctype P(){
do
:: !(x % 2) -> x = x+1; /* inc x when EVEN */
od}

active proctype Q(){
do
:: (x % 2) -> x = x-1; /* dec x when ODD */
od}



Some Useful Equivalence Properties

A negated property can be simplified using the following
equivalences:

¬�X ↔ ♦¬X
¬♦X ↔ �¬X

¬(X ∧ Y ) ↔ ¬X ∨ ¬Y
¬(X ∨ Y ) ↔ ¬X ∧ ¬Y
¬(X → Y ) ↔ X ∧ ¬Y

Note that ¬X ≡ !X and (X → Y ) ≡ (¬X ∨ Y )



A Worked Example – Automata View

Note that ¬R ≡ ¬�(x < 2) ≡ ♦¬(x < 2) ≡ ♦!(x < 2)



A Worked Example – Automata View



A Worked Example – Automata View



A Worked Example – Automata View



Verification Algorithm – Reminder

I “contained within” = there exists an infinite cycle through
an accept state, a.k.a. an acceptance cycle.

I if acceptance cycle then property ¬P is satisfied.

else property P is satisfied.



A Worked Example – Automata View



Verification Algorithm – Property R Satisfied

I “contained within” is false = no infinite cycle through an
accept state, i.e. no acceptance cycle.

I if acceptance cycle then property ¬R is satisfied.

else property R is satisfied.

No acceptance cycle therefore R is satisfied.



The Worked Example – Revisited

ltl R { <>(x == 2) }

int x = 0;

active proctype P(){
do
:: !(x % 2) -> x = x+1; /* inc x when EVEN */
od}

active proctype Q(){
do
:: (x % 2) -> x = x-1; /* dec x when ODD */
od}

I Same program but a new R, i.e. <>(x == 2)

I Note: ¬R ≡ ¬♦(x == 2) ≡ �¬(x == 2) ≡ �(x!= 2)



Automata Revisited



Synchronous Product – Revisited



Automata Revisited

Note that the above Büchi automaton contains an acceptance
cycle, i.e. a path that will infinitely often visit an accept state.



Verification Algorithm – Property R Not Satisfied

I “contained within” is true = an infinite cycle through an
accept state, i.e. exists an acceptance cycle.

I if acceptance cycle then property ¬R is satisfied.

else property R is satisfied.

Acceptance cycle therefore R is NOT satisfied.



Stutter Steps Revisited

ltl R { <>(x > 1) }

byte x = 2;

active proctype P()
{

do
:: (x > 1) -> x = x-1;
od

}

Note that process P deadlocks with x equal to 1, i.e. process P
represents a finite computation.



Stutter Steps Revisited



Stutter Steps Revisited

Note that the skip transition shown above (a.k.a. stutter step)
turns deadlock, i.e. a finite computation, into an infinite
computation with the same semantics.



Stutter Steps Revisited

Note that without the skip transition there would be no
acceptance cycle. Note also that typically stutter steps are left
implicit for presentation purposes.



The Limits of Model Checking
Problems:

I Model checking is limited to systems involving finite states,
but in the real-world there are systems with infinite states,
e.g. a simple integer counter.

I Even with finite state systems, the state space may become to
large to represent – the so called state explosion problem.

Managing the problems:

I Building an abstract model will reduce the size of the state
space, but in general abstraction is not automatic.

I Techniques that avoid having to have an explicit
representation of all the execution paths, e.g.
I On-the-fly model checking: incrementally explore execution

paths.
I Symbolic model checking: use of logical formulae to

represent multiple states and transitions.
I Bounded model checking, e.g. depth-first iterative

deepening rather than depth first.



Summary
Learning outcomes:

I Understand the model checking algorithm and how
to apply it to the verification of concurrent systems,
i.e. systems involving multiple interacting processes.

I Understand the role that the stutter step plays in
model checking.

Recommended reading:
I “Model Checking”, E.M. Clarke, O. Grumberg, D.A.

Peled, MIT Press, 1999.
I “Practical Formal Methods Using Temporal Logic”,

M. Fisher, Wiley, 2011.
I Büchi Store: http://buchi.im.ntu.edu.tw/

http://buchi.im.ntu.edu.tw/

