Software Engineering 4

The Software Testing Life-CycleI

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Software Engineering 4: The Software Testing Life-Cycle

Why Test? I

“Program testing can be used to show the presence of

defects, but never their absence!”

e Devil’s Advocate:

Dijkstra

“We can never be certain that a testing system 1s

correct.”
Manna

e In Defence of Testing;:
— Testing is the process of showing the presence of defects.
— There is no absolute notion of “correctness”.

— Testing remains the most cost effective approach to building

confidence within most software systems.

Executive Summary I

A major theme of this module is the integration of
testing and analysis techniques within the software
life-cycle. Particular emphasis will be placed on
code level analysis and safety critical applications.
The application and utility of static checking will
be studied through extensive use of a static
analysis tool (ESC Java) for Java.

Software Engineering 4: The Software Testing Life-Cycle

Low-Level Details '

Lecturers: Lilia Georgieva (G54) and Andrew Ireland (G57)

[1lilia@macs.hw.ac.uk and a.ireland@hw.ac.uk]
Class times:

— Tuesday 3.15pm EC 3.36

— Thursday 3.15pm EC 2.44

— Friday 10.15 EC 2.44 (Lecture/Workshop) EC 2.50 (Lab)
— Friday 11.15 EC 2.50 (Lab)

Format of Friday classes will vary from week-to-week.
Web: http://www.macs.hw.ac.uk/"air/se4/

Assessment:

— Separate assignments for CS and IT streams.

— Overall assessment: exam (75%) coursework (25%).

Software Testing and Analysis Thread'

e The Software Testing Life-Cycle:
A broad introduction to the role of testing within software
development — practical exercises in requirements testing.

e Dynamic Analysis:
A review of dynamic analysis techniques as used for code level
verification — practical exercises in dynamic analysis.

e Static Analysis:
A review of static analysis techniques within the software
development life cycle — practical exercises in static analysis.

e Safety Critical Systems:
An introduction to the software issues that arise when
developing systems where failure can lead to loss of life — case
study material from real-world applications will be reviewed.

Software Engineering 4: The Software Testing Life-Cycle

A Historical Perspective'

e In the early days (1950’s) you wrote a program then you tested
and debugged it. Testing was seen as a follow on activity which

involved detection and correction of coding errors, i.e.

Design = Build = Test
Towards the late 1950’s testing began to be decoupled from
debugging — but still seen as a post-hoc activity.

e In the 1960’s the importance of testing increased through
experience and economic motivates, i.e. the cost of recovering
from software deficiencies began to play a significant role in the
overall cost of software development. More rigorous testing

methods were introduced and more resources made available.

A Historical Perspective'

e In the 1970’s “software engineering” was coined. Formal
conferences on “software testing” emerged. Testing seen more
as a means of obtaining confidence that a program actually

performs as it was intended.

e In the 1980’s “quality” became the big issue, as reflected in the
creation of the IEEE, ANSI and ISO standards.

e In the 1990’s the use of tools and techniques more prevalent
across the software development life-cycle.

Software Engineering 4: The Software Testing Life-Cycle

But What is Software Testing?'

o “Testing is the process of exercising or evaluating a system or
system component by manual or automated means to verify
that it satisfies specified requirements, or to identify differences

between expected and actual results.” IEEE

e “The process of executing a program or system with the intent
of finding errors.” (Myers 1979)

e “The measurement of software quality.” (Hetzel 1983)

What Does Testing Involve?'

Testing = Verification + Validation

Verification: building the product right.

Validation: building the right product.

A broad and continuous activity throughout the software life

cycle.

An information gathering activity to enable the evaluation of

our work, e.g.
— Does it meet the users requirements?
— What are the limitations?

— What are the risks of releasing it?

Software Engineering 4: The Software Testing Life-Cycle

Testing is for “Life” I

Early identification of defects & prevention of

defect migration are key goals of the testing
process.

10

Some Key Issues'

A time limited activity:

— Exhaustive testing not possible.

— Full formal verification not practical.

Must use the time available intelligently.

Must clearly define when the process should stop.

Ease of testing versus efficiency:
— Programming language issues.

— Software architectural issues.

Explicit planning is essential!

Software Engineering 4: The Software Testing Life-Cycle

V Software Life-cycle Model'

Requirements Acceptance Test
N /
Architecture System Test
N /
Sub-systems Sub-system Test
N /
Modules Module Test

\ /

Coding + Unit Test

Requirements Testing I

Unambiguous: Are the definitions and descriptions of the
required capabilities precise? Is there clear delineation between

the system and its environment?
Consistent: Freedom from internal & external contradictions?
Complete: Are there any gaps or omissions?
Implementable: Can the requirements be realized in practice?

Testable: Can the requirements be tested effectively?

Software Engineering 4: The Software Testing Life-Cycle

Requirements Testing I

e 80% of defects can be typically attributed to requirements.

e Late life-cycle fixes are generally costly, i.e. 100 times more
expensive than corrections in the early phases.
e Standard approaches to requirements testing & analysis:

— “Walk-throughs” or Fagan-style inspections (more detail in
the static analysis lecture).

— Graphical aids, e.g. cause-effect graphs, data-flow diagrams.
— Modelling tools, e.g. simulation, temporal reasoning.

Note: modelling will provide the foundation for high-level
design.

14

Planning for Testing'

e Forward planning crucial for estimating and minimizing costs.

e The plan should identify:
— which aspects of the system should be tested.
— a criteria for success.
— the methods and techniques to be used.
— personnel responsible for the testing.

e Mechanisms for recording, tracking and analyzing defects are
crucial to project planning and management.

Software Engineering 4: The Software Testing Life-Cycle

Requirements Trace-ability I

Requirement ‘ Sub-system ‘ Module ‘ Code ‘ Tests
reverse-thruster | Avionics EngineCtrl | Lines 99,101
activation controller 100,239
conditional BrakeCtrl Lines 11,51
on landing 52,123

gear deployment

Volatility of requirements calls for systematic tracking through to
code level test cases.

16

Planning for Testing'

Requirements » Acceptance Test
Architecture > System Test

/

Sub-system Test

/

Module Test

\

Sub-systems

\

Modules

Y

N TN N

Y

\ /

Coding + Unit Test

Software Engineering 4: The Software Testing Life-Cycle

Design Testing I

e Getting the system architecture right is often crucial to the
success of a project. Alternatives should be explored explicitly,

i.e. by review early on in the design phase.

e Without early design reviews there is a high risk that the
development team will quickly become locked into one
particular approach and be blinkered from “better” designs.

e Where possible, executable models should be developed in
order to evaluate key design decisions, e.g. communication
protocols. Executable models can also provide early feedback
from the customer, e.g. interface prototypes.

e Design-for-test, i.e. put in the “hooks” or “test-points” that
will ease the process of testing in the future.

Exploiting Design Notations: UMLI

Object Constraint Language (OCL): provides a language for
expressing conditions that implementations must satisfy (feeds
directly into unit testing — dynamic analysis lecture).

Use Case Diagrams: provides a user perspective of a system:

e Functionality
e Allocation of functionality
e User interfaces

Provides a handle on defining equivalence classes for unit
testing (dynamic analysis lecture).

Software Engineering 4: The Software Testing Life-Cycle

Exploiting Design Notations: UMLI

State Diagrams: provides a diagrammatic presentation for a
finite state representation of a system. State transitions provide
strong guidance in testing the control component of a system.

Activity Diagrams: provides a diagrammatic presentation of
activity co-ordination constraints within a system.
Synchronization bars provide strong guidance in testing for key
co-ordination properties, e.g. the system is free from dead-lock.

Sequence Diagrams: provides a diagrammatic presentation of
the temporal ordering of object messages. Can be used to guide
the testing of both synchronous and asynchronous systems.

20

Code & Module Testing'

Unit testing is concerned with the low-level structure of program
code. The key objectives of module and unit testing are:
e Does the logic work properly?
— Does the code do what is intended?

— Can the program fail?

e Is all the necessary logic present?
— Are any functions missing?
— Is there any “dead” code?

Note: Code and module testing techniques will be the focus of

static and dynamic analysis lectures.

Software Engineering 4: The Software Testing Life-Cycle

Sub-System Testing'

e Focuses on the integration and testing of groups of modules
which define sub-systems — often referred to as integration
testing.

e Non-incremental or “big bang” approach:

— Costly on environment simulation, 7.e. stub and driver

modules.
— Debugging is non-trivial.
e Incremental approach:
— Fewer stub and driver modules.
— Debugging is more focused.

e Strategies: top-down, bottom-up, function-based, thread-based,
critical-first, opportunistic.

22

Testing Interfaces I

Interface misuse: type mismatch, incorrect ordering, missing
parameters — should be identified via basic static analysis.

Interface misunderstanding: the calling component or client
makes incorrect assumptions about the called component or
server — can be difficult to detect if behaviour is mode or state
dependent.

Temporal errors: mutual exclusion violations, deadlock, liveness
issues — typically very difficult to detect, model checking
provides one approach.

Software Engineering 4: The Software Testing Life-Cycle

System Testing I

Volume and stress testing: Can the system handle the required
data throughput, requests etc? What are the upper bounds?

Configuration testing: Does the system operate correctly on all
the required software and hardware configurations?

Resource management testing: Can the system exceed

memory allocation limits?
Security testing: Is the system secure enough?

Recovery testing: Use pathological test cases to test system
recovery capabilities.

Availability /reliability: Does the system meet the requirements?

24

Acceptance Testing I

e The objective here is to determine whether or not the system is
ready for operational use.

e Focuses on user requirements and user involvement is high
since they are typically the only people with “authentic”
knowledge of the systems intended use.

e Test cases are typically designed to show that the system does
not meet the customers requirements, if unsuccessful then the
system is accepted.

e Acceptance testing is very much to do with wvalidation, i.e.
have we built the right product, rather than verification, i.e.
have we built the product right.

Software Engineering 4: The Software Testing Life-Cycle

Change Management & Testing'

e Reasons for change:
— Elimination of existing defects.
— Adaptation to different application environments,
— Alteration in order to improve the quality of the product.

— Extensions in order to meet new requirements.

e Testing for change:

— Determine if changes have regressed other parts of the
software — regression testing.

— Cost-risk analysis: full regression testing or partial
regression testing?

— Effectiveness: automation and persistent test-points.

26

Summary I

e The testing life-cycle.

e Prevention better than cure — testing should start early both in
terms of immediate testing and planning for future testing.

e Planning is crucial given the time-limited nature of the testing
activity — planning should be, as far as possible, integrated

within your design notations and formalisms.

Software Engineering 4: The Software Testing Life-Cycle

References '

e “The Art of Software Testing”, Myers, G.J. Wiley & Sons,
1979.

e “The Complete Guide to Testing”, Hetzel, B. QED Information
Sciences Inc, 1988.

e “Software Testing in the Real World”, Kit, E. Addison-Wesley,
1995.

e “The Object Constraint Language: precise modeling with
UML”, Warmer, J. & Kleppe, A. Addison-Wesley, 1998.

e [EEE Standard for Software Test Documentation, 1991
(IEEE/ANSI Std 829-1983)

e IEEE Standard for Software Verification and Validation Plans,
1992 (IEEE/ANSI Std 1012-1986)

28

