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Why Test? I

“Program testing can be used to show the presence of

defects, but never their absence!”

e Devil’s Advocate:

Dijkstra

“We can never be certain that a testing system 1s

correct.”
Manna

e In Defence of Testing;:
— Testing is the process of showing the presence of defects.
— There is no absolute notion of “correctness”.

— Testing remains the most cost effective approach to building

confidence within most software systems.




Executive Summary I

A major theme of this module is the integration of
testing and analysis techniques within the software
life-cycle. Particular emphasis will be placed on
code level analysis and safety critical applications.
The application and utility of static checking will
be studied through extensive use of a static
analysis tool (ESC Java) for Java.
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Low-Level Details '

Lecturers: Lilia Georgieva (G54) and Andrew Ireland (G57)

[ 1lilia@macs.hw.ac.uk and a.ireland@hw.ac.uk ]
Class times:

— Tuesday 3.15pm EC 3.36

— Thursday 3.15pm EC 2.44

— Friday 10.15 EC 2.44 (Lecture/Workshop) EC 2.50 (Lab)
— Friday 11.15 EC 2.50 (Lab)

Format of Friday classes will vary from week-to-week.
Web: http://www.macs.hw.ac.uk/"air/se4/

Assessment:

— Separate assignments for CS and IT streams.

— Overall assessment: exam (75%) coursework (25%).




Software Testing and Analysis Thread'

e The Software Testing Life-Cycle:
A broad introduction to the role of testing within software
development — practical exercises in requirements testing.

e Dynamic Analysis:
A review of dynamic analysis techniques as used for code level
verification — practical exercises in dynamic analysis.

e Static Analysis:
A review of static analysis techniques within the software
development life cycle — practical exercises in static analysis.

e Safety Critical Systems:
An introduction to the software issues that arise when
developing systems where failure can lead to loss of life — case
study material from real-world applications will be reviewed.
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A Historical Perspective'

e In the early days (1950’s) you wrote a program then you tested
and debugged it. Testing was seen as a follow on activity which

involved detection and correction of coding errors, i.e.

Design = Build = Test
Towards the late 1950’s testing began to be decoupled from
debugging — but still seen as a post-hoc activity.

e In the 1960’s the importance of testing increased through
experience and economic motivates, i.e. the cost of recovering
from software deficiencies began to play a significant role in the
overall cost of software development. More rigorous testing

methods were introduced and more resources made available.




A Historical Perspective'

e In the 1970’s “software engineering” was coined. Formal
conferences on “software testing” emerged. Testing seen more
as a means of obtaining confidence that a program actually

performs as it was intended.

e In the 1980’s “quality” became the big issue, as reflected in the
creation of the IEEE, ANSI and ISO standards.

e In the 1990’s the use of tools and techniques more prevalent
across the software development life-cycle.
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But What is Software Testing?'

o “Testing is the process of exercising or evaluating a system or
system component by manual or automated means to verify
that it satisfies specified requirements, or to identify differences

between expected and actual results.” IEEE

e “The process of executing a program or system with the intent
of finding errors.” (Myers 1979)

e “The measurement of software quality.” (Hetzel 1983)




What Does Testing Involve?'

Testing = Verification + Validation

Verification: building the product right.

Validation: building the right product.

A broad and continuous activity throughout the software life

cycle.

An information gathering activity to enable the evaluation of

our work, e.g.
— Does it meet the users requirements?
— What are the limitations?

— What are the risks of releasing it?
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Testing is for “Life” I

Early identification of defects & prevention of

defect migration are key goals of the testing
process.
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Some Key Issues'

A time limited activity:

— Exhaustive testing not possible.

— Full formal verification not practical.

Must use the time available intelligently.

Must clearly define when the process should stop.

Ease of testing versus efficiency:
— Programming language issues.

— Software architectural issues.

Explicit planning is essential!
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V Software Life-cycle Model'

Requirements Acceptance Test
N /
Architecture System Test
N /
Sub-systems Sub-system Test
N /
Modules Module Test

\ /

Coding + Unit Test




Requirements Testing I

Unambiguous: Are the definitions and descriptions of the
required capabilities precise? Is there clear delineation between

the system and its environment?
Consistent: Freedom from internal & external contradictions?
Complete: Are there any gaps or omissions?
Implementable: Can the requirements be realized in practice?

Testable: Can the requirements be tested effectively?
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Requirements Testing I

e 80% of defects can be typically attributed to requirements.

e Late life-cycle fixes are generally costly, i.e. 100 times more
expensive than corrections in the early phases.
e Standard approaches to requirements testing & analysis:

— “Walk-throughs” or Fagan-style inspections (more detail in
the static analysis lecture).

— Graphical aids, e.g. cause-effect graphs, data-flow diagrams.
— Modelling tools, e.g. simulation, temporal reasoning.

Note: modelling will provide the foundation for high-level
design.
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Planning for Testing'

e Forward planning crucial for estimating and minimizing costs.

e The plan should identify:
— which aspects of the system should be tested.
— a criteria for success.
— the methods and techniques to be used.
— personnel responsible for the testing.

e Mechanisms for recording, tracking and analyzing defects are
crucial to project planning and management.
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Requirements Trace-ability I

Requirement ‘ Sub-system ‘ Module ‘ Code ‘ Tests
reverse-thruster | Avionics EngineCtrl | Lines 99,101
activation controller 100,239
conditional BrakeCtrl Lines 11,51
on landing 52,123

gear deployment

Volatility of requirements calls for systematic tracking through to
code level test cases.
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Planning for Testing'

Requirements » Acceptance Test
Architecture > System Test

/

Sub-system Test

/

Module Test

\

Sub-systems

\

Modules

Y

N TN N

Y

\ /

Coding + Unit Test
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Design Testing I

e Getting the system architecture right is often crucial to the
success of a project. Alternatives should be explored explicitly,

i.e. by review early on in the design phase.

e Without early design reviews there is a high risk that the
development team will quickly become locked into one
particular approach and be blinkered from “better” designs.

e Where possible, executable models should be developed in
order to evaluate key design decisions, e.g. communication
protocols. Executable models can also provide early feedback
from the customer, e.g. interface prototypes.

e Design-for-test, i.e. put in the “hooks” or “test-points” that
will ease the process of testing in the future.




Exploiting Design Notations: UMLI

Object Constraint Language (OCL): provides a language for
expressing conditions that implementations must satisfy (feeds
directly into unit testing — dynamic analysis lecture).

Use Case Diagrams: provides a user perspective of a system:

e Functionality
e Allocation of functionality
e User interfaces

Provides a handle on defining equivalence classes for unit
testing (dynamic analysis lecture).
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Exploiting Design Notations: UMLI

State Diagrams: provides a diagrammatic presentation for a
finite state representation of a system. State transitions provide
strong guidance in testing the control component of a system.

Activity Diagrams: provides a diagrammatic presentation of
activity co-ordination constraints within a system.
Synchronization bars provide strong guidance in testing for key
co-ordination properties, e.g. the system is free from dead-lock.

Sequence Diagrams: provides a diagrammatic presentation of
the temporal ordering of object messages. Can be used to guide
the testing of both synchronous and asynchronous systems.
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Code & Module Testing'

Unit testing is concerned with the low-level structure of program
code. The key objectives of module and unit testing are:
e Does the logic work properly?
— Does the code do what is intended?

— Can the program fail?

e Is all the necessary logic present?
— Are any functions missing?
— Is there any “dead” code?

Note: Code and module testing techniques will be the focus of

static and dynamic analysis lectures.

Software Engineering 4: The Software Testing Life-Cycle

Sub-System Testing'

e Focuses on the integration and testing of groups of modules
which define sub-systems — often referred to as integration
testing.

e Non-incremental or “big bang” approach:

— Costly on environment simulation, 7.e. stub and driver

modules.
— Debugging is non-trivial.
e Incremental approach:
— Fewer stub and driver modules.
— Debugging is more focused.

e Strategies: top-down, bottom-up, function-based, thread-based,
critical-first, opportunistic.
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Testing Interfaces I

Interface misuse: type mismatch, incorrect ordering, missing
parameters — should be identified via basic static analysis.

Interface misunderstanding: the calling component or client
makes incorrect assumptions about the called component or
server — can be difficult to detect if behaviour is mode or state
dependent.

Temporal errors: mutual exclusion violations, deadlock, liveness
issues — typically very difficult to detect, model checking
provides one approach.
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System Testing I

Volume and stress testing: Can the system handle the required
data throughput, requests etc? What are the upper bounds?

Configuration testing: Does the system operate correctly on all
the required software and hardware configurations?

Resource management testing: Can the system exceed

memory allocation limits?
Security testing: Is the system secure enough?

Recovery testing: Use pathological test cases to test system
recovery capabilities.

Availability /reliability: Does the system meet the requirements?
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Acceptance Testing I

e The objective here is to determine whether or not the system is
ready for operational use.

e Focuses on user requirements and user involvement is high
since they are typically the only people with “authentic”
knowledge of the systems intended use.

e Test cases are typically designed to show that the system does
not meet the customers requirements, if unsuccessful then the
system is accepted.

e Acceptance testing is very much to do with wvalidation, i.e.
have we built the right product, rather than verification, i.e.
have we built the product right.
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Change Management & Testing'

e Reasons for change:
— Elimination of existing defects.
— Adaptation to different application environments,
— Alteration in order to improve the quality of the product.

— Extensions in order to meet new requirements.

e Testing for change:

— Determine if changes have regressed other parts of the
software — regression testing.

— Cost-risk analysis: full regression testing or partial
regression testing?

— Effectiveness: automation and persistent test-points.
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Summary I

e The testing life-cycle.

e Prevention better than cure — testing should start early both in
terms of immediate testing and planning for future testing.

e Planning is crucial given the time-limited nature of the testing
activity — planning should be, as far as possible, integrated

within your design notations and formalisms.
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