Heriot-Watt University

School of Mathematical and Computer Sciences
Distributed Systems Programming F29NM1
SPIN FExercise Sheet 1

Andrew Ireland

The aim of these exercises is to introduce you to both the Promela modelling language
and the SPIN Design Verification tool. While Promela and SPIN were developed in order
to support the verification of protocols, they have been used extensively across a wide range
of software and hardware design verification problems. To get started make your own copy
the Promela programs that exist in “air/Spin/Examples/.

Exercise 1
Consider the “Hello World” program:

proctype hello(){ printf("Hello\n") }
proctype world(){ printf ("World\n") }
init { atomic { run hello(); run world () } }

Note that the use of atomic within the init process ensures that instances of A and B are
created at the same time. Use this program to try out XSPIN’s simulation capabilities.
That is, within your home directory type xspin — this creates a new window called SPIN
CONTROL. Now follow the steps:

Step 1: Using the File menu select the Open option — this creates a new window called
Open.

Step 2: From the Open window open the hello file.

Step 3: Now using the Run menu select the Set Simulation Parameters option — this
creates a new window called Simulation Options.

Step 4: Note that under Simulation Style component, the seed used in generating a
simulation can be modified. For now simply select the Start option (bottom right
hand corner) — this creates three new windows, Simulation Output, Data Values
and Message Sequence Chart.

Step 5: From the Simulation Output window select the Run option — this starts a simula-
tion based upon the hello model. Note that within the Simulation Output window
the effect of the print statements will be displayed. Note that the Data Values win-
dow provides information on the value of global variables and channels — this will be
useful in the next exercise. The Message Sequence Chart contains the trace of the
inter-process communications — again this will be useful in later exercises.

Try re-running the simulation using a different seed value (step 4). On each simulation run
check to see the order in which the strings “Hello” and “World” are displayed within the
Simulation Output window. What effect do the different seed values have?



Exercise 2

Consider the following Promela program:

byte x = 2, y = 3;

proctype AQ{x = x + 1}

proctype BO{x =x - 1; y =y + x}
init { atomic{run AQ); run BO)} }

Again run this program using different seed values. What effect do the different seed values
have on the output displayed within the Data Values window?

Exercise 3

Consider the following Promela program:

byte state = 1;

proctype A() { (state == 1) -> state = state + 1 }
proctype B() { (state == 1) -> state = state - 1 }
init { atomic{run A(Q); run B()} }

Again run this program using different seed values. What effect do the different seed values
have on the output displayed within the Data Values window? Repeat the same experiment
using the following modified Promela program:

byte state = 1;

proctype A()

{ atomic{ (state == 1) -> state
proctype B()

{ atomic{ (state == 1) -> state
init { run AQ); run BQ) }

state + 1 } }

state - 1 } }

Again what effect do the different seed values have on the output displayed within the Data
Values window?

Exercise 4

Extend the “Hello World” program with a process type called control. Define control so
that it ensures that the hello process always performs its print statement before the print
statement associated with the world process. You should use two channels to achieve the
desired behaviour. Be sure that you run the syntax checker before you attempt to invoke
the simulator.

Exercise 5

Consider again the integer division (division) and factorial (fact) programs given in
lecture. Can you account for the MSCs generated by each program? Can you account
algorithmically for any differences between the general structure of the MSC’s generated by
the programs?

Exercise 6

Consider a vending machine that contains chocolate bars, both milk and plain. To select a
milk chocolate bar one inserts 20 pence while in the case of plain chocolate the cost is 50
pence. Define a process type called vender that models the vending machine. Moreover,
define a process called customer that models a “chocoholic”, i.e. someone who continuously



consume chocolate bars. Assume that the vender has a limitless supply of chocolate while
the customer as a limitless appetite for chocolate, both plain and milk. Again you should
use message channels to model the various lines of communication between the customer
and vender, i.e. coins and chocolate.

Exercise 7

Refine your model of the vending machine by limiting the number of chocolate bars that are
initially held, i.e. 10 milk and 5 plain chocolate bars. In addition, include a coin box that
models the amount of money held within the vending machine. Assume that the coin box
is initially empty and that once all the chocolate bars are sold that no money is accepted.

Exercise 8

Add a local assertion to your vending machine model that expresses the fact that there
exists an invariant relationship between the amount of money and chocolate it holds. Use
the simulator to check your invariant.

Exercise 9

Make one final refinement to your vending machine model so that the customer only has
450 pence to spend. Furthermore define a system invariant which states that the amount of
money in the overall system is always 450 pence. Check your solution using the simulator.

Exercise 10

Counsider a simple water storage system that involves, sensors, a user and inlet and
outlet devices. The sensors measure the water level within a storage device. The outlet
device provides water for the user. The demand for water by the user is not constant,
i.e. at each moment in time the user decides randomly whether or not to request water.
Whenever the water level reaches 20 units the sensors close the outlet and open the
inlet. This causes the water level to rise. Once the water level reaches 30 units the inlet
is closed and the outlet is opened again. Model the water storage system using distinct
processes to model the sensors, user, inlet and outlet. Include an assertion to ensure
that the water level is always within the range 20 to 30 units. Evaluate your model using
the simulator.



