
Distributed Systems Programming F29NM1 1

Distributed Systems Programming F29NM1

Formal Methods for Distributed Systems

Andrew Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Edinburgh

Distributed Systems Programming F29NM1 2

Module Overview

Distributed Formal Methods +

Systems Programming = Implementation

[module F29NM1] Technologies

Lecturers: Andrew Ireland (G.57) & Hamish Taylor (1.43)

air@macs.hw.ac.uk hamish@macs.hw.ac.uk

Lectures: Mon-12.15 in 1.70; Wed-11.15 in 1.83; Wed-13.15 in 3.36

Labs: Wed-13.15 in 2.50 (Linux Lab)

Coursework: Two assignments, one for each part of the module.

Examination: After Easter - questions from both parts.

Materials: Formal methods teaching materials are on the web:

http://www.macs.hw.ac.uk/~air/spin/

Distributed Systems Programming F29NM1 3

The Economic Motive

“... the national annual cost estimates of an inadequate

infrastructure for software testing are estimated to be $59.5

billion.”

Federal Study, US Dept of Commerce, May 2002.

“Worse – and spreading the effect of software flaws far beyond

the original customer – several devastating computer viruses

have taken advantage of bugs and defects in common operating

systems ...

CNET Networks Inc, Aug 2002.

• US Internal Revenue Service – a failed $4-billion modernization

effort in 1997, followed by an equally troubled $8-billion

update.

• FBI – $170-million virtual case-file management system was

terminated in 2005.

Distributed Systems Programming F29NM1 4

More of the Same?

• Conventional modelling techniques rely heavily on natural

language and diagrammatic methods.

• Such approaches make it hard to:

– Write unambiguous models.

– Analyse properties of our models.

– Generate effective test cases for our implementations.

• Omissions and defects introduced early within the life-cycle are

the most expensive to rectify if they go undetected ...

Distributed Systems Programming F29NM1 5

The Economics of Defect Detection

Cost

Requirements Coded Released

(Boehm, 1976)

Late life-cycle fixes are generally costly, i.e. can range from 40% to

100% more expensive than corrections in the early phases.

Distributed Systems Programming F29NM1 6

Complementary Methods

• The notion of formal methods has emerged over several

decades as a way of addressing the weaknesses of the

conventional methods highlighted above.

• One definition of formal methods is:

“... a set of tools and notations (with a formal

semantics) used to specify unambiguously the

requirements of a computer system that supports the

proof of properties of that specification and proofs of

correctness of an eventual implementation with respect to

that specification.”

M.G. Hinchey & J.P. Bowen (1995)

Distributed Systems Programming F29NM1 7

Drivers: Business & Economic Related

Requirements

Specification

Design

Code

Acceptance Test

System Test

Integration Test

Unit Test

Time + Money

Formal methods profile:
Conventional methods profile:

Distributed Systems Programming F29NM1 8

Drivers: Safety Related Standards

• RTCA DO-178B (USA Civil Avionics)

• Def Stan 00-55 (UK MoD)

• IEC 61508 (Generic “Programmable Systems”)

– IEC 601 (Medical Equipment)

– (Pr)EN 50128 (Railway Industry)

• IEC 880 (Nuclear Power Control)

• MISRA (Automotive Industry)

• FDA (Medical Equipment)

Distributed Systems Programming F29NM1 9

Health Warning

• There are no absolute guarantees.

• When applied correctly, formal methods have been

demonstrated to result in systems of the highest integrity.

• Correctness is only guaranteed with respect to a specification

— you need to validate the assumptions which under-pin the

specification.

• Formal methods complement rather than replace conventional

approaches, e.g. testing, simulation and prototyping.

• But formal methods are applied by humans who are error

prone — so tools are crucial.

Distributed Systems Programming F29NM1 10

When should Formal Methods be Used?

• Complex: abstraction is an important technique for managing

the complexity of large systems and is central to the notion of

a formal method.

• Concurrent: distributed systems give rise to concurrency.

While we find it hard to reason about concurrency, certain

formal methods have been developed which ease this task.

• Quality-critical: applications where failure is not dangerous

but economically expensive, e.g. financial applications and

telecommunications.

Distributed Systems Programming F29NM1 11

When should Formal Methods be Used?

• Safety-critical: applications where failure may endanger

human life, e.g. fly-by-wire control systems and railway

signalling systems.

• Security-critical: applications where failure means

unauthorized access to sensitive information, e.g. medical

records and security databases.

• Standardized: where systems are designed to meet specific,

internationally recognized, standards then it is important that

the standards can be interpreted uniformly, e.g. language

specifications and protocol standards.

Distributed Systems Programming F29NM1 12

What Do Formal Methods Cost?

• The cost of applying formal methods is high, i.e. labour

intensive coupled with a skills bottle-neck.

• Need for support tools which are integrated within the

conventional software development environments.

• The potential for “re-use” within formal methods is high — At

the 4th NASA Langley Formal Methods Workshop (1997), work

by Rockwell Avionics Research on the formal verification of the

AAMP family of microprocessors (designed for embedded

real-time applications used on Boeing 737, 747, 757 & 767

aircraft) demonstrated a 6 fold speed up in the formal

verification effort when the work under-taken on the AAMP-5

was reused with the AAMP-FV.

Distributed Systems Programming F29NM1 13

The Cost of Failure

• In 1994 a bug in the floating-point hardware of Intel’s Pentium

microprocessor was discovered. The replacement costs were

> $400 million.

Intel now has a number of Formal Methods teams in the US ...

• In 1996 on the maiden flight of Ariane 5, just 39 seconds into

its maiden flight Ariane 5 initiated self-destruct mechanism ...

Ariane 5 cost the European Space Agency 10 years and $7

billion to produce.

Ariane 5 was running Ariane 4 software, however, underlying

hardware architectures were different – self-destruction occurred

when the Ariane 5 guidance system tried to convert a 64-bit

number (velocity data) into a 16-bit format – resulted in an

overflow error.

Distributed Systems Programming F29NM1 14

The Cost of Failure

• Therac-25: a computer-controlled radiation therapy machine,

build by Atomic Energy of Canada Ltd (AECL) used in US

and Canadian hospitals and clinics during the 1980’s. The

Therac-25 was the successor to the Therac-6 and Therac-20

models. Unlike its predecessors the Therac-25 relied more on

software control mechanisms. Potential hazards from the

Therac machines are high energy beam with inappropriate

magnet settings.

Hazard analysis for the Therac-25 (March 1983) excluded the

possibility of software defects since “extensive testing” had been

undertaken. However, software errors resulted in several

patients being killed and injured by radiation overdoses during

the mid to late 1980’s.

Distributed Systems Programming F29NM1 15

Which Formal Method is Best?

• The choice is very much application dependent – indeed a

number of complementary methods may often be required for a

single application.

• When specifying state based aspects of systems it is best to use

a model-based approach such as:

– Z: The Z Notation: A Reference Manual, Spivey, J.M.

Prentice Hall 1992.

– VDM: Systematic Software Development using VDM, Jones,

C.B. Prentice Hall 1990.

Distributed Systems Programming F29NM1 16

Which Formal Method is Best?

• Distributed concurrent systems:

– Process algebras provide formalisms for modelling

distributed current systems:

∗ CCS: Communication and Concurrency.

∗ CSP: Communicating Sequential Processes.

∗ LOTOS: Language Of Temporal Ordering Specification.

– Description languages, less formal but greater industrial

up-take:

∗ SDL: Specification and Description Language.

∗ Promela: PROcess MEta LAnguage.

Distributed Systems Programming F29NM1 17

Examples from Industrial

• SPARK: A programming language derived from Ada that

includes annotations – SPARK toolset supports flow analysis

and formal verification (Praxis critical Systems, UK).

• ESTELLE (telecommunications) SCADE (embedded systems):

Support specification and an notion of

correctness-by-construction, (Esterel Technologies, France).

• SDV: Static Device Verifier automatically analyzes system

software (C programs) – detects violations with respect to

application programming interface (API) usage rules

(Microsoft Research, US)

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

Distributed Systems Programming F29NM1 18

Aims and Objectives

• To promote an understand of the issues involved in using

formal methods within system design, in particular the design

of distributed and concurrent systems.

• To provide practical experience of the formal modelling and

analysis of such systems through Promela and the SPIN design

verification tool.

• To give an insight into the theory which underpins such formal

modelling and analysis tools.

Distributed Systems Programming F29NM1 19

Summary

Learning outcomes:

• Gain an understanding of the:

– Limitations of conventional modelling and analysis

techniques.

– Complementary nature of formal methods as well as their

strengths and weaknesses.

Recommended reading:

• M.G. Hinchey & J.P. Bowen (Eds), Applications of Formal

Methods, Prentice Hall 1995.

• http://www.macs.hw.ac.uk/~air/spin/

• http://www.afm.sbu.ac.uk

