
Distributed Systems Programming F29NM1 1

Distributed Systems Programming F29NM1

Promela I

Andrew Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Edinburgh

Distributed Systems Programming F29NM1 2

Overview

• Basic building blocks of Promela programs.

• Structured data types.

• Process definition, instantiation & execution.

• Concurrency and Promela programs.

• Non-deterministic behaviour & basic synchronization.

Distributed Systems Programming F29NM1 3

Promela Programs

• The basic building blocks of Promela programs are:

– processes

– channels

– variables

• Processes model the behaviour of components of a system and

are by definition global objects.

• Channels and variables define the environment in which

processes exist and can be either local of global.

Distributed Systems Programming F29NM1 4

Executability of Statements

• Promela does not make a distinction between a condition and

a statement, e.g. the simple boolean condition a == b

represents a statement in Promela.

• Promela statements are either executable or blocked. The

execution of a statement is conditional on it not being blocked.

• Promela’s notion of statement executability provides the basic
means by which process synchronization can be achieved.

while (a != b) skip /* conventional busy wait */

(a == b) /* Promela equivalent */

Distributed Systems Programming F29NM1 5

Variables and Basic Data Types

• Promela variables provide the means of storing information

about the system being modelled.

• A variable may hold global information on the system or

information that is local to a particular component (process).

• Promela supports five basic data types:

Name Size (bits) Usage Range

bit 1 unsigned 0 . . . 1

bool 1 unsigned 0 . . . 1

byte 8 unsigned 0 . . .255

short 16 signed −215
− 1 . . .215

− 1

int 32 signed −231
− 1 . . .231

− 1

Distributed Systems Programming F29NM1 6

Variable Declarations

• Like all well-structured programming languages, Promela

requires that variables must be declared before they can be

used.

• Variable declarations follow the style of the C programming

language, i.e. a basic data type followed by one or more

identifiers and optional initializer:

byte count, total = 0;

An initializer must be an expression of the appropriate basic

type.

• By default all variables of the basic types are initialized to 0.

Note that as in C, 0 (zero) is interpreted as false while any

non-zero value is interpreted as true.

Distributed Systems Programming F29NM1 7

Structured Data Types

• Arrays – an array type is declared as follows:

int table[max]

Note that this generates an array of max-1 integers, i.e.

table[0], table[1], ... table[max-1]

• Enumerated Types – a set of symbolic constants is declared as

follows:

mtype = {LINE_CLEAR, TRAIN_ON_LINE, LINE_BLOCKED}

Note: a program can only contain one mtype declaration which

must be global.

• Structures – a record data type is declared as follows:

typdef msg {byte data[4], byte checksum}

Note: Structure access is as in C:

msg message; ... message.data[0]

Distributed Systems Programming F29NM1 8

Identifiers, Constants & Expressions

• Identifiers: An identifier is a single letter, a

period symbol, or underscore followed by zero

or more letters, digits, periods or underscores.

• Constants: A constant is a sequence of digits

that represents a decimal integer. Symbolic

constants can be defined by means of mtype

or via a C-style macro definition, e.g.

#define MAX 999

• Expressions: An expression is built up from

variables, identifiers and constants using the

following operators:

+, -, *, /, %, --, ++, arith

>, >=, <, <=, ==, !=, relational

&&, ||, !, logicals

&, |, ~, ^, >>, <<, bits

!, ?, channels

(), [], group/index

Distributed Systems Programming F29NM1 9

Process Types

• A process declaration begins with the keyword proctype and

contains:

– process identifier;

– formal parameter list;

– sequence of local variable declarations & statements

• Syntactically a process declaration has the following form:

proctype name(/* formal parameter list */)
{

/* local declarations and statements */
}

Note: /* and */ delimit comments in Promela.

Distributed Systems Programming F29NM1 10

The init Process

• All Promela programs must contain an init process which is

similar to the main() function within a C program, i.e. the

execution of a Promela program begins with the init process.

• An init process takes the form:

init { /* local declarations and statements */ }

The simplest and may be one of the least useful of Promela
programs takes the form:

init { skip }

Note: skip denotes the null statement.

• While a proctype definition declares the behaviour of a
process, the instantiation and execution of a process definition
is co-ordinated via the init process.

Distributed Systems Programming F29NM1 11

Hello World

• A simple two process system:

proctype hello(){ printf("Hello") }
proctype world(){ printf("World\n") }
init { run hello(); run world () }

• The init process initiates the execution of an instance of the
hello process and the world process.

• The run operator is executable only if process instantiation is
possible. A process instantiation may be blocked if too many
processes are already running.

• If a run is executable then a pid or run-time process
identification number is returned. The pid for a process can be
accessed via the predefined local variable _pid.

• The execution of run does not wait for the associated process
to terminate, i.e. further applications of run will be executed
concurrently.

Distributed Systems Programming F29NM1 12

Active Proctypes

• A refinement to our simple two process system:

active proctype hello(){ printf("Hello") }
active proctype world(){ printf("World\n") }

• The keyword active can prefix any proctype declaration.

• The effective of active is to create an instance of the
associated proctype within the initial system state.

• Multiple instances of the same proctype declaration can be
generated using an optional array suffix, e.g.

active [4] proctype hello(){ printf("Hello") }
active [7] proctype world(){ printf("World\n") }

Note: the above will generate 4 instances of hello and 7
instances of world.

Distributed Systems Programming F29NM1 13

Processes as Automata

byte x = 2, y = 3;
proctype A(){x = x + 1}
proctype B(){x = x - 1; y = y + x}

init

x == 2
y == 3

x == 3
y == 3

x = x+1

init

x == 2
y == 3

x == 1
y == 3

x = x-1

x == 1
y == 4

y = y+x

Distributed Systems Programming F29NM1 14

Concurrency via Interleaving

init { run A(); run B() }

init

x == 2
y == 3

x == 3
y == 3

x = x+1

x == 1
y == 3

x = x-1

x == 2
y == 3

x = x-1

x == 2
y == 5

y = y+x

x = x+1

x == 1
y == 4

y = y+x

x == 2
y == 4

x = x+1

Distributed Systems Programming F29NM1 15

Deterministic & Non-Deterministic Behaviour

• Deterministic behaviour: a process is deterministic if for a

given start state it behaves in exactly the same way if supplied

with the same stimuli from its environment.

• Non-deterministic behaviour: a process is

non-deterministic if it need not always behave in exactly the

same way each time it executes from a given start state with

the same stimuli from its environment.

Distributed Systems Programming F29NM1 16

More Non-Deterministic Behaviour

• Consider the following two process system:

byte state = 1;
proctype A() { (state == 1) -> state = state + 1 }
proctype B() { (state == 1) -> state = state - 1 }
init { run A(); run B() }

note that S1 -> S2 and S1; S2 are equivalent.

• Note that if process A (B) terminates before process B (A)
begins execution then B (A) will be blocked forever on the
initial condition, i.e. (state == 1).

• Note that if both A and B pass the condition simultaneously
then both processes can terminate but the final value of state
is unpredictable, i.e. 0, 1 or 2.

Distributed Systems Programming F29NM1 17

Dekker’s Solution

#define true 1
#define false 0
#define Aturn false
#define Bturn true
bool Aruns, Bruns, t;

proctype A()
{Aruns = true;
t = Bturn;
(Bruns == false || t == Aturn); /* S1 */
/* critical section */
Aruns = false

}

proctype B()
{Bruns = true;
t = Aturn;
(Aruns == false || t == Bturn); /* S2 */
/* critical section */
Bruns = false

}

init { run A(); run B() }

Distributed Systems Programming F29NM1 18

Observations on Dekker’s Solution

• Statements S1 and S2 ensure synchronization between A and B

on critical section access.

• Consider the case of S1 which occurs within the definition of

process A: (Bruns == false || t == Aturn)

– If the left disjunct holds then process B is not executing so

it is safe for A to enter the critical section.

– Else if the right disjunct holds t must be false so it is safe

for A to enter the critical section because both disjuncts of

S2 must be false, i.e. process B is blocked.

– Else process A is blocked. However, the right disjunct of S2

must hold so it is safe for B to enter the critical section.

– On exiting the critical section process A sets Aruns to false

which has the effect of unblocking process B.

Distributed Systems Programming F29NM1 19

Atomic Sequences

• Promela provides another means of avoiding the undesirable

interleaving problem illustrated above via the atomic operator.

• Consider the following refinement to the two process system:

byte state = 1;
proctype A()
{ atomic{ (state == 1) -> state = state + 1 } }
proctype B()
{ atomic{ (state == 1) -> state = state - 1 } }
init { run A(); run B() }

• The final value of the global variable state will be either 2 or
0, depending upon which process executes.

• Note that an atomic sequence restricts the level of interleaving
so reduces the complexity when it comes to validating a
Promela model.

Distributed Systems Programming F29NM1 20

Summary

Learning outcomes:

• To be able to understand and construction simple Promela

programs exploiting both local and global data objects;

• To understand the Promela model for concurrent process

execution;

• To be able to model synchronous behaviour between

processes;

Recommended reading:

• “Concise Promela Reference” — see course homepage

• “Basic Spin Manual” — see course homepage

