Distributed Systems Programming F29NM1

Promela III

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Distributed Systems Programming F29NM1

Overview '

e Control flow constructs;
e Channel based process communication;

e Procedures and recursion.




Control Flow'

e In the “Promela I” lecture three ways for achieving control flow
were introduced:

— Statement sequencing;
— Atomic sequencing;

— Concurrent process execution.

e Promela supports three additional control flow constructs:
— Case selection
— Repetition

— Unconditional jumps

Distributed Systems Programming F29NM1

Case Selection .

e What follows is an example of case selection involving two
statement sequences:
if
(n%21'=0) ->n=n+1;
(n % 2 ==0) -> skip;
fi
Note that each statement sequence is prefixed by a ::. The
executability of the first statement (guard) in each sequence
determines sequence is executed.

e Guards need not be mutually exclusive:
if
(x >= y) -> max = x;
(y >= x) -> max = y;
fi
Note: if x and y are equal then the selection of which
statement sequence is executed is decided at random, giving
rise to non-deterministic choice.




Repetition I

e What follows is an example of repetition involving two
statement sequences:
do
(x>y) >x=x-y; q=q+1;
(y > x) -> break;
od

Note that the first statement sequence denotes the body of the
loop while the second denotes the termination condition.

e Termination, however, is not always a desirable property of a
system, in particular, when dealing with reactive systems:
do
(level > max) -> outlet = open;
(level < min) -> outlet = close;
od

Distributed Systems Programming F29NM1

Unconditional Jumps I

e Promela supports the notion of an unconditional jump via the
goto statement.

e Consider the following refinement of the division program given

above:
do
x>y) >x=x-y; q=q9+ 1;
(y > x) —-> goto done;
od;
done:
skip

Note that done denotes a label. A label can only appear before
a statement. Note also that a goto, like a skip, is always
executable.




Timeouts '

e Reactive systems typically require a means of
aborting/rebooting when a system deadlocks. Promela
provides a primitive statement called timeout which enables
such a feature to be modelled.

e To illustrate, consider the following process definition:

proctype watchdog ()
{

do
:: timeout -> guard!reset
od

+

The timeout condition becomes true when no other statements
within the overall system being modelled are executable.

Distributed Systems Programming F29NM1

Exceptions I

e Another useful exception handling feature is supported by the
unless statement which takes the following general form:

{ statements-1 } unless { statements-2 }
Execution begins with statements-1. Before execution of each
statement the executability of the first statement within
statements-2 is checked. If the first statement is executable
then control is passed to statements-2. If however the
execution of statements-1 terminates successfully then
statements-2 is ignored.

e Consider an alternative watchdog process:

proctype watchdog ()

{ do
process_data() unless guard?reset; process_reset()
od

}




Message Channels I

e So far global variables have provided the only means of
achieving communication between distinct processes.

e However, Promela supports message channels which provide
a more natural and sophisticated means of modelling
inter-process communication (data transfer).

e A channel can be defined to be either local or global. An
example of a channel declaration is:
chan in_data = [8] of { byte }
which declares a channel that can store up to 8 messages of

type byte.

e Multiple field messages are also possible:

chan out_data = [8] of { byte, bool, chan }

Distributed Systems Programming F29NM1

Sending Messages I

e Sending messages is achieved by the ! operator, e.g.
in_data ! 4;
This has the effect of appending the value 4 onto the end of the
in_data channel.

o If multiple data values are to be transferred via each message
then commas are used to separate the values, e.g.
out_data ! x + 1, true, in_data;
where x is of type byte.

e Note that the executability of a send statement is dependent
upon the associated channel being non-full, e.g. the following
statement will be blocked:

in_data ! 4;
unless in_data contains at least one empty location.




Receiving Messages I

e Receiving messages is achieved by the ? operator, e.g.

in_data 7?7 msg;
This has the effect of retrieving the first message (FIFO) within
the in_data channel and assigning it to the variable msg.

e If multiple data values are to be transferred via each message
then commas are used to separate the values, e.g.

out_data 7?7 valuel, value2, value3;

e Note that the executability of a receive statement is dependent
upon the associated channel being non-empty, e.g. the
following statement will be blocked:

in_data ? value;

unless in_data contains at least one message.

Distributed Systems Programming F29NM1

Some Observations & Notations.

e If more data values are sent per message than can be stored by
a channel then the extra data values are lost, e.g.
in_data ! msgl, msg2;
here the msg2 will be lost.

o If fewer data values are sent per message than are expected
then the missing data values are undefined, e.g.

out_data ! 4, true;
out_data 7 x, y, Z;

here x and y will be assigned the values 4 and true
respectively while the value of z will be undefined.
e Alternative (& equivalent) notations:

out_data'expl,exp2,exp3; out_data'!expl(exp2,exp3);
out_data?varl,var2,var3; out_data?vari(var2,var3);




Additional Channel Operations'

e Determining the number of messages in a channel is achieved
by the len operator, e.g.
len(in_data)
If the channel is empty then the statement will block.

e The empty, full operators determine whether or not messages
can be received or sent respectively, e.g.

empty(in_data); full(in_data)

e Non-destructive retrieve:
out_data ? [x, y, z]
Returns 1 if out_data?x,y,z is executable otherwise 0. No
side-effects — evaluation, not execution, i.e. no message
retrieved.

Distributed Systems Programming F29NM1

Channels as Parameters.

e Consider the following:
proctype A(chan q1)

{ chan q2;
ql?q2; q2!'99
}
proctype B(chan qforb)
{ int x;

qforb?x; x++;
printf("x == %d\n", x)
}
init {chan gname = [1] of { chan };
chan gforb = [1] of { int };
run A(gname); run B(qforb);
gname !qforb

+
e What will be the side-effect of running this program?

14



Rendez-Vous Communication'

e Our discussion of message channels so far has implicitly
focussed upon asynchronous communication between
processes, e.g.

chan name = [N] of { byte }
where N is a positive constant that defines the number of
locations allocated to the channel.

e However, synchronous communication between processes can
be achieved by setting N to be 0, e.g.
chan name = [0] of { byte }
This is known as a rendezvous, a channel where a message
can be passed but not stored, e.g. name!2 is blocked until a
corresponding name?msg is executable.

e Note: rendezvous communication is binary.

Distributed Systems Programming F29NM1

A Rendez-Vous ExampleI

e Consider the following:

#define msgtype 33
chan name = [0] of { byte, byte }
proctype AQ)
{ name !msgtype (124) ; name!msgtype(121) }
proctype B(O)
{ byte state;
name?msgtype (state)

}
init { atomic { run A(); run B() }}

e Channel name is a global rendezvous. Both A and B will
synchronous on their first statements. The effect will be to
transfer the value 124 from A to the local variable state within
B. Further execution is blocked because the second send within
A has no matching receive within B.

16



Dijkstra’s Semaphores I
#define p O
#define v 1
chan sema = [0] of { bit };
proctype semaphore ()
do
:: semal!p —> sema?v
od
}
proctype user()
sema’p;
/* critical section */
sema!v;
/* non-critical section */
skip
}
init
{ atomic {
run semaphore();
run user();
run user();
run user()
}
}

Distributed Systems Programming F29NM1

Procedures & Recursion.

e Integer division revisited:
proctype division(int x,y,q; chan res)

if
(y > x) -> res!q,x;
(x >= y) -> run division(x -y, y, q + 1, res);
fi
}

init{ int q,r;
chan child = [1] of { int, int };
run division(7, 3, 0, child);
child ? q,r;
printf ("result: %d %d\n", q,r)

}

e Note that the algorithm is tail-recursive, ¢.e. the final result is
communicated back to init directly.

18



Procedures & Recursion.

e An non tail-recursive algorithm:

proctype fact(int n; chan res)
{ int result;
if

(n <= 1) -> res!'i;

(n >= 2) -> chan child = [1] of { int };
run fact(n - 1, child);
child 7 result; res!m * result

fi
}
init{ int result;
chan child = [1] of { int };
run fact(5, child); child ? result;
printf("result: %d\n", result)}

e Note that each recursive call results in the dynamic creation of
a child process. A process does not terminate until all its child
processes terminate.

Distributed Systems Programming F29NM1

Summary I

e To be able to understand and construct simple programs

Learning outcomes:

exploiting Promela’s control flow constructs, including

timeout and unless.

e To be able to understand and construct asynchronous and
synchronous behaviour between processes using message
channels;

e To be able to use Promela to model procedures and
recursion.
Recommended reading:
e “Concise Promela Reference” — see course homepage

e “Basic Spin Manual” — see course homepage

20



