
Distributed Systems Programming F29NM1 1

Distributed Systems Programming F29NM1

SPIN: Simple Promela INterpreter

Andrew Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Edinburgh

Distributed Systems Programming F29NM1 2

Overview

• Provide an introduction to SPIN via XSPIN.

• Focus upon XSPIN’s simulation capabilities.

• Introduce the notion of assertion checking.

Distributed Systems Programming F29NM1 3

SPIN & Simulation

• SPIN provides a simulator that enables designers to gain early

feedback on their system models. Such feedback plays an

important role in the development of the designer’s

understanding of the design space before they invest in any

formal analysis.

• While the SPIN simulator does not represent a formal analysis

tool, it does provide a limited form support for verification in

terms of assertion checking, i.e. the checking of local and

global system assertions (or properties) during particular

simulation runs.

Distributed Systems Programming F29NM1 4

Getting Started with SPIN

• Best way to get started with SPIN is via XSPIN.

• XSPIN is available on all the Linux PCs within Lab 2.50,

simply type xspin at the prompt.

• The look-and-feel of XSPIN:

– Main text window: basic edit & search capabilities.

– File handling: basic browsing, loading, saving capabilities.

– File editing: cut, copy & paste.

– Tool support: syntax checking, simulation, verification,

automaton portray.

– Help facilities.

• XSPIN’s main window showing the “Hello World” program is

pictured on the next slide ...

Distributed Systems Programming F29NM1 5

Distributed Systems Programming F29NM1 6

Simulation: Setting Display Mode Parameters

• Message Sequence Chart (MSC) Panel: provides a graphical

presentation of inter-process communication over time. Control

over the presentation of links between the MSC and Promela

code within the main text window is supported via this panel.

• Time Sequence Panel: provides a graphical presentation of

process execution over time. Multiple perspectives are

supported, i.e. execution steps interleaved; one window per

process; one execution trace per process.

• Data Values Panel: presents data values across time. Options

include buffered channels; global and local variables.

Distributed Systems Programming F29NM1 7

Simulation: Setting Style Parameters

• Random: requires the user to provide a seed, obviously using

the same seed will generate the same execution trace.

• Guided: requires a failure trail generated during a previous

verification effort to be available, i.e. provides a mechanism for

viewing a counter example generated by SPIN’s verifier.

• Interactive: requires user interaction to resolve

non-deterministic choice points within a simulation run.

• XSPIN’s simulation options window is pictured on the next

slide ...

Distributed Systems Programming F29NM1 8

Distributed Systems Programming F29NM1 9

Running Simulations

• Simulation parameters must be confirmed at least once before

a simulation run can take place.

• The default setting for the simulation parameters will generate

the following three windows:

– Simulation Output: provides both single step and

continuous modes, as well as a text output option.

– Message Sequence Chart: zoom focus and postscript output

option provided.

– Data Values: text output option provided.

• XSPIN snap-shots, before and after a simulation run, provided

on the next two slides ...

Distributed Systems Programming F29NM1 10

Distributed Systems Programming F29NM1 11

Distributed Systems Programming F29NM1 12

Interactive Simulations

• Interactive simulation is useful when a Promela model contains

non-deterministic choice that needs to be debugged.

• During a simulation run, a selection window appears whenever

a non-deterministic choice point is reached. The simulation run

is interrupted until you select which statement should be

executed next.

• This selection process is illustrated in the next two slides ...

Distributed Systems Programming F29NM1 13

Distributed Systems Programming F29NM1 14

Distributed Systems Programming F29NM1 15

Assertions

• An assertion is a statement which can be either true or false.

• Interleaving assertion evaluation with code execution provides

a simple yet very useful mechanism for checking desirable as

well as erroneous behaviour with respect to our models.

• The syntax for an assertion within Promela takes the form:

assert(<logical-statement>)

for example:

assert(!(doors == open && lift == moving))

• Within Promela we can express local assertions as well global

system assertions.

Distributed Systems Programming F29NM1 16

Local Assertions

byte state = 1;
proctype A() { (state == 1) -> state = state + 1;

assert(state == 2)
}
proctype B() { (state == 1) -> state = state - 1;

assert(state == 0)
}
init { atomic{ run A(); run B() } }

Will the assertion checking succeed or fail?

Distributed Systems Programming F29NM1 17

Distributed Systems Programming F29NM1 18

Global Assertions

• A global assertion or system invariant is a property that is

true in the initial system state and remains true in all possible

execution paths.

• To express a system invariant within Promela one must define

a monitor process that contains the desired system invariant.

• Running an instance of the monitor process along with the rest

of the system model means that the global assertion can be

checked at any point during the execution.

• Note that in the case of a simulation the checking is not

exhaustive, this is achieved within verification mode.

Distributed Systems Programming F29NM1 19

Semaphores Revisited
#define p 0
#define v 1
chan sema = [0] of { bit };
proctype semaphore()
{ do :: sema!p -> sema?v od}
byte count;
proctype user()
{ sema?p;

count = count + 1;
skip; /* critical section */
count = count - 1;
sema!v;
skip /* non-critical section */ }

proctype monitor(){
do :: assert(count == 0 || count == 1) od}

init { atomic {run monitor(); run semaphore();
run user(); run user(); run user()}}

Distributed Systems Programming F29NM1 20

Distributed Systems Programming F29NM1 21

Observations on MSCs

• Each process is associated with a vertical line within a MSC.

The “start of time” corresponds to the top of the MSC, moving

down the MSC corresponds to the passing of time.

• The temporal ordering of events, i.e. the passing of messages,

is represented by the relative ordering of arrows between

process execution lines.

• Note that the start of an arrow denotes the relative point in

time when a process sends a message to a channel while the

arrow head denotes the relative point in time when the message

is removed from the channel by a process.

• Note that the vertical distance between the start of an arrow

and the arrow head represents the relative time that the

associated message was stored in the channel.

Distributed Systems Programming F29NM1 22

Summary

Learning outcomes:

• To be able to use XSPIN to consult and syntax check

Promela programs.

• To be able to use the SPIN simulator (via XSPIN) to

explore system models, i.e. the setting of simulation options

and the running of the simulator in its various modes.

• Understand how to construct and use both local and global

system assertions with in the context of the SPIN simulator.

Recommended reading:

• “Basic Spin Manual” — see course homepage

