Jistributed Systems Programming F29NM1

Distributed Systems Programming F29NM1

‘SPIN: Formal Analysis III

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Jistributed Systems Programming F29NM1

‘ Overview I

e Introduce temporal logic.

e Focus on SPIN’s temporal reasoning capabilities, 7.e. model
checking.

e Sketch the foundational issues that underpin model checking.

Jistributed Systems Programming F29NM1

‘The Story So Far I

e Verifying properties with respect to particular points within a
process execution (local assertions) or across the whole
execution of a system (global assertions).

e Verifying properties with respect to complete execution cycles,

both desirable (end-states & progress cycles) and undesirable

(accept cycles).

e But what if we want to reason about how properties change
over time, ¢.e. reason about the temporal ordering of events?

This calls for temporal logic.

Jistributed Systems Programming F29NM1

Linear Temporal Logic (LTL) I

LTL = Propositional Logic + Temporal Operators

Propositional constants:
true, false

any name that starts with a lowercase letter

Propositional operators:
&& conjunction | | disjunction

-> implication ! negation

Temporal operators:

[] always <> eventually U until

Jistributed Systems Programming F29NM1

‘Some Generic Temporal Properties'

e Invariance (safety): [Ip

During any execution trace all states satisfy p, e.g.
[1!(doors==open && lift==moving)

e Response: [1(p —> <>q)

Every state that satisfies p is eventually followed by a state
that satisfies q, e.g
[1(call lift -> <>(lift_arrives))

e Precedence: [J(p > (q U r))

Every state that satisfies p is followed by a sequence of
states that satistfy q and the sequence is terminated with a
state that satisfies r, e.g.

[](start_1ift ->(1lift_running U stop_running)

Jistributed Systems Programming F29NM1

Temporal Reasoning in SPINI

Step 1: Run the "LTL Property Manager".

Step 2: Enter the temporal property you wish to verify. Note
that you must use lowercase names for propositional constants.

Step 3: Indicate whether the temporal property should hold on:

— all executions (desired behaviour) or

— no executions (error behaviour)

Step 4: Enter a macro-definition for each propositional
constant within the "Symbol Definitions" sub-window.

Step 5: Press the "Run Verification" button and then "Run"
button within the "LTL Verification" window.

Note that LTL properties can be saved for future use (see the
"Save As" and "Load" buttons).

Jistributed Systems Programming F29NM1

TrainWare Revisited I

e Desired behaviour:

[1!'(full (TunnelAB) || full(TunnelBC) ||
full (TunnelCD) || full(TunnelDA))

This property should hold on all executions, 7.e. always the
case that none of the tunnels is occupied by more than one
train.

e Error behaviour:

<>(full(TunnelAB) || full(TunnelBC) ||
full (TunnelCD) || full(TunnelDA))

This property should hold on no executions, i.e. if eventually

a tunnel is occupied by more than one train then our design is
flawed.

The setup windows for the examples given above are presented on

the following two slides ...

Jistributed Systems Programming F29NM1

- Exceed
(8] P CONTROL 3,33 -~ 21 sy 1999
File.. | Edit. S Help SPIN DESIGN VERIFICATION

r|'—+++++‘-++++++++++++++++++++++++++++++++++‘+++++-—++++++++++++++++4+++++++++++—+++++‘-rlr
::: Lingar Tine Tempora Logic Farmulae
L

" Bnd
e Operators; [<« U | -»|and or not

JIREFRF RS R R AR ¥

FL = = n - =
/* & sinple railway netwark inv| Property holds for: & Al Executions (desired behavior) Mo Executions (error behavior)

/* The railway network is cicoul| T -
/* While each station is modelld Mutes [T BOck - seGUien-. g
/* channels. Consequently the md|

/* where a train is denoted by 3

f* travel in one dicection, the

f/* different rates. Within the 1

/* two trains occupying the samd!

f* two traln network, as modelld|Symbol Definitions:

f/* system i3 unsafe. Note also |
Iz 1Etruduce & train in the retl #define p (full (TunnelaB) || full(TumnelBC) || full (TunnelcD) || full(TunnelDi))|
i

fv*****v*****{-*****i—***********-

|Formmula: ['p

chan TunnelkE
chan TuwwnelBC
chon TwnmelCD
chan TunnelDa

of { byte
aof { byte
of { byte
of { byte

proctype Station(chan in_traclk,
i

byte train;

do

in_track?train; out_|yorification Result:
ad 0

i

proctype Setup (chan track; byte
track! train;

init { atomicy

ron Setup (TunnelBC, 1)) My Cear
roan Setup (TunnelDh, &) e ————————

| _aHAmmmhspinbandouts | =a8 [[#Exceed

Jistributed Systems Programming F29NM1

- Exceed
(8] P CONTROL 3,33 -~ 21 sy 1999
File.. | Edit. S Help SPIN DESIGN VERIFICATION

R L T T
::: Lingar Tine Tempora Logic Farmulae
L

' i And
/e :
JIREFRF RS R R AR ¥ (mﬂtm. n 5, LF iy “ ol nt
i

/* A simple railway network inwd
/* The railway network is cicoul|
/* While each station is modelld
/* channels. Consequently the md|
/* where a train is denoted by 3
f* travel in one dicection, the

f/* different rates. Within the 1
/* two trains occupying the samd!
/* two train network. as modells Symbol Definitions:
f/* system i3 unsafe. Note also |
Iz 1Etruduce & train in the retl #define p (full (TonneldB) || full(TumnelBC) || full (TunnelCD) || full(TunnelDh))
i

frkkdddirddbddbdbdbddbddddbdddidd

| Formala: <=

Property holds for: All Executions (desired behavior) 4 Mo Executions (error hehavior)

Holes [file block - secliond]

chan TunnelkE
chan TuwwnelBC
chon TwnmelCD
chan TunnelDa

of { byte
aof { byte
of { byte
of { byte

proctype Station(chan in_traclk,
i
byte train;

do
in_track?train; out_|
ad

W Do e el | il v bl
1
i

proctype Setup (chan track; byte

track! train;

atomicq{
ron Setup (TunnelBC, 1)) My Cear
roan Setup (TunnelDh, &) e ————————

gqoc -W -0 pan -D_POSIX SOURCE -DMENLINM=64 -DEUSAFE -DNOFALR
time . /pan -Tl) -a =l
verification done

span -L

| A H e sprihandouts | =BAN g!sott,p'r.bmp - Pant J ﬁ' 11:M

Jistributed Systems Programming F29NM1

‘ Modelling Hardware I

—
—>
—>
—>

Integer Division

Note: based upon an example by Mike Gordon (Cambridge
Computer Lab, http://www.cl.cam.ac.uk/users/mjcg).

Jistributed Systems Programming F29NM1

‘Modelling Input-Output Relation.

quo = 0; rem =
:: (load!=1) -> if

fi

:: (load==1) -> a = inl; b = in2;

a;

:: (rem>=b) -> rem =

quo

:: (b>rem) -> done

11

Jistributed Systems Programming F29NM1

Complete Model of Division Algorithm'

byte inl, in2;
byte a, b, quo, rem;
bit 1load = 0, done = 1;

proctype quo_rem()

{
do

::(load == 1) -> a = inl; b = in2;
quo = 0; rem = a; done =
::(load '= 1) -> if
(rem >= b) -> rem

quo
(b > rem) -> done =
fi

12

Jistributed Systems Programming F29NM1

‘Modelling Hardware Environment'

e Environment (env) initiates register (a, b, quo, rem)

initialization by setting load to 1.

e While load is 1, hardware (quo_rem) sets registers using the

input values (in1, in2), done is set to O when complete.

e Environment (env) initiates calculation by setting load to O,
load is held at this value until done becomes 1.

proctype env()

{

inl = 7; 1in2 = 2; load = 1; /* init inputs */
done == 0; load = 0; done == 1; /*x read results */
printf("quotient = %d\n", quo);

printf ("remainder = %d\n", rem)

}

init { atomic{ run quo_rem(); run env() }}

13

Jistributed Systems Programming F29NM1 14

Verifying Responsiveness I

e Desired property:

— In every state in which load is 1, a equals inl and b equals
in2, then eventually done will become 1 and the registers
will satisty (a == ((quo * b) + rem)).

— [1((Qoad == 1 & inl == a &% in2 == b) ->

<> (done == 1 && a == ((quo * b) + rem)))

e Verification failure:

— LTL verifier will fail to prove this property because SPIN’s

default execution model does not guarantee fairness.

— In particular, if env never gets to set 1load to O then the
calculation will never progress beyond the initialization
phase.

Jistributed Systems Programming F29NM1

‘ Fairness '

e Fairness is a special case of liveness and relates to the how the
underlying process scheduler deals with contention, :.e. clients

competing for the same computational resource.

e Notions of fairness:

— Weak-fairness (just): a process that continuously makes a
request will eventually be serviced.

— Strong-fairness (compassionate): a process that makes a

request infinitely often will eventually be serviced.

15

Jistributed Systems Programming F29NM1

‘Specifying Weak Fairness in SPINI

e SPIN supports a weak-fairness model that can be selected via

the "LTL Verification" window (a sub-window of "Linear

Time Logic Formulae" window).

Alternatively, the weak-fairness requirement can be expressed
explicitly within the LTL property:
[1(done == 0 -> load == 0) ->

[]((load == 1 && inl == a && in2 == b) ->
<> (done == 1 && a == ((quo * b) + rem)))

Note that the extra condition ensures that whenever done is
set to O then load will be 0, 7.e. the env process will not be
continuously blocked. Of course it is up to the implementor to
ensure this assumption becomes a reality!

Jistributed Systems Programming F29NM1

% Exceed
SPIN CONTROL 3,33 -- 27 July 1999

File.. Edit.. S, Help SPIN DESIGN VERIFICATION

byte inl, ind; [®] Liear Toee Tengpural Logic Formmlae B
byte a, b, quo, rem; - :

bit losd = 0. done |Fopmula: [(b ->0) ->] {ff 34 3) -><> (1 &4 u)

Eroctype guo_cem() Operators: [] € u -» and or not
da Load 1 1Pn|purty holds for: @ All Executions (desired behavior) Ho Executions (error behavior)
load == -1 — — — = —_— =

(load 1= 1) - Hotos e revciive g

od

i
proctype envi) |
i

inl = 7, in2 = ||Symbol Definitions:
done == 0; load "
printe (“quotaent|| —| faefine ¢ H;;E

,, #define
praintf (" remainde | Bt ive (Lamd

q

c
#define = ({inl

L

u

. al && (in2 == h))
init § ALomici run g 1

#define {done
| £ #define (a == ({quo * b) + rem))

Hever Claim:

Verification Result:

Close Save As..

| _4H wwmshspinthandouts | =28 :] sstup2bmp-Port | | @ 11:03

Jistributed Systems Programming F29NM1 18

Temporal Reasoning: How Does It Work?'

A Promela model of a system is defined in terms of process

templates.

System level verification requires a representation that
expresses all possible behaviours that the system can exhibit.

To achieve this, SPIN translates each process template into a
finite automaton.

A single automaton that models the behaviour of the whole

system can be calculated by taking the asynchronous
interleaving product of all the processes.

This product automaton defines the system model, i.e. the
state space of the system, and is represented as a graph called
the reachability graph.

Jistributed Systems Programming F29NM1

Temporal Reasoning: How Does It Work?'

SPIN attempts to verify a temporal property by proving
that its negation is not satisfied by the system model.

SPIN translates the negated temporal property into a special
Promela process called a never claim.

A never claim defines behaviours that are undesirable or
erroneous. Note that if verifying an error behaviour, then the
original property is not negated.

Verification corresponds to checking that no execution sequence

within the system model matches (synchronizes) with the never

claim, 7.e. no acceptance cycles are detected.

Matching is implemented at the level of the reachability graph
and a graph representation of the never claim.

19

Jistributed Systems Programming F29NM1 20

Summary I

e To be able to understand & write temporal properties

Learning outcomes:

expressed in LTL.

e To be able to use XSPIN to verify temporal properties of
system models.

e To understand the notion of fairness and how it relates to
the behaviour of a system model.

e To have a basic understanding of how SPIN’s temporal

reasoning mechanism works.

Recommended reading:
e “The Model Checker SPIN”, G.J. Holzmann, IEEE

Transactions on Software Engineering, Vol 23 (5), 1997.

e “Concise Promela Reference” — see course homepage

