
Software Design (F28SD2)
Dynamic Analysis Techniques

Part 1

Andrew Ireland
Department of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

Outline: Parts 1 & 2

I A strategy for dynamic testing

I Test case design techniques

I Assertion based testing

Dynamic Analysis

I Dynamic testing and analysis involves system operation, i.e.
code execution.

I Dynamic testing that does not exploit the internal structure of
the code is known as functional, black-box, behavioural or
requirements based.

I Dynamic testing that does exploit the internal structure of the
code is known as structural, white-box, glass-box or coverage
based.

I Dynamic analysis will typically involve the construction of
additional code to facilitate the testing process.

A Classification of Test Case Design Techniques

Functional Structural Hybrid

Equivalence Statement testing Error guessing
partitioning Decision testing Assertions
Boundary value Condition testing
analysis Decision/condition
... testing
... ...
... ...

The aim of design techniques is to provide a systematic basis for
developing effective test cases, i.e. test cases that will provide a
high yield in terms of defect detection.

A Strategy For Dynamic Analysis

1. Use functional testing and error guessing techniques to design
initial test cases.

2. Use coverage metrics to determine the effectiveness of the
initial test cases.

3. Use structural testing techniques to increase coverage if
judged necessary.

Both positive (desirable behaviour) and negative (undesirable
behaviour) test cases should be applied.

Obtaining Structural/Functional Balance

I While internal knowledge can greatly simplify the task of
dynamic testing — over reliance on the actual code should be
avoided, i.e. risk of designing test cases that demonstrate that
the code does what the code does!

I The primary source of test cases should be the functional
specification. The process of designing tests based upon
functional specification will typically expose many defects
before coding gets underway.

Equivalence Partitioning

I A technique that partitions the space of possible program
inputs/outputs into a finite set of equivalence classes.

I An equivalence class defines a set of data values for which our
program will perform the same computation.

I If one test case in an equivalence class identifies a defect then
all the other test cases in the equivalence class would also
identify the same defect;

I Conversely, if a test case did not identify a defect we would
not expect any other test case in the equivalence class to
identify defects.

I Equivalence partitioning can significantly prune the space of
possible test cases — assuming the equivalence partitioning is
performed correctly!

Some Guidelines for Partitioning

Ranges: if a requirement specifies a range then three
equivalence classes are required, one valid and two
invalid. Note that there are always implementation
dependent boundaries, e.g. 16-bit integer gives rise
to a partition bounded by 32767 and -32768.

Numbers: if a requirement specifies a number of valid inputs
then three equivalence classes are required, one valid
and two invalid.

Sets: if a requirement specifies a set then two equivalence
classes are required, one valid and one invalid.

Note: the ordering of input parameters may need to be taken into
consideration. Note also that partitioning can and should be
applied to both input and output conditions.

An Example of Input Partitions

“When hiring a car, the location of the hire centre, i.e.
EDB, GLA, PTH, must be specified along with two car
types, i.e. first and second preference from three options
- Compact, Standard, Premium. Finally, the age of the
diver must be given, i.e. 17...30, 31...59, 60...70.”

Input Valid Equivalence Invalid Equivalence
Condition Classes Classes

location L L ∈ {EDB, GLA, PTH} L 6∈ {EDB, GLA, PTH}
preferences P number(P) = 2 number(P) < 2

number(P) > 2

age A 17 ≤ A ≤ 30 A < 17
31 ≤ A ≤ 59 A > 70
60 ≤ A ≤ 70

From Equivalence Classes to Test Cases

Test Case Test Data Expected Result

TC1 L = GLA Accept

TC2 P = Standard & Premium Accept

TC3 A = 21 Accept
TC4 A = 45 Accept
TC5 A = 66 Accept

Test Case Test Data Expected Result

TC6 L = ALG Reject

TC7 P = Premium Reject
TC8 P = Premium, Standard & Compact Reject

TC9 A = 12 Reject
TC10 A = 80 Reject

An Example of Output Partitions

“In the Kingdom of Happy Valley, the level of tax varies
as follows; for earnings up to $50K the level is 25%,
between $50K and $100K the level is 30%, while above
$100K the level rises to 40%”

Input Valid Equivalence
Condition Classes

$0− $50K 25% tax rate

$51− $100K 30% tax rate

> $100K 40% tax rate

Note that there is a single input partition, i.e. a positive amount of
money. It is the possible outputs that provide more interesting
constraints on the test data. The invalid equivalence classes are
left as an exercise.

Boundary Value Analysis

I In general test cases that explore boundary values give a
higher yield of defect detection.

I Boundary value analysis extends equivalence partitioning by
focusing attention on equivalence class boundaries, e.g.
consider again the equivalence class 17 ≤ A ≤ 30:

EP EP+BV

Valid 21 17

Invalid 12 16

Similarly for equivalence class 60 ≤ A ≤ 70:

EP EP+BV

Valid 66 70

Invalid 80 71

EP = Equivalence Partitioning; BV = Boundary Value analysis.

Test Case Effectiveness

I When have we tested enough?

I Coverage metrics provide one of the most widely used
approaches to judging the effectiveness of testing.

I A coverage metric (CM) represents the ratio of metric items
executed at least once (EM) to the total number of metric
items (TM):
CM = EM/TM

I See Beizer (1990) for detailed analysis of coverage metrics
and there relative merits.

I Coverage metrics are strongly related to structural or coverage
test case design techniques ...

Statement Coverage

I Definition: Every statement is executed at least once.

I Also known as: line coverage, segment coverage, C1
coverage and basic block coverage.

I Advantage: easy to understand and relatively simple to
achieve 100% coverage.

I Disadvantage: Even with 100%, statement coverage is weak
e.g.

int* ptr = NULL;
if (condition)

ptr = &result;
*ptr = 666;

100% statement coverage only requires that the execution
path including condition set to true is achieved. Note that
the false branch gives rise to code failure.

Decision Coverage

I Definition: Every statement and every decision
(if-statement, while-statement etc) is executed at least
once.

I Also known as: branch coverage, all-edges coverage, basis
path coverage, C2 coverage, decision-decision path testing.

I Advantage: easy to understand and relatively simple to
achieve 100% coverage and overcomes the deficiency of
statement coverage.

I Disadvantage: 100% coverage does not mean that the
deeper logical structure of the decision point will be
adequately explored, e.g.

if (condition1 || condition2)
statement1;

else
statement2;

Condition/Decision Coverage

I Definition: Every statement and every branch is executed at
least once, with each condition within each branch taking on
all possible values at least once.

I Advantage: Addresses the deficiency of decision coverage to
some extent, i.e. explores the deeper structure of the decision
point to some extent.

I Disadvantage: Can still leave untested combinations of
conditions, e.g.
if (condition1 && (condition2 || condition3)) ...

case condition1 condition2 condition3 branch

1 True True True True

2 False False False False

Multiple Condition Coverage

I Definition: Every statement is executed at least once, all
combinations of values for each condition are explored.

I Advantage: Addresses the deficiency of condition/decision
coverage to some extent, i.e. explores the deeper structure of
the decision point to some extent.

I Disadvantage: Expensive to develop, i.e. 2N test cases where
N is the number of boolean operands, e.g. ...

Multiple Condition Coverage

if (condition1 && (condition2 || condition3)) ...

case condition1 condition2 condition3 branch

1 True True True True

2 True True False True

3 True False True True

4 True False False False

5 False True True False

6 False True False False

7 False False True False

8 False False False False

Modified Condition/Decision Coverage

I Definition: Every condition within a decision is executed to
shown that it can independently effect the outcome of the
decision.

I Advantage: A compromise requiring fewer cases than
multiple condition coverage, i.e. minimum of N + 1 and a
maximum of 2N cases where N denotes the number of
boolean operands involved.

I Disadvantage: No real gains when N is small.

Modified Condition/Decision Coverage

if (condition1 && (condition2 || condition3)) ...

case condition1 condition2 condition3 branch

2 True True False True

3 True False True True

4 True False False False

6 False True False False

Test cases 2 and 6 show independence of condition1
Test cases 2 and 4 show independence of condition2
Test cases 3 and 4 show independence of condition3

From Test Case Specification to Test Data
Construct test cases for the following if-statement using
condition/decision coverage:

if !(closed) && ((n < max) || staff) ...

where max denotes the constant 100, and closed, n and staff

are variables.
Test case specification:

Case closed (n < max) staff branch

TC1 False True True True

TC2 True False False False

Test case data:

Test Data

TC1 closed == False, n == 99, staff == True

TC2 closed == True, n == 100, staff == False

Summary

I A strategy for dynamic testing.

I Survey of key functional (black-box) and structural
(white-box) testing techniques.

I The complementary roles of functional and structural testing
techniques within dynamic analysis.

References

I “Software Testing: An ISTQB-ISEB Foundation Guide”
(Second Edition). BCS 2010.

I “Software Testing in the Real World”, E. Kit, Addison-Wesley,
1995.

I “Software Testing Techniques”, B. Beizer. International
Thompson Computer Press, 1990.

I “Black Box Testing”, B. Beizer. Wiley & Sons, 1995.

I “Applicability of modified condition/decision coverage to
software testing”, J.J. Chilensky and S.P. Miller. Software
Engineering Journal, 1994.

