Research

Interoperability and FAIRness through a novel combination of Web technologies

New paper [1] on using Semantic Web technologies to publish existing data according to the FAIR data principles [2].

Abstract: Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved at the level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs.

[1] Unknown bibtex entry with key [Wilkinson2017-FAIRness]
[Bibtex]
[2] Unknown bibtex entry with key [Wilkinson2016]
[Bibtex]

Supporting Dataset Descriptions in the Life Sciences

Seminar talk given at the EBI on 5 April 2017.

Abstract: Machine processable descriptions of datasets can help make data more FAIR; that is Findable, Accessible, Interoperable, and Reusable. However, there are a variety of metadata profiles for describing datasets, some specific to the life sciences and others more generic in their focus. Each profile has its own set of properties and requirements as to which must be provided and which are more optional. Developing a dataset description for a given dataset to conform to a specific metadata profile is a challenging process.

In this talk, I will give an overview of some of the dataset description specifications that are available. I will discuss the difficulties in writing a dataset description that conforms to a profile and the tooling that I’ve developed to support dataset publishers in creating metadata description and validating them against a chosen specification.

Smart Descriptions & Smarter Vocabularies (SDSVoc) Report

In December 2016 I presented at the Smart Descriptions and Smarter Vocabularies workshop on the Health Care and Life Sciences Community Profile for describing datasets, and our validation tool (Validata). Presentations included below.

The purpose of the workshop was to understand current practice in describing datasets and where the DCAT vocabulary needs improvement. Phil Archer has written a very comprehensive report covering the workshop. A charter is being drawn up for a W3C working group to develop the next iteration of the DCAT vocabulary.

Shapeshifting LOD Cloud

A new version of the Linked Open Data (LOD) cloud has been produced and it shows quite a shift from the previous version. It is great to see the LOD cloud continue to grow both in scale and diversity.

(You can click on the image to get to an interactive version of the cloud with links to the DataHub entries.)

LOD Cloud January 2017

LOD Cloud January 2017

Previously DBPedia and GeoNames were the centre of the LOD universe. While DBPedia still remains an important linking dataset, it is now clear that there are clusterings within application domains. This is most significant in the life sciences.

LOD Cloud August 2014

LOD Cloud August 2014

Attribution: “Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/”