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Abstract

For group actions on hyperbolic CAT(0) square complexes, we show that the acylin-
dricity of the action is equivalent to a weaker form of acylindricity phrased purely in
terms of stabilisers of points, which has the advantage of being much more tractable
for actions on non-locally compact spaces. For group actions on general CAT(0) square
complexes, we show that an analogous characterisation holds for the so-called WPD
condition. As an application, we study the geometry of generalised Higman groups on
at least 5 generators, the first historical examples of finitely presented infinite groups
without non-trivial finite quotients. We show that these groups act acylindrically on
the CAT(-1) polygonal complex naturally associated to their presentation. As a conse-
quence, such groups satisfy a strong version of the Tits alternative and are residually
F2-free, that is, every element of the group survives in a quotient that does not contain
a non-abelian free subgroup.

Acylindrical actions were first considered by Sela for groups acting on simplicial trees
[30]. In Sela’s terminology, given a (minimal) action of a group on a simplicial tree, the
action is said to be acylindrical if there exists an integer k ≥ 1 such that no non-trivial
element of the group fixes pointwise two points at distance at least k. This definition was
extended to actions on arbitrary geodesic metric spaces by Bowditch [4], in his study of
the action of the mapping class group of a closed hyperbolic surface on its associated curve
complex. Recall that an action of a group G on a metric space X is acylindrical if for every
r ≥ 0 there exist constants L(r), N(r) ≥ 0 such that for every points x, y of X at distance
at least L(r), there are at most N(r) elements h of G such that d(x, hx), d(y, hy) ≤ r. For
r = 0, one recovers Sela’s definition of acylindricity, at least for torsion-free groups. As
noticed by Bowditch [4], in the case of group actions on simplicial trees, acylindricity is
equivalent to this weaker acylindricity condition at r = 0.

2010 Mathematics subject classification. 20F65
Key words and phrases. CAT(0) cube complexes, acylindrical actions, Higman group, Tits alternative.

∗Alexandre Martin. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK.
Email: alexandre.martin@hw.ac.uk

†This work was partially supported by the European Research Council (ERC) grant no. 259527, the
Austrian Science Fund (FWF) grant M1810-N25, and the EPSRC New Investigator Award EP/S010963/1.

1



A. Martin Acylindrical actions on CAT(0) square complexes

Groups that act acylindrically on a hyperbolic space share many features with rela-
tively hyperbolic groups (see [27]), and techniques from dynamics in negative curvature are
available to study them. While acylindrical actions on hyperbolic spaces seldom appear
naturally, weaker but more frequent forms of ‘hyperbolic behaviour’ implying acylindrical
hyperbolicity have been investigated, see [2,9,11,17,26,31]. To date, one of the most general
criteria to show the acylindrical hyperbolicity of a group is the following:

Theorem (see [1, Theorem H]). Let G be a group acting by isometries on a geodesic metric
space X. Let g be an infinite order element with quasi-isometrically embedded orbits and
assume that the following holds:

• g is a strongly contracting element, that is, there exists a point x of X such that the
closest-point projections on the orbit 〈g〉x of the balls of X that are disjoint from
〈g〉x have uniformly bounded diameter,

• g satisfies the WPD condition, that is, for every r ≥ 0 and every point x of X, there
exists an integer m such that there are only finitely many elements h of G such that
d(x, hx), d(gmx, hgmx) ≤ r.

Then G is either virtually cyclic or acylindrically hyperbolic.

However, checking the acylindricity of an action, or checking that a given hyperbolic
element satisfies the WPD condition, is generally tedious. Indeed, these conditions require
us to understand ‘coarse’ stabilisers of pairs of points, which can be particularly challenging
for actions on non-locally compact spaces.

In this article, we introduce a weaker notion of acylindricity (and of the WPD condition),
which still implies the usual notion of acylindricity for large classes of complexes. This new
notion has the advantage of being phrased purely in terms of stabilisers of points, and is thus
much easier to handle in general. Other weak forms of acylindricity have been considered
by various authors, for instance Delzant [15] and Hamenstädt [20]. In this article, we will
be interested in the following weak form of acylindricity, which is the case r = 0 mentioned
earlier in the usual definition of acylindricity:

Definition (weak acylindricity). Let G be a group acting on a geodesic metric space X.
We say that the action is weakly acylindrical if there exist constants L,N ≥ 0 such that
two points of X at distance at least L are pointwise fixed by at most N elements of G.

This notion can be further generalised to non-uniform weak acylindricity, that is, to
actions such that there exists a constant L such that pairs of points at distance at least L
are pointwise fixed by only finitely many group elements. It should be noted that for groups
with a uniform bound on the size of their finite subgroups, these two notions coincide.

While acylindricity is a priori stronger than the weak acylindricity considered here, the
main goal of this paper is to show that these notions are in fact equivalent when dealing
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with actions on particularly well behaved spaces, generalising Bowditch’s observation for
actions on simplicial trees. Our first result is the following:

Theorem A. Let G be a group acting weakly acylindrically on a hyperbolic CAT(0) square
complex. Then the action is acylindrical.

As an application, we consider generalised Higman groups, as introduced by Higman [21].
The generalised Higman groups Hn, n ≥ 4, were defined by Higman by generators and
relations:

Hn := 〈ai, i ∈ Z/nZ | aiai+1a
−1
i = a2

i+1, i ∈ Z/nZ〉,

These groups are historically the first examples of finitely presented infinite groups without
non-trivial finite quotients [21]. In [23], the author studied the action of H4 on a (non-
hyperbolic) CAT(0) square complex naturally associated to its presentation. For n ≥ 5, Hn

acts cocompactly on a CAT(-1) polygonal complex Xn, and in particular on a hyperbolic
CAT(0) square complex by taking an appropriate subdivision. Such an action is easily
shown to be weakly acylindrical. In particular, we obtain the following result:

Theorem B. For n ≥ 5, the action of Hn on Xn is acylindrical.

The acylindrical hyperbolicity of generalised Higman groups was first proved by Minasyan–
Osin [26], using prior work of Schupp [29]. While acylindrical hyperbolicity alone implies
strong consequences for the group (see [27] and details therein), having this well understood
acylindrical action of Hn on a hyperbolic complex allows us to obtain results which do not
follow solely from the abstract acylindrical hyperbolicity of the group. In particular, we
obtain the following:

Corollary C (Strong Tits alternative for generalised Higman groups). For n ≥ 5, a non-
cyclic subgroup of Hn is either contained in a vertex stabiliser, hence embeds in BS(1, 2),
or is acylindrically hyperbolic.

Corollary D. For n ≥ 5, the group Hn is residually F2-free, that is, every element of the
group survives in a quotient that does not contain a non-abelian free subgroup.

Let us now turn to groups acting on CAT(0) square complexes that are not necessarily
hyperbolic. Paralleling what we just did for acylindricity, we will be interested in the
following weakening of the WPD condition, which again has the advantage of dealing only
with stabilisers of pairs of points:

Definition. Let G be a group acting on a geodesic metric space X and let g be an infinite
order element with quasi-isometrically embedded orbits. We say that g satisfies the weak
WPD condition (or that the action is (non-uniformly) weakly acylindrical in the direction
of g) if for every point x of X, there exists an integer m such that there exists only finitely
many group elements fixing both x and gmx.
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Our second main result is the following:

Theorem E. Let G be a group acting by isometries on a CAT(0) square complex X. Let
g be a strongly contracting element for the CAT(0) metric and suppose that g satisfies
the weak WPD condition. Then g satisfies the WPD condition. In particular, G is either
virtually cyclic or acylindrically hyperbolic.

As a non-uniformly weakly acylindrical action is non-uniformly weakly acylindrical in
the direction of each of its strongly contracting elements, we obtain the following corollary:

Corollary F. Let G be a group acting non-uniformly weakly acylindrically on a CAT(0)
square complex X. If g is a strongly contracting element of G for the CAT(0) metric, then
g satisfies the WPD condition. In particular, G is either virtually cyclic or acylindrically
hyperbolic.

Notice that the Rank Rigidity Theorem for CAT(0) cube complexes of Caprace–Sageev
[10, Theorem A] provides us with a way to show the existence of strongly contracting
isometries. In particular, we obtain the following corollary:

Corollary G. Let G be a group acting non-uniformly weakly acylindrically on a CAT(0)
square complex X such that:

• the action is essential,

• the action does not have a fixed point in X ∪ ∂∞X,

• the complex X is not the product of two unbounded trees.

Then G contains strongly contracting elements for the CAT(0) metric, and every such ele-
ment satisfies the WPD condition. In particular, G is either virtually cyclic or acylindrically
hyperbolic.

For instance, this corollary can be used to recover the acylindrical hyperbolicity of the
Higman group on 4 generators directly from the action on its associated (non-hyperbolic)
CAT(0) square complex [23]. Indeed, such an action is weakly acylindrical [23, Corollary
3.6], and the Rank Rigidity Theorem of Caprace–Sageev can be applied to show the exis-
tence of strongly contracting group elements [23, Remark 2.2].

Since these results first appeared, this weak notion of acylindricity has been used in
other contexts. Genevois [16, Thm 8.33] proved that weak acylindricity implies acylin-
dricity for actions on finite-dimensional CAT(0) cube complexes. Chatterji–Martin [12]
used a related weakening of the WPD condition to show the acylindrical hyperbolicity of
many groups acting on general CAT(0) cube complexes, with applications to certain Artin
groups. Finally, recent work of Martin–Przytycki proved that weak acylindricity implies
acylindricity for action on two-dimensional piecewise hyperbolic CAT(−1) complexes with
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finitely many types of shapes [24], which was used to show the Tits alternative for large
classes of Artin groups. In light of these developments, it is natural to ask for what other
classes of spaces this notion of weak acylindricity (weak WPD element respectively) implies
the usual notion of acylindricity (WPD element respectively).

Organisation of the article. The strategy we follow is the following: For a given r > 0,
to every pair of points x, y in X and every group element g moving x and y by at most r,
we associate a geodesic quadrangle between the points x, y, gx, gy, and we fill this loop by
using an appropriate disc diagram. The aim is then to show that, if x and y are sufficiently
far apart, then such ‘filling surfaces’ must have large portions in common. In particular, the
associated group elements will necessary act the same way on a very long common geodesic
segment, which is where the weaker forms of acylindricity considered in this paper enter
the picture.

Thus, after recalling standard results about the geometry of CAT(0) square complexes
and disc diagrams in Section 1, we study in detail the combinatorial geometry of disc
diagrams in Section 2. Section 3 studies the way grids (that is, CAT(0) square complexes
isometric to Euclidean rectangles tiled by unit squares) can be mapped to a given CAT(0)
square complex. With these tools at hand, we prove the main theorems in Section 4.
Finally, Section 5 is devoted to the geometry of generalised Higman groups.

Acknowledgements. The author thanks his former colleagues at the University of Vienna,
and in particular Federico Berlai and Markus Steenbock, for discussions on Higman’s group
that motivated this work. The author also thanks Anthony Genevois for useful comments.

1 Preliminaries on CAT(0) square complexes

This section contains standard results about CAT(0) square complexes which will be used
in this article. Throughout this section, X will be a CAT(0) square complex.

1.1 Disc diagrams and the combinatorial Gauß–Bonnet Theorem

A disc diagram D over X is a contractible planar square complex endowed with a combi-
natorial map D → X that is an embedding on each square. A disc diagram D over X is
called reduced if no two distinct squares of D that share an edge are mapped to the same
square of X. We start by an elementary observation.

Lemma 1.1. Let ϕ : D → X be a reduced disc diagram. Then D is a CAT(0) square
complex.

Proof. Since the disc diagram is reduced, the restriction to the link of any vertex is a local
isometry. In particular, it sends a simple closed loop of that look to a simple closed loop
in the link of the image. As X is a CAT(0) square complex by assumption, simple closed
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loops in the links of vertices have at least 4 edges. Thus simple closed loops in the links of
vertices of D have at least 4 edges, hence D is a CAT(0) square complex.

A disc diagram is non-degenerate if its boundary is homeomorphic to a circle, and is
degenerate otherwise. Recall that, by the Lyndon–van Kampen Theorem, one can associate
to every non-backtracking loop S → X a reduced disc diagram whose restriction to the
boundary is the given loop.

Definition 1.2 (disc diagram between geodesics, quadrangle). Let γ−, γ+ be two geodesics
of X, with vertices u−, v− and u+, v+ respectively. A disc diagram between γ− and γ+

consists of the following data:

• geodesic paths in γu, γv in X between u−, u+ and v−, v+ respectively,

• a reduced disc diagram ϕ : D → X whose boundary decomposes as the concatenation
of 4 paths P+, Pv, P−, Pu such that ϕ sends P+, Pv, P−, Pu bijectively to γ+, γv, γ−, γu.

The boundary paths P+, P− are called the upper side and lower side of D respectively. The
boundary paths Pv, Pu are called the gates of D. A non-degenerate disc diagram between
two geodesics is called a quadrangle.

More generally, given a planar CAT(0) square complex D homeomorphic to a disc and
a decomposition of its boundary into geodesic segments P+, Pv, P−, Pu as above, we say
that D is a square complex between P− and P+.

P+

P−

Pu Pv

D

ϕ
γ+

γ−

u+

u−

v+

v−

Figure 1: A quadrangle.

We now explain our main tool in controlling the geometry of reduced disc diagrams.
Given a planar contractible square complex D, the curvature of a vertex v of D is given by:

κD(v) = 2π − π · χ(link(v))− nv
π

2
,

where nv denotes the number of squares of D containing v. A vertex of D is internal if its
link is connected and is called a boundary vertex otherwise. The curvature of an internal
vertex of D is non-positive by Lemma 1.1. The curvature of a boundary vertex is π

2 if it is
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contained in a single square of D, and non-positive otherwise. We call a boundary vertex
of D a corner if it has non-zero curvature. The following version of the combinatorial
Gauß–Bonnet Theorem follows the presentation of McCammond–Wise [25, Theorem 4.6].

Theorem 1.3 (Combinatorial Gauß-Bonnet Theorem). Let D be planar contractible square
complex. Then: ∑

v vertex of D

κD(v) = 2π.

1.2 Hyperplanes in a CAT(0) square complex

We briefly recall some notations and an elementary results about hyperplanes in a CAT(0)
square complex. A hyperplane is a connected subspace of X which intersects each square
of X, isometrically identified with [−1, 1]× [−1, 1], either in the empty set or in a segment
of the form {0} × [−1, 1] or [−1, 1] × {0}. An edge of X intersecting a given hyperplane
is said to be dual to that hyperplane. Reciprocally, one can associate to every edge e of
X a unique hyperplane meeting e, and such a hyperplane is said to be dual to e. The
combinatorial hyperplane associated to a given hyperplane (also referred to in the literature
as the carrier of the hyperplane) is the minimal subcomplex of X containing that hyper-
plane. Equivalently, it is the reunion of all the faces of X containing an edge dual to that
hyperplane. A hyperplane separates X in exactly two connected components. A minimal
subcomplex of X containing one of these components is called a combinatorial half-space.

In this article, we will only deal with combinatorial hyperplanes, and by a slight abuse
of notations, we will denote by H combinatorial hyperplanes and by He the combinatorial
hyperplane (associated to the hyperplane) dual to a given edge e of X. We recall the
following standard result (see for instance [19, Lemma 13.4]):

Lemma 1.4. Combinatorial hyperplanes and combinatorial half-spaces of a CAT(0) square
complex are combinatorially convex.

We also have the following:

Lemma 1.5. Combinatorial half-spaces are convex for the CAT(0) metric.

Proof. They are locally convex for the CAT(0) metric, and locally convex connected subsets
of a CAT(0) space are globally convex (see for instance [8, Theorem 1.10] for a proof of this
fact).

The following useful result is well-known, see for instance [19, Lemma 13.1]:

Lemma 1.6. A combinatorial geodesic of a CAT(0) square complex does not contain two
distinct edges that define the same hyperplane.
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If ϕ : D → X is a reduced disc diagram, then D is a CAT(0) square complex by Lemma
1.1. The rails of a combinatorial hyperplane of D are the two maximal subcomplexes of
that combinatorial hyperplane which we do not contain an edge dual to the associated
hyperplane.

1.3 Combinatorial intervals

Recall that the combinatorial interval between two vertices v, v′ of the CAT(0) square
complex X, which we denote IntX(v, v′), is the minimal subcomplex of X containing all
the combinatorial geodesics between v and v′. Equivalently, it is the full subcomplex of X
associated to the reunion of all the combinatorial geodesics between v and v′. The following
is a direct consequence of Lemma 1.6:

Lemma 1.7. The combinatorial interval between two vertices of X is the intersection of
all the combinatorial half-spaces containing these two vertices.

Thus, Lemma 1.5 implies the following:

Corollary 1.8. Combinatorial intervals are convex for the CAT(0) metric.

We also recall the following result (see [7, Theorem 1.16]):

Lemma 1.9. A combinatorial interval of a CAT(0) square complex isometrically embeds
in R2 with its standard square tiling.

2 Disc diagrams and isometric embeddings in the Euclidean
plane

As disc diagrams will be our main tool in proving the results presented in the introduction,
this section is devoted to study the combinatorial geometry of a reduced disc diagram
ϕ : D → X. The goal of this section is threefold: to obtain a useful criterion ensuring that
the CAT(0) square complex D isometrically embeds in R2 with its standard square tiling
(Proposition 2.3), to obtain a criterion ensuring that the disc diagram ϕ : D → X is an
isometric embedding (Proposition 2.4), and to prove that for a sufficiently well behaved disc
diagram, the map restricts to an isometric embedding on a large subcomplex (Proposition
2.7). Throughout this section again, X will be a given CAT(0) square complex.

2.1 Singularities and (almost) Euclidean quadrangles

Definition 2.1 (singularities, almost Euclidean and Euclidean quadrangles). A singularity
of a quadrangle ϕ : D → X is one of the following:

• an internal vertex of negative curvature,
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• a corner of curvature at most −π,

• a pair of consecutive corners of curvature −π
2 in the interior of one of the sides P+

and P−.

A quadrangle is called almost Euclidean if it contains no singularity. It is called Euclidean
if in addition the boundary of D does not contain two consecutive corners of curvature −π

2 .
More generally, a planar square complex homeomorphic to a disc is Euclidean if it

contains no internal vertex of negative curvature, no boundary vertex of curvature at most
−π, and no pair of consecutive corners of curvature −π

2 .

The following lemma, which shows that a given quadrangle cannot be ‘too far’ from
being almost Euclidean, will be used in Section 4.

Lemma 2.2. Let ϕ : D → X be a quadrangle. Then D contains at most 4 singularities.

Proof. Let us denote by Pi, i = 1, . . . , 4, the four geodesic sides of the boundary of D. Since
each Pi is a combinatorial geodesic, its interior does not contain two consecutive corners of
positive curvature (see [23, Lemma 3.8] and its proof). In particular, it follows that∑

v∈P̊i

κD(v) ≤ π

2
,

and if Pi contains ni singularities in its interior, a similar argument yields∑
v∈P̊i

κD(v) ≤ π

2
− ni

π

2
.

Since an internal vertex of D has negative curvature if and only if it is a singularity, we
have ∑

v∈D̊

κD(v) ≤ −nπ
2
,

where n is the number of internal singularities of D. Finally, each of the remaining four
vertices corresponding to the intersection of two adjacent sides Pi, Pj brings a curvature of at
most π

2 . The combinatorial Gauß–Bonnet Theorem 1.3 thus yields the following inequality:

2π ≤ 4 · π
2

+ 4 · π
2
− (

∑
1≤i≤4

ni)
π

2
− nπ

2

and the number n+
∑

i ni of singularities of D is thus bounded above by 4.
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2.2 Embeddability in the Euclidean plane

Proposition 2.3. Let D be a Euclidean square complex. Then D embeds isometrically in
R2 with its standard square tiling.

Proof. Let H be a (combinatorial) hyperplane of D. Let L+, L− be the two rails of H. We
say that another hyperplane H ′ osculates H if H ∩H ′ is non-empty but does not contain
any square of D.

Claim 1: There exists at most one hyperplane of D that osculates H along L+.

In order to prove this claim, first notice that if a square of D meets H, it meets it along
an edge, by the curvature condition on Euclidean square complexes. For every hyperplane
H ′ of D osculating H along L+, set

JH′ := H ′ ∩H.

By combinatorial convexity of hyperplanes in a CAT(0) square complex complex (Lemma
1.4), it follows that each JH′ is a sub-segment of L+. Moreover, if two such osculating
hyperplanes H ′, H ′′ define sub-segments of L+ that meet along a single vertex, then the
curvature condition on almost Euclidean complex implies that H ′ = H ′′. Suppose now by
contradiction that there exist at least two hyperplanes of D osculating H along L+. It
follows from the previous discussion that we can choose a maximal non-empty sub-segment
J of L+ such that no edge of J is contained in a hyperplane of D osculating H along L+,
and such that the extremities v1 and v2 of J are contained in two hyperplanes H1 and H2

respectively which osculate H along L+. By maximality of J , the curvature condition on
almost Euclidean quadrangles implies that each vi is boundary vertex with curvature −π

2 .
By definition of J , there exists no corner of D between v1 and v2, which contradicts the
fact that a Euclidean square complex does not contain two consecutive corners of curvature
−π

2 . This concludes the proof of Claim 1.

Let H+ and H− be the hyperplanes of D osculating H along L+ and L− respectively
(the argument is similar if there exists only one or zero such osculating hyperplane). Choose
isometric embeddings

ψ : H ↪→ R2, ψ+ : H+ ↪→ R2 and ψ− : H− ↪→ R2

such that the images of ψ, ψ− and ψ+ are contained in distinct horizontal hyperplanes
of R2 and such that

ψ(H ∩H−) = ψ−(H ∩H−), ψ(H ∩H+) = ψ+(H ∩H+).

From the previous discussion on curvature in almost Euclidean quadrangles, it also follows
that

ψ(H) ∩ ψ−(H−) = ψ−(H ∩H−), ψ(H) ∩ ψ+(H+) = ψ+(H ∩H+).
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Thus, we can glue these maps together into a combinatorial embedding

H− ∪H ∪H+ ↪→ R2

that is a local isometry, and which sends each of these combinatorial hyperplanes inside a
horizontal hyperplane of R2 (with its usual square tiling). Reasoning by induction, we have
that D is covered by a finite sequence Hi of hyperplanes, which we call horizontal, such
that, for distinct i and j, we have that Hi ∩Hj is empty if j 6= i± 1 and is contained in the
(unique) rail common to Hi and Hj otherwise. By induction, we thus obtain a combina-
torial embedding ψ : D ↪→ Z2 where each Hi is mapped isometrically into some horizontal
hyperplane of Z2.

Claim 2: The map ψ : D ↪→ Z2 is an isometric embedding.

To prove this claim, let P be a combinatorial geodesic in D, which we can write as a
finite concatenation

P = P0e1P1e2P2 . . .

where each ei is an edge of D defining one of the horizontal hyperplanes, and Pi is a segment
contained in one of the rails of some horizontal hyperplane of D. Thus, ψ(P ) consists of
the concatenation

ψ(P ) = ψ(P0)ψ(e1)ψ(P1)ψ(e2)ψ(P2) . . .

of horizontal segments ψ(Pi) of Z2 and vertical edges ψ(ei). Choosing an orientation for
P yields an orientation for each ei and Pi and hence for their images under ψ. Showing
that ψ(P ) is an oriented geodesic of Z2 thus amounts to showing that all the ψ(ei) have
the same orientation (up or down) and that all the ψ(Pi) have the same orientation (left
or right). By contradiction let us assume that this is not the case. Up to an isometry of Z2

preserving the set of its horizontal hyperplanes, we thus have two cases to consider:

ei

Pk

ei+1

Pi

Pi

Figure 2: Two impossible configurations.
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Case 1: P contains a sub-segment eiPiei+1 such that ψ(ei) and ψ(ei+1) have different
orientations (one up, one down, as depicted on the left in Figure 2). But by construction
of ψ, this implies that both ei and ei+1 define the same horizontal hyperplane of D, which
contradicts Lemma 1.6.

Case 2: P contains a sub-segment of the form Piei+1ei+2 . . . ekPk, for some i < k,
such that ψ(Pi) and ψ(Pk) have different orientations (one left, one right, as depicted on
the right in Figure 2). For i + 1 ≤ j ≤ k, if the square of Z2 to the left of ψ(ej) is not
contained in ψ(D), then ej is contained in the boundary of D. If such a square is contained
in ψ(D) for every i+ 1 ≤ j ≤ k, then the last edge of Pi and the first edge of Pk define the
same (hyperplane), contradicting Lemma 1.6. Otherwise, choose a maximal sub-segment
of ei+1 . . . ek such that for each edge of it, the square of Z2 on its left is not in ψ(D). Then
its endpoints are boundary vertices of curvature −π

2 as D is a non-degenerate disc diagram,
and no other corner is between these two corners, contradicting the fact that a Euclidean
square complex does not contain two consecutive corners of curvature −π

2 .

This concludes the proof of Claim 2, and thus finishes the proof of Proposition 2.3.

2.3 Isometric embeddings

Proposition 2.4. A Euclidean disc diagram ϕ : D → X is an isometric embedding.

We will need the following result [19, Lemma 2.11]:

Lemma 2.5. Let ϕ : X1 → X2 be a combinatorial immersion between two CAT(0) square
complexes, and assume that the link of a vertex v of X1 is sent (injectively) to a full
subgraph of the link of ϕ(v). Then ϕ is an isometric embedding.

Proof of Lemma 2.4. By Proposition 2.3, we can assume that D is a subcomplex of R2.
We now describe an algorithm to complete the Euclidean disc diagram ϕ : D → X into a
Euclidean disc diagram ϕ′ : D′ → X, where D′ is a subcomplex of R2 containing D such
that the inclusion D ↪→ D′ is an isometric embedding, and such that for every vertex w of
D′, the induced map on the link of w sends the link of w in D′ to a full subgraph of X.

We proceed by induction and construct maps ϕi : Di → X where (Di) is an increasing
sequence of non-degenerate sub-diagram of R2, such no Di contains two consecutive corners
of negative curvature, and such that each inclusion Di ↪→ Di+1 is an isometric embedding.
Set D0 := D and ϕ0 := ϕ : D0 → X. Suppose that D0, . . . , Dn and ϕ0, . . . , ϕn have been
constructed. If Dn contains a vertex w such that the map ϕn sends the link of w to a
non-full subgraph of X, then, since the disc diagram is non-degenerate, necessarily w is
a corner of curvature −π

2 . Let C be the unique square of R2 containing w which is not
contained in Dn. Then C ∩ Dn consists of exactly two edges, since Dn does not contain
two consecutive corners of negative curvature by the inductive hypothesis. Thus, there is
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a unique way to extend ϕn : Dn → X to ϕn+1 : Dn+1 → X, where Dn+1 := Dn ∪ C.
Moreover, the inclusion Dn ↪→ Dn+1 is an isometric embedding, Dn+1 does not contain two
consecutive corners of negative curvature, and ϕn+1 : Dn+1 → X is reduced.

This algorithm eventually stabilises at some stage N ≥ 0. Indeed, if we choose a big
square of R2 containing D, then it contains also every Di. The map D → X thus factorises
as D ↪→ DN

ϕN→ X. Moreover, as ϕN is reduced by construction, it is automatically an
immersion, as DN is a subcomplex of R2. Thus, ϕN is an isometric embedding by Lemma
2.5, and the same holds for D → X.

2.4 Euclidean quadrangles in disc diagrams

Definition 2.6 (width). A quadrangle ϕ : D → X between geodesic segments γ−, γ+ of
X is of width at most r if its sides are at Hausdorff distance at most r in D.

Analogously, a planar CAT(0) square complex D, homeomorphic to a disc, between
segments P− and P+ is of width at most r if P− and P+ are at Hausdorff distance at most
r in D.

Proposition 2.7. For every r ≥ 0 , there exists a constant Lemb(r) ≥ 0 such that the
following holds: Let ϕ : D → X be an almost Euclidean quadrangle, of width at most r,
between two geodesics γ− and γ+, and let γ′− ⊂ γ− be a sub-segment at distance at least
Lemb(r) from the endpoints of γ−. Then there exists a Euclidean sub-quadrangle D′ of D,
of width at most r, between γ′− and a sub-segment γ′+ ⊂ γ+.

Proof. Since vertices of almost Euclidean quadrangles have uniformly bounded valence by
definition, there exists a constant N(r) such that every combinatorial ball of radius r in a
non-degenerate almost Euclidean quadrangle contains at most N(r) edges. Moreover, there
exists a constant L1(r) such that the following holds:

Let ϕ : D → X be an almost Euclidean disc diagram of width at most r. Let v1, v2

be the vertices of γ− at distance 2N(r + 1) + 1 from the endpoints u1, u2 of γ−. Since D
has width at most r, the combinatorial ball of radius r around v1 or v2 disconnects D. In
particular, a rail of a hyperplane crossing an edge of γ− between ui and vi which does not
cross an edge of B(vi, r) contains at most L1(r) edges.

Now set
Lemb(r) := (2N(r + 1) + 1) + L1(r).

Let ϕ : D → X be a non-degenerate almost Euclidean (reduced) disc diagram of width
at most r, between two geodesics γ− and γ+, with |γ−| ≥ 2Lemb(r). Let v1, v2 be the
vertices of γ− at distance 2N(r + 1) + 1 from the endpoints u1, u2 of γ−. By Lemma 1.6,
for each i = 1, 2, there exists an edge ai of γ− between ui and vi such that the combinato-
rial hyperplane Hai does not meet B(ui, r) ∪ B(vi, r). In particular, each Hai crosses γ+.
Moreover, Ha1 and Ha2 are disjoint as in addition each B(vi, r) disconnects D. Thus, Ha1

and Ha2 defines a Euclidean sub-quadrangle D′ of D whose gates are contained in the rails
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of some combinatorial hyperplanes (see Figure 3).

P+

P−

DD′

a1 a2

Ha1

Ha2

Figure 3: The construction of the Euclidean sub-quadrangle D′.

In particular, ϕ| : D′ → X is a Euclidean quadrangle, and the restriction of ϕ to
D′ isometrically embeds in R2 by 2.3. Since the rails of each Hai have length at most
L1(r), and γ− is at distance at least L1(r) from a1 and a2, we can choose a sub-quadrangle
ϕ′′ : D′′ → X of width at most r between γ′− and a sub-segment γ′′+ ⊂ γ+, which concludes
the proof.

3 Grids and their combinatorial geometry

In this section, we study the way certain subcomplexes of the Euclidean plane with its
standard tiling can be mapped to a given CAT(0) square complex. Throughout this section,
X is a given CAT(0) square complex.

Definition 3.1 (grid). A grid of D is a CAT(0) square complex isometric to Il× Ih, l ≥ 1,
h ≥ 0, where Il and Ih denote a simplicial segment on l and h edges respectively. Such a
grid is said to be of length l and width h.

A grid of X is a reduced disc diagram ϕ : D → X.

Remark 3.2. It follows from Lemma 2.5 that a grid of X is an isometric embedding.
Therefore, we will sometimes use the term ‘grid of X’ to denote the image of such a disc
diagram.

Proposition 3.3. Let ϕ : Im × In → X be a combinatorial map such that ϕIm×{0} is a
combinatorial geodesic. Then ϕ factorises as

Im × In
id×ϕn−−−−→ Im × Tn

h
↪−→ X,

where Tn is a simplicial tree, ϕn : In → Tn is a combinatorial map, and Im×Tn ↪→ X is an
isometric embedding.

14
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Proof. We prove the result by induction on n, form fixed. The result for n = 1 is immediate
as combinatorial hyperplanes embed isometrically in a CAT(0) cube complex [28, Theorem
4.10]. Suppose the result is true at rank n ≥ 1 and consider a map ϕ : Im × In+1 → X
satisfying the assumptions of the lemma. The restriction of ϕ to Im × In factorises by the
induction hypothesis. Denote by Ci,j the square of Im × In+1 on the i-th column (starting
from the left) and the j-th line (starting from the bottom).

If there exists a 1 ≤ i0 ≤ m such that ϕ(Ci0,n+1) = ϕ(Ci0,j0), then ϕ(Ci,n+1) = ϕ(Ci,j0)
for every 1 ≤ i ≤ m. Indeed, this follows by induction, by starting from Ci0,j0 and moving
through adjacent squares in the j0-th line, since, in the CAT(0) square complex X, two
squares sharing two adjacent edges are the same. Thus, if there exists a 1 ≤ i0 ≤ m such
that ϕ(Ci0,n+1) = ϕ(Ci0,j0), then ϕ factorises as

Im × In+1
id×ϕn+1−−−−−→ Im × Tn ↪→ X,

where Im × Tn ↪→ X comes from the induction hypothesis, ϕn+1 : In+1 → Tn is the unique
combinatorial map such that id × ϕn+1 restricts to id × ϕn on Im × In and is such that
(id× ϕn+1)(Ci,n+1) = (id× ϕn)(Ci,j0) for every 1 ≤ i ≤ m.

If there does not exist a 1 ≤ i0 ≤ m such that ϕ(Ci0,n+1) = ϕ(Ci0,j0), then write In+1

as the reunion of In and an edge e glued along a vertex v, and consider the tree Tn∪ϕn(v) e
′

obtained by attaching to Tn an edge e′ along ϕn(v). Then ϕ factorises as

Im × In+1
id×ϕn+1−−−−−→ Im × (Tn ∪ϕn(v) e

′)
h′−→ X,

where ϕn+1 : In+1 → Tn ∪ϕn(v) e
′ is the unique combinatorial map that restricts to ϕn

on In and sends e to e′, and h′ restricts to h on Im × Tn. By construction, the map
Im × (Tn ∪ϕn(v) e

′)
h′−→ X is a local isometry, i.e. it is injective on the link of vertices, as h

already is. Moreover, as links of vertices of X have girth at least 4, it follows that for every
vertex v of Im × (Tn ∪ϕn(v) e

′), the image of the link of v under h′ is a full subgraph of the
link of h′(v). Thus, h′ is an isometric embedding by Lemma 2.5.

4 Proof of the main theorems

This section is devoted to the proof of Theorems A and E. The proofs being extremely
similar, we start with the slightly more technical Theorem E and explain in Section 4.5 how
to adapt the proof to deduce Theorem A.

4.1 Strongly contracting axes

A CAT(0) square complex has two metrics naturally associated it, depending on whether
we are considering the `1- or `2-metric on its squares. In the `1-case, we recover the
combinatorial distance on the set of vertices, and in the `2-case we recover the CAT(0)
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metric. In what follows, we will indicate with subscripts which metric is being considered,
whether talking about the translation length | · |i, the distance di(·, ·), etc.

For the rest of Sections 4.1, 4.3 and 4.4, we assume that we are given a CAT(0) square
complex X, a group G acting on it by isometries, and an element g ∈ G which is strongly
contracting (for the `2-metric) and satisfies the weak WPD condition. An `2-axis of g will
mean a geodesic line of X (for the `2-metric) on which g acts by translation. An `1-axis (or
combinatorial axis) of g will mean a geodesic line of the 1-skeleton of X (for the `1-metric)
on which g acts by translation. Combinatorial axes of hyperbolic isometries of CAT(0)
square complexes were shown to exist by Haglund [18]. We choose, for i = 1 or 2, an `i-axis
Λi for g.

Lemma-Definition 4.1 (tubular constant). Since Λ2 is strongly contracting by assump-
tion, [3, Corollary 3.4] implies that we can choose a tubular constant C2 such that for every
two points x, y of X which project to two points of Λ2 at distance at least C2, then any
geodesic from x to y meets the C2-neighbourhood of Λ.

Lemma-Definition 4.2 (the constant δ). There exists a constant δ > 0 such that Λ1

and Λ2 are at Hausdorff distance at most δ from one another (for both the `1- and the
`2-metric).

Proof. By [3, Lemma 3.8], there exists a constant C ′2 such that for every pair of points u, v
in the C2-neighbourhood of Λ2, a ball disjoint from the CAT(0) geodesic [u, v] projects on
[u, v] to a subset of diameter strictly less than C ′2. Choose integers m,m′ ≥ 1 such that
m|g|2 > C2 and m′|g|2 > C ′2 + |g|1 + 2. Let x1 be a point of Λ1 and let x2 be its projection
on Λ2 (and thus g2m+m′

x2 is the projection of gn+2mx1 on Λ2).
Let u be a point of the CAT(0) geodesic between x1 and gm′+2mx1 which projects to

the point gmx2 ∈ Λ2. Since d2(x2, g
mx2) = m|g|2 > C2, there exists a point y in the

sub-segment between x and u and a point y2 ∈ Λ2 in between x2 and gmx2 such that
d2(y, y2) ≤ C2. Analogously, let v be a point of the geodesic between x and gm+2m′

x1

which projects to the point gm+m′
x2 ∈ Λ2. Since d2(gm

′+mx2, g
m′+2mx2) = m|g|2 > C2,

there exists a point z in the sub-segment between v and gm′+2mx and a point z2 ∈ Λ2 in
between gm

′+mx2 and gm
′+2mx2 such that d2(z, z2) ≤ C2. By convexity of the CAT(0)

metric, it follows that the geodesic between y and z is contained in the C2-neighbourhood
of Λ2.

Let us now consider the combinatorial interval IntX(x1, g
m′+2mx1) between x1 and

gm
′+2mx1. By Corollary 1.8 and Lemma 1.9, it is a convex subcomplex (for the CAT(0)

metric) and we can think of it as a subcomplex of R2 with its standard tiling. Let K be the
subset of R2 consisting of those points whose orthogonal projection on the bi-infinite line
generated by the segment [y, z] is contained in [y, z]. It follows from the definition of C ′2
that IntX(x1, g

m′+2mx1) ∩ K is contained in the C ′2-neighbourhood of [y, z]. Thus, every
combinatorial geodesic from x1 to gm′+2mx1 contains a sub-interval of `2-length at least
d2(y, z) ≥ |g|1 + 2, and thus a sub-segment of `1-length at least |g1|, which is C ′2-close to

16



A. Martin Acylindrical actions on CAT(0) square complexes

[y, z]. In particular, the axis Λ1 contains a sub-segment of `1-length at least |g1| which is
(C ′2 + C2)-close to Λ2 for the `2-metric, and thus Λ1 and Λ2 are at Hausdorff distance at
most C ′2 + C2.

An immediate corollary is the following:

Corollary-Definition 4.3 (the constant C2). There exists a constant C2 such that every
grid whose interior is disjoint from the axis Λ1 projects on Λ1 (for the `1-metric) with a
diameter strictly smaller than C2.

Lemma 4.4. Let γ1 be a geodesic segment contained in Λ1 and let h be a group element
that moves the endpoints of γ1 by a distance of at most r (for the `1-metric). Let γ′1 be
a sub-segment of γ1. Then γ′1 and hγ′1 are at Hausdorff distance at most 2r + 8δ (for the
`1-metric).

Proof. By lemma 4.2, Λ1 and Λ2 are at Hausdorff distance at most δ for the `1-metric
and for the `2-metric. Let γ2, γ

′
2 be the `2-projections, of γ1, γ′1 on the convex subset Λ2.

The subsets γ1 and γ2 (γ′1 and γ′2 respectively) are at Hausdorff distance at most δ for the
`2-metric by construction. We thus have:

d1(γ′1, hγ
′
1) ≤ d1(γ′1, γ

′
2) + d1(γ′2, hγ

′
2) + d1(hγ′2, hγ

′
1),

≤ 4d2(γ′1, γ
′
2) + d1(γ′2, hγ

′
2),

≤ 4δ + 2d2(γ′2, hγ
′
2)

≤ 4δ + 2(r + 2δ) ≤ 2r + 8δ,

the last inequalities following from the convexity of the CAT(0) metric, since h moves the
endpoints of γ1 by at most r.

4.2 Staircases

Definition 4.5. A Euclidean CAT(0) square complex D = D(P−, P+) between geodesic
segments P− and P+ is called a staircase if P− contains at least one corner of D in its
interior.

Lemma 4.6. Let D = D(P−, P+) be a Euclidean CAT(0) square complex of width at most
r between geodesic segments P− and P+ of D, and ϕi : D → X a family of combinatorial
maps that all coincide on P−. Let k ≥ 1. If P− contains at least 2r + 2k corners, then the
ϕi coincide on a sub-geodesic of P+ of length at least k.

Proof. Recall that D embeds in R2 with its standard square tiling by Lemma 1.9. Thus,
we will assume that D is a subcomplex of R2.

Up to an isometry of R2, we can assume that the following holds: For every horizontal
(respectively vertical) edge of P−, the unique square above it (respectively to its left) is in
D (see Figure 4).
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Let v and v′ be the first and last corners of P− of curvature −π
2 . We will prove that the

ϕi coincide on
K := D ∩ IntR2(v, v′),

where IntR2(v, v′) is the combinatorial interval between v and v′. We order the squares of
K into a sequence C1, C2 . . . by starting from the downmost horizontal hyperplane of K
and reading from right to left; Once a horizontal hyperplane has been exhausted, move to
the one above it and apply the same procedure.

C2 C1

Cl+1

Cl Ck+1

Ck

· · ·

· · ·
D

K

v

v′

Figure 4: Ordering the squares of K. The subcomplex K is the shaded region.

We now show by induction that the ϕi coincide on Kn := ∪1≤i≤nCi. This holds for
n = 1. Indeed, two edges of C1 are in P−. As the ϕi coincide on P−, the CAT(0) condition
implies that they also coincide on C1. Suppose that the ϕi coincide on Kn for n ≥ 1. Then
the right and bottom edges of Cn+1 belong to P−∪Kn, and the same reasoning thus implies
that the ϕi coincide on Cn+1.

Since P− contains at least 2r + 2k corners, we can choose a vertex w in P− such that
there exist at least r + k corners between w and v, and between w and and v′. It thus
follows that

K ⊃ D ∩BR2(w, r + k),

where BR2(·) denotes the ball in R2 for the combinatorial distance. As the geodesic P+

meets the r-neighbourhood of w by assumption, it follows that K contains a sub-geodesic
of P+ of length at least k, and the ϕi thus coincide on a sub-geodesic of P+ of length at
least k.

4.3 Corridors over the axis Λ1

Definition 4.7 (Corridor). Let D = D(γ−, γ+) be a Euclidean quadrangle. We say that
D is a corridor if every vertex in the interior of P− and P+ has zero curvature in D.
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Remark-Definition 4.8 (the constants L and N). The WPD condition for g implies that
there exist constants L and N such that there do not exist N distinct group elements that
fix pointwise two points of Λ1 at distance at least L. We thus choose two such constants
L,N ≥ 0 for the remaining of this section.

The aim of this section is to prove the following intermediate result:

Proposition 4.9. For every r > 0, there exist constants L0(r), N0(r) such that the follow-
ing holds: For every x, y in Λ1, for every sub-segment γ of Λ1 contained in the sub-segment
of Λ1 between x and y, for every sub-segment γ− ⊂ γ of length at least L0(r), there ex-
ist at most N0(r) elements h of G such that d(x, hx), d(y, hy) < r, and such that there
exist a quadrangle between γ and hγ together with a sub-quadrangle between γ− and a
sub-segment γ+ ⊂ hγ which is a corridor of width at most 4r + 4C2 + 16δ.

The reason for the constant 4r+4C2 +16δ will become apparent in the next section. A
key tool in controlling such quadrangles is the following operations of ‘concatenating’ and
‘piling up’ disc diagrams.

Definition 4.10 (concatenation of disc diagrams). Let ϕ : D → X ( ϕ′ : D′ → X
respectively) be a quadrangle between two combinatorial geodesic γ− and γ+ (γ′− and γ′+
respectively). Assume that γ+ and γ′− intersect along a non-empty geodesic sub-segment.

The two disc diagrams ϕ : D → X and ϕ′ : D′ → X can be concatenated into a disc
diagram Φ : D ·D′ → X where D ·D′ is the planar contractible square complex obtained
from the disjoint union of D and D′ by identifying a point x in the upper side of D with a
point x′ in the lower side of D′ precisely when ϕ(x) = ϕ′(x′).

Definition 4.11 (piling up of disc diagrams). Let γ be a combinatorial geodesic of X. Let
(hi) a sequence of group elements and denote by ϕhi : D(hi) → X a quadrangle between
γ and hiγ. For each integer i ∈ Z, the map h1 . . . hiϕhi+1

defines a disc diagram between
h1 . . . hiγ and h1 . . . hi+1γ. Thus, for each n we can successively concatenate the disc
diagrams h1 . . . hiϕhi+1

into a disc diagram between γ and h1 · · ·hnγ. We say that this disc
diagram is obtained by piling up the sequence of disc diagrams (ϕhi : D(hi)→ X)1≤i≤n.

We now start the proof of Proposition 4.9, which in splits in several steps. Throughout
this proof, whenever x, y are vertices of Λ1, γ ⊂ Λ1 is a sub-segment, and γ− ⊂ γ is a
sub-segment, we will say that an element g of G satisfies the property (Pr) with respect to
x, y, γ, γ− if d(x, gx), d(y, gy) < r, and there exists a quadrangle D(g) between γ and gγ
and a sub-quadrangle D′(g) between γ− and a sub-segment γ+ ⊂ gγ which is a corridor.
The proof is split in several steps.

Step 1. Let x, y be vertices of Λ1 at distance at least 2(4r+4C2+16δ) , γ a sub-segment
of Λ1 between them, and γ− ⊂ γ a subsegment of length at least 2(4r+ 4C2 + 16δ) . Let h
be an element of G satisfying the property (Pr) with respect to x, y, γ, γ−, and denote by
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ϕh : D(h) → X an associated quadrangle and D′(h) the associated sub-quadrangle which
is a corridor. Let k, n ≥ 1 be constants that will be chosen later. Let Φn : Dn(h) → X
be the disc diagram between γ and hnγ obtained by piling up n copies of the disc diagram
ϕh : D(h)→ X.

By Lemma 2.3, D′(g) contains a sub-quadrangle which is a grid G1(g), of length |γ−| −
2(4r + 4C2 + 16δ) and width l ≤ 4r + 4C2 + 16δ. We call this integer l the width of g.
Moreover, by Lemma 4.4, the upper side of G1(g) and the h-translate of the bottom side of
G1(g) are at Hausdorff distance at most (4r+ 4C2 + 16δ) + (2r+ 8δ) = 6r+ 4C2 + 24δ. If
|γ−| > 2(4r+4C2+16δ)+2(i−1)(6r+4C2+24δ) for some i ≥ 1, then D′(g) contains a sub-
quadrangle which is a gridGi(g), of length |γ−|−(2(4r+4C2+16δ)+2(i−1)(6r+4C2+24δ))
and width l ≤ 4r + 4C2 + 16δ, over the maximal sub-segment of γ− at distance at least
4r + 4C2 + 16δ + (i− 1)(6r + 4C2 + 24δ) of the extremities of γ−.

As a consequence, if |γ−| > k+2(4r+4C2+16δ)+2(n−1)(6r+4C2+24δ), then Dn(g)
contains a sub-quadrangle Gn(g) between a sub-segment of γ− and a sub-segment of gnγ−,
which is a grid k × nl. Such a grid Gn(g) is obtained as the concatenation of sub-grids
Gn,i(g) , where each Gn,i(g) is a sub-grid k × l of Gn−1−i(g) between a sub-segment of γ
and a sub-segment of gγ. We also choose a vertical path Pn(g) of length nl in Gn(g), which
we write as the concatenation of n vertical paths Pn,i(g) of length l, each Pn,i(g) belonging
to Gn,i(g) (see Figure 5).

Pn(g)

Gn(g)

Dn(g)

Φn

g3γ

g2γ

gγ

γ

Figure 5: Piling up n = 3 copies of a sub-corridor of D(g) of width 3. Here, the (impossible)
case where the paths Φn(Pn,i(g)) and Φn(Pn,i+1(g)) backtrack on exactly one edge.

By Proposition 3.3, the restriction of Φn to Gn(g) ∼= Ik × Inl factorises as

Ik × Inl
id×Ψn−→ Ik × Tnl ↪→ X,

Note that for every 0 ≤ i < n, the paths Φn(Pn,i(g)) and Φn(Pn,i+1(g)) backtrack on
the same number l′ of edges because of Proposition 3.3. If we had l′ < l

2 , then the image
Φn(Pn) would contain an isometrically embedded path, and the length of such paths grows
linearly with n. In particular for some constant n0 ≥ 1 that is independent of x and y, this
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length would be bigger than the constant C2 (Definition 4.3). If k is bigger than C2, then
it would follow that X would contain an embedded square of side C2 whose projection on
γ has diameter C2, contradicting Lemma 4.3.

Step 2. We thus start by defining the following constant:

L0(r) :=
(
max(L,C2, |g|1)+36r+24C2+144δ

)
+2(4r+4C2+16δ)+2(n0−1)(6r+4C2+24δ+|g|1),

Let x, y be vertices of Λ1 at distance at least L0(r), γ be the sub-segment of Λ1 between
them, and γ− ⊂ γ a subsegment of length at least L0(r). Let h be a group element that
satisfies the property (Pr) with respect to x, y, γ, and γ−. From the previous paragraph,
and using the same notations, it follows that Φn(Pn,i(h)) and Φn(Pn,i+1(h)) backtrack on
at least l

2 edges. For α a real number between 0 and the width of h, we denote by `α(h) the
horizontal line of G1(h) at distance α from P−, and by `′α(h) the sub-segment `α(h)∩G2(h).
Since Φn(Pn,i(h)) and Φn(Pn,i+1(h)) backtrack on at least l

2 edges for each i, it follows that

hϕ
(
`′l

2

(h)
)
⊂ ϕ

(
` l

2
(h)
)
.

Thus, both hϕ
(
`′l

2

(h)
)
and ϕ

(
`′l

2

(h)
)
are contained in the segment ϕ

(
` l

2
(h)
)
.

We claim that hϕ
(
`′l

2

(h)
)
and ϕ

(
`′l

2

(h)
)
are at Hausdorff distance at most 6r+4C2+24δ.

Indeed, this follows from the triangular inequality, as ϕ(`′l
2

(h)) is (2r + 6C2)-close to the

segment ϕ(`′0(h)) by the width assumption, the same holds for h`′l
2

(h) and h`′0(h), and `′0(g)

and h`′0(g) are at most (2r + 8δ)-close by Lemma 4.4.
Thus, hϕ

(
`′l

2

(h)
)
and ϕ

(
`′l

2

(h)
)
are contained in the segment ϕ

(
` l

2
(h)
)
and are at Haus-

dorff distance at most 6r+4C2+24δ from one another. In particular, the two sub-segments
share an edge, as they have a length of at least L+ 36r + 24C2 + 144δ.

Step 3. Let us show that, for an element h as in the previous step, the subset ϕ
(
`′l

2

(h)
)

is contained in a combinatorial axis of g which is parallel to Λ1, meaning that there exists
an isometric embedding R × Ik ↪→ X such that R × {0} is sent to Λ1 and R × {k} is sent
to the aforementioned combinatorial axis of g containing ϕ

(
`′l

2

(h)
)
.

Note that hg has translation length at most |g|1 + r. By concatenating the disc dia-
grams (hg)iϕh : D(h)→ X for i ≥ 0, the same reasoning as before shows that hgϕh(`′l/2(h))

and ϕh(`′l/2(h)) are contained in a common segment and are at Hausdorff distance at most
|g|1+6r+4C2+24δ. As we already now that hϕh(`′l/2(h)) and ϕh(`′l/2(h)) are contained in a
segment and are at Hausdorff distance at most 6r+4C2 +24δ, it follows that hgϕh(`′l/2(h))

and hϕh(`′l/2(h)), and thus gϕh(`′l/2(h)) and ϕh(`′l/2(h)), are contained in a segment and
are at Hausdorff distance at most |g|1 + 12r+ 8C2 + 48δ. As the length of `′l/2(h) is strictly
greater than |g|1 + 12r + 8C2 + 48δ by construction, it follows that these two segments
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share at least an edge. Moreover, they cannot coincide as g is a hyperbolic isometry of X.
Thus, the same argument as before shows that Λh :=

⋃
i∈Z g

iϕh(`l/2(h)) is a combinatorial
axis for g, and it contains ϕ

(
`′l

2

(h)
)
by construction. Furthermore, by definition of L0(r),

there exists a sub-quadrangle between a fundamental domain of Λ1 for the action of 〈g〉
and a fundamental domain of Λh for the action of 〈g〉 which is a grid. This in turn implies
that Λ1 and Λh are parallel.

Step 4. Let x, y be vertices of Λ1, let γ be the sub-segment of Λ1 between them, and
γ− ⊂ γ a sub-segment of length at least L0(r). Let us now consider two elements h and h′

satisfying (Pr) with respect to x, y, γ and γ− and having the same width l ≤ 4r+4C2+16δ.
Denote by ϕh : D(h) → X and ϕh′ : D(h′) → X the associated disc diagrams. Consider
elements hi of G, i ≥ 1, such that hi = h if i is odd and hi = h′ otherwise. As before, we
can construct the disc diagram Φn : Dn(h, h′)→ X obtained by piling up the disc diagrams
(ϕhi : D(hi)→ X)1≤i≤n. As before, Dn(h, h′) contains a sub-diagram Gn(h, h′) between a
sub-segment of γ− and a sub-segment of h1 · · ·hnγ−, which is a grid k×nl. Moreover, this
map factorises by Proposition 3.3, and we have to consider the image under Φn of a vertical
path Pn(h, h′) of length nl, which is the concatenation of paths Pn,i(hi) ⊂ h1 · · ·hiD(hi).
Here again, note that for every i, the paths Φn(Pn,2i−2(h2i−1)) and Φn(Pn,2i−1(h2i)) back-
track on the same number leven of edges, while Φn(P2i−1(h2i)) and Φn(P2i(h2i+1)) backtrack
on the same number lodd of edges. Using the same reasoning, at least one of the two in-
tegers leven and lodd is at least l

2 . Let us assume for instance that this holds for leven.
As before, it then follows that ϕh(`′l

2

(h)) and (h′)−1ϕh′(`
′
l
2

(h′)) are at Hausdorff distance

at most 6r + 4C2 + 24δ. But as (h′)−1ϕh′(`
′
l
2

(h′)) and ϕh′(`
′
l
2

(h′)) are also at Hausdorff

distance at most 6r + 4C2 + 24δ by Step 2, it follows that ϕh(`′l
2

(h)) and ϕh′(`′l
2

(h′)) are
at Hausdorff distance at most 12r + 8C2 + 48δ.

Step 5. We define the following constant:

N0(r) := (4r + 4C2 + 16δ + 1)(12r + 8C2 + 48δ + 1)(N + 1).

Let x, y be vertices of Λ1, γ the sub-segment of Λ1 between them, and γ− ⊂ γ a subsegment
of length at least L0(r). Suppose by contradiction that there at leastN0(r) distinct elements
satisfying the property (Pr) with respect to x, y, γ and γ−. For each such element h we
consider an associated corridor ϕh : D(h)→ X and use the same notations as above. From
Step 4, it follows that for every two such elements h, h′ with the same width l, the segments
ϕh(`′l

2

(h)) and ϕh′(`
′
l
2

(h′)) are at Hausdorff distance at most 12r + 8C2 + 48δ from one

another, and are contained in a segment of X. Choose (12r + 8C2 + 48δ + 1)(N + 1) such
elements of the same width. It follows that the intersection ` of all the segments ϕh(`′l

2

(h))

has length at least L+ 12r+ 8C2 + 48δ = (L+ 36r+ 24C2 + 144δ)− 2(12r+ 8C2 + 48δ).
Let `′ be the maximal sub-segment of ` at distance 6r + 4C2 + 24δ from the endpoints of
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`. Each of the (12r + 24C2 + 16δ + 1)(N + 1) elements send `′ to a translate contained in
` by Step 2. Thus, we can choose at least N + 1 distinct such elements whose action on `′

coincide. As `′ is of length at least L and is contained in a combinatorial axis of g parallel
to Λ1 by Step 3, we obtain N group elements which stabilise points of Λ1 at distance L, a
contradiction. This finishes the proof of Proposition 4.9.

4.4 Finishing the proof of Theorem E

Lemma 4.12. Let γ be a segment of Λ1 of length at least 2C2, and let h be a group
element that moves the endpoints of γ by at most r. Suppose that there exists a reduced
disc diagram ϕ : D → X between γ and hγ. Then D has width at most 2r + 4C2.

Proof. Recall thatD is a CAT(0) square complex by Lemma 1.1. Let I be the combinatorial
interval between the endpoints of the lower path of D, and consider the restriction ϕ| :
I → X. If ϕ| : I → X is non-degenerate, then it is a Euclidean disc diagram, as I
isometrically embeds in R2 by Lemma 1.9. In such a case, ϕ| is an isometric embedding
by Lemma 2.4. If ϕ| : I → X is degenerate, then the restriction of ϕ| to each of the
maximal subcomplexes of I homeomorphic to a 2-disc is an isometric embedding by the
same argument. It follows from Proposition 2.3 and Lemma 4.3 that two combinatorial
geodesics of X between the endpoints of γ are at Hausdorff distance at most 2C2 from
another. Thus, any two combinatorial geodesics of D between the endpoints of the upper
path of D are at Hausdorff distance at most 2C2.

Recall that combinatorial intervals are convex for the CAT(0) metric by Corollary 1.8.
Thus, the CAT(0) geodesic P ′+ between the endpoints of the upper path P+ of D is at
Hausdorff distance at most 2C2 from P+. Analogously, the CAT(0) geodesic P ′− between
the endpoints of the lower path P− of D is at Hausdorff distance at most 2C2 from P−.
But by convexity of the CAT(0) metric, P ′− and P ′+ are at Hausdorff distance at most r
for the `2-metric. Thus, P− and P+ are at Hausdorff distance at most 2r + 4C2 for the
`1-metric.

Recall that the interval between two vertices of a CAT(0) square complex embeds iso-
metrically in R2 endowed with its square tiling (Lemma 1.9). We can thus define the
following constant:

Definition 4.13. For every R ≥ 0, we choose a constant Nint(R) such that there exist at
most Nint(R) combinatorial geodesics between two vertices of X at distance at most R.

Further recall that a Euclidean quadrangle D = D(γ−, γ+) isometrically embeds in Z2

by Lemma 1.9. We can thus define the following constant:

Definition 4.14. For every R ≥ 0, we choose a constant Nquad(R, r) on the number
of Euclidean quadrangles D = D(γ−, γ+) of width at most 4r + 4C2 + 16δ and such
that |γ−| ≤ R, up to isometries which preserve pointwise the upper lower sides of the
quadrangles.

23



A. Martin Acylindrical actions on CAT(0) square complexes

We are now ready to prove Theorem E. We split the proof in several steps. The first 7
steps deal with points on the axis Λ1. Note that, for such points, the acylindricity condition
amounts to proving that there exist constants Laxis(r), Naxis(r) such that for every two
points x, y of Λ1 at least Laxis(r) apart, at most Naxis(r) group elements move x and y by
at most r.

Let r > 0. We start by defining the following constants:

L1(r) := 2Lemb(4r + 4C2 + 16δ) + (24r + 8C2 + 78δ + 2L)(L0(r) + 2),

L2(r) := 5 · L1(r),

N1(r) := (8r + 32δ + 1)Nquad(L1(r))N,

N2(r) := max(N0(r), N1(r)),

N3(r) := (8r + 32δ + 1)L(r)2Nint(L(r))N,

N4(r) := 5 · 224r+8C2+78δ+2LN2(r).

Finally, we define the two constants:

Laxis(r) := 3 · L2(r),

Naxis(r) := 4max(N3(r), N4(r)).

We now show that, for every vertices x, y of Λ1 at distance at least Laxis(r), there do
not exist Naxis(r) distinct elements h of G such that d(x, hx), d(y, hy) ≤ r. This will be
done in seven steps.

By contradiction, suppose that there exist vertices x, y of Λ1 at distance at least Laxis(r)
and Naxis(r) distinct group elements h of G such that d(x, hx), d(y, hy) ≤ r. For simplicity,
we arrange these elements as a finite sequence (hi). Choose a taut geodesic γ between x
and y.

Step 1. Decompose γ as the concatenation of geodesic segments

γ := α ∪ γ1 ∪ γ2 ∪ γ3 ∪ β,

such that each of the segments γi has length L2(r). We sort the chosen group elements into
four classes, depending on the nature of both hiγ ∩ γ1 and hiγ ∩ γ3: empty or non-empty.
Since N(r) = 4max(N3(r), N4(r)), we can choose at least max(N3(r), N4(r)) such elements
in the same class.

Assume by contradiction that all the hiγ ∩ γ1 and giγ ∩ γ3 are non-empty. Then since
we are considering at least L(r)2 · (8r+ 32δ+ 1)Nint(L(r))N group elements, we can choose
at least (8r+32δ+1)Nint(L(r))N such elements such that the hiγ all contain two fixed ver-
tices v1 ∈ γ1 and v3 ∈ γ3. Now the sub-segment of hiγ between v1 and v3 is in IntX(v1, v3),
which contains at most Nint(L(r)) by construction, so we can find at least (8r+ 32δ+ 1)N
elements such that the hiγ all contain a chosen combinatorial geodesic γ′ between v1 and
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v3. It thus follows that the segments h−1
i γ′ are contained in γ and are at Hausdorff distance

at most 4r+16δ of one another by Lemma 4.4. Since there are at least (8r+32δ+1)N such
elements h−1

i , it thus follows that the action of at least N of them coincide on γ′, and thus N
distinct elements of G fix pointwise γ′, which is of length at least L2(r) ≥ L, a contradiction.

Step 2. From the previous step, we can thus assume that, for each of the given elements
hi, the segments hiγ and γ1, and in particular hiγ1 and γ1, are disjoint. Moreover, hiγ1

and γ1 are at Hausdorff distance at most 2r + 8δ by Lemma 4.4. Thus, we choose for each
i a quadrangle D(hi), of width at most 4r + 4C2 + 16δ by Lemma 4.12, between γ1 and
hiγ1.

Decompose γ1 as the concatenation of geodesic segments

γ1 := γ1,1 ∪ . . . ∪ γ1,5,

such that each of the 5 segments γi has length L1(r). We subdivide each hiγ1 into a
concatenation

hiγ1 := γi1,1 ∪ . . . ∪ γi1,5,

such that one can subdivide the non-degenerate quadrangle D(hi) into a concatenation of
5 non-degenerate quadrangles:

D(hi) := D1(hi) · · ·D5(hi),

where each Dk(hi) is a non-degenerate sub-quadrangle between γ1,k and γi1,k which has
width at most 4r + 4C2 + 16δ.

Step 3. By Lemma 2.2, for each i at least one of these non-degenerate sub-quadrangles
is almost Euclidean. Now, since we have at least Nnon−deg(r) = 5 · 224r+8C2+78δ+2LN2(r)
such elements, there exists an integer 1 ≤ k ≤ 5 such that, for at least 224r+8C2+78δ+2LN2(r)
of these group elements, the sub-quadrangle Dk(hi) is almost Euclidean.

Step 4. Since γ1,k is of length

L1(r) = 2Lemb(4r + 4C2 + 16δ) + (24r + 8C2 + 78δ + 2L)(L0(r) + 2),

we can choose a subsegment γ̃1,k of γ1,k, of length (24r + 8C2 + 78δ + 2L)(L0(r) + 2) and
at distance Lemb(4r + 4C2 + 16δ) from the endpoints of γ1,k. For each i, Proposition 2.7
allows us to choose a sub-segment γ̃i1,k of γi1,k and a Euclidean sub-quadrangle D̃k(hi) of
Dk(hi) of width at most 4r + 4C2 + 16δ between γ̃1,k and γ̃i1,k.

Step 5. Now write γ̃1,k as the concatenation of 24r + 8C2 + 78δ + 2L sub-segments
γ̃1,k,l of length L0(r) + 2. For each i and each l, we can choose a sub-segment γ̃i1,k,l of γ̃

i
1,k,l

and a sub-quadrangle D̃k,l(hi) of D̃k(hi) of width at most 4r+4C2 +16δ between γ̃1,k,l and

25



A. Martin Acylindrical actions on CAT(0) square complexes

γ̃i1,k,l. Among the given 224r+8C2+78δ+2LN2(r)N group elements, we can now then choose
N2(r)N of them such that for each l, the associated sub-quadrangles (D̃1,k,l(hi))i are all of
the same shape: corridor or staircase.

Step 6. If for some l, all the (D̃1,k,l(hi))i were corridors, then the fact that N2(r) ≥
N0(r) would yield a contradiction with Proposition 4.9, so let us assume that they all are
staircases. In particular, for each such i, D̃1,k(hi) contains at least 24r + 8C2 + 78δ + 2L
corners on γ̃k,1. Since we have at least (4r+2)Nquad(r)N group elements, at least (4r+2)N

of them define isometric sub-quadrangles. Since D̃1,k(hi) has width at most 4r+ 12C2 and
contains at least

24r + 8C2 + 78δ + 2L = 2(4r + 4C2 + 16δ) + 2(L+ 2(4r + 16δ))

corners, it follows from Lemma 4.6 that there exists a geodesic segment P of length
L+ 2(4r + 16δ) contained in all the giγ.

Step 7. It now follows that the segments g−1
i P are contained in γ and are at Haus-

dorff distance at most 4r + 16δ of one another by Lemma 4.4. Since there are at least
(8r + 32δ + 1)N such elements g−1

i , it follows that the action of at least N of them co-
incide on a geodesic segment of length L, hence N distinct elements of G fix pointwise a
sub-segment of length L of Λ1, a contradiction.

This concludes the proof that for vertices x, y of the axis Λ1 at distance at least Laxis(r),
at most Naxis(r) elements of G move x and y by a distance of at most r. In the final step,
we deal with arbitrary points of X.

Step 8. Recall that the tubular constant C2 was introduced in Definition 4.1. Let m be
an integer such thatm|g|2 > C2. Let n be an integer that will be fixed later, let x be a vertex
of X, and let h be a group element such that d1(x, hx), d1(gn+2mx, hgn+2mx) ≤ r. Consider
the (unique) CAT(0) geodesic between x and gn+2mx. Let also x2 be the projection of x
on Λ2 (and thus gn+2mx2 is the projection of gn+2mx on Λ2).

Let u be a point of the geodesic between x and gn+2mx which projects to the point
gmx2 ∈ Λ2. Since d2(x, gmx) = m|g|2 > C2, there exists a point y in the sub-segment
between x and u and a point y2 ∈ Λ2 in between x2 and gmx2 such that d2(y, y2) ≤ C2.
Analogously, let v be a point of the geodesic between x and gn+2mx which projects to
the point gm+nx2 ∈ Λ2. Since d2(gn+mx2, g

n+2mx2) = m|g|2 > C2, there exists a point z
in the sub-segment between v and gn+2mx and a point z2 ∈ Λ2 in between gn+mx2 and
gn+2mx2 such that d2(z, z2) ≤ C2. Since Λ1 and Λ2 are at Hausdorff distance at most
δ by Definition-Lemma 4.2, choose points y1, z1 on Λ1 which are δ-close from y2 and z2

respectively.
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Since d1(y, hy), d1(gn+2mz, hgn+2mz) ≤ r by convexity of the `2-metric, it follows that

d1(y1, hy1), d1(z1, hz1) ≤ 2r + 2δ + 4C2.

Moreover, we have

d2(y1, z1) ≥ d2(x2, g
n+2mx2)− d2(x2, y2)− d2(y2, y1)− d2(z1, z2)− d2(z2, g

n+2mx2)

≥ n|g|2 − 2δ,

and thus d1(y1, z1) ≥ n|g|2−2δ. Thus, we first choose an integer n(r) (which is independent
of the point x) such that n(r)|g|2 − 2δ ≥ Laxis(2r + 2δ + 4C2). Now set:

mfinal := n(r) + 2m,

Nfinal := Naxis(2r + 2δ + 4C2).

It thus follows that for every x of X, there exist at most Nfinal group elements that move x
and gmfinalx by at most r, for otherwise we could find two points of Λ1 at distance at least
Laxis(2r + 2δ + 4C2) which are moved by at most 2r + 2δ + 4C2 by Naxis(2r + 2δ + 4C2)
distinct group elements, a contradiction.

4.5 Deducing Theorem A

In this section, we explain how to modify the proof of Theorem E to obtain Theorem A.
The proof is almost identical: The proof of Theorem E took place ‘along the axis’ of a
strongly contracting WPD element, which displays features of hyperbolic geometry. Under
the hypotheses of Theorem A, the whole complex X is hyperbolic, and the following lem-
mas can be adapted to deal with arbitrary geodesics of X, rather than sub-segments of the
combinatorial axis considered in the previous section:

Lemma 4.1 still holds in general hyperbolic metric spaces: For any geodesic γ of length
at least 8δ′, δ′ the hyperbolicity constant of the space, and any two points x, y of the space
that project on γ at distance at least 8δ′, then any geodesic from x to y meets the 8δ′-
neighbourhood of γ (this follows for instance from the Tree Approximation Threorem for
hyperbolic spaces [13, Theorem 8.1]).

Lemma 4.2 is reformulated as follows: For every combinatorial geodesic γ of the hyper-
bolic CAT(0) square complex X, the unique CAT(0) geodesic between the endpoints of γ
stays 2C2-close to γ, where the no-square constant C2 is reinterpreted as a constant such
that X does not contain isometrically embedded C2 × C2 grids.

Analogously, Lemma 4.4 is reformulated as follows: Let γ be a geodesic segment and
let h be a group element that moves the endpoints of γ by a distance of at most r (for the
`1-metric). Let γ′ be a sub-segment of γ. Then γ′ and hγ′ are at Hausdorff distance at
most 2r + 16C2 (for the `1-metric).
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Finally, Lemma 4.12 is reformulated as follows: Let γ be a combinatorial geodesic of X
of length at least 2C2, and let h be a group element that moves the endpoints of γ by at
most r. Suppose that there exists a quadrangle ϕ : Q→ X between γ and hγ. Then Q has
width at most 2r + 4C2.

With these modifications, we can prove Theorem A by adapting the proof of Theorem
E presented in Sections 4.3 and 4.4.

We first start by proving the analogue of Proposition 4.9, namely: For every r > 0,
there exist constants L0(r), N0(r) such that the following holds: For every combinatorial
geodesic γ between two points x, y of X, for every sub-segment γ− ⊂ γ of length at least
L0(r), there exist at most N0(r) elements h of G such that d(x, hx), d(y, hy) < r, and such
that there exist a quadrangle between γ and hγ and a sub-quadrangle between γ− and a
sub-segment γ+ ⊂ hγ which is a corridor of width at most 4r+36C2 = 2(2r+16C2)+4C2.

The proof, for abritrary points of X instead of points of Λ1, is almost identical to the
proof presented in Section 4.3, up to modifying the constants according to the aforemen-
tioned changes (in particular, the constant |g|1 is no longer needed in the definition of L0(r)
and N0(r) ). The only notable difference is that Step 3 is no longer needed. Indeed, Steps
1-2 and 4-7 yield a geodesic segment of X of length L pointwise fixed by N group elements,
which is sufficient to contradict the weak acylindricity of the action (in Section 4.3, Step
3 was there to show that such a geodesic segment is actually contained in a combinatorial
axis of the WPD element g, which was necessary to contradict the weak WPD condition).

We then adapt the results of Section 4.4 for abritrary points of X instead of points of
Λ1, namely, we prove the following: For every r > 0, there exist constants L(r), N(r) such
that the following holds: For every two points x, y of X at distance at least L(r), there
exist at most N(r) elements h of G such that d(x, hx), d(y, hy) < r.

The proof of Steps 1-7 is identical, and yield a geodesic segment of X of length L
pointwise fixed by N group elements, which is sufficient to contradict the weak acylindricity
of the action (in Section 4.4, Steps 1-7 only dealt with points of the axis Λ1 and Step 8
dealt with arbitrary points of X).

5 The geometry of generalised Higman groups

The generalised Higman groups Hn, n ≥ 5 were defined in [21], as the groups with the
following presentation:

Hn := 〈ai, i ∈ Z/nZ | aiai+1a
−1
i = a2

i+1, i ∈ Z/nZ〉.

These groups can naturally be seen as negatively curved polygons of groups (see for
instance [6, Theorem 12.28 and Section 12.29]). The local group associated to the polygon
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is trivial. Order cyclically the edges of the polygon into a sequence (ei). The local group
associated to each edge ei of the polygon is a copy of Z with a chosen generator ai. The
local group associated to each vertex of the polygon is the Baumslag–Solitar group BS(1, 2).
Finally, for each vertex v contained in edges ei and ei+1, the local maps Gei → Gv, Gei+1 →
Gv send the generators ai, ai+1 respectively to generators bi, bi+1 of BS(1, 2) satisfying the
relation bibi+1b

−1
i = b2i+1.

Thus, Hn, n ≥ 5 acts cocompactly on a CAT(−1) polygonal complex with strict fun-
damental domain an n-gon. Stabilisers of faces are trivial, stabilisers of edges are infinite
cyclic, and stabilisers of vertices are isomorphic to BS(1, 2). Moreover, for every edge e of
Xn with vertices v and v′, one of the morphisms Ge ↪→ Gv, Ge ↪→ Gv′ is conjugated to
〈a〉 ↪→ 〈a, b|aba−1 = b2〉 while the other one is conjugated to 〈b〉 ↪→ 〈a, b|aba−1 = b2〉.

Lemma 5.1. If v and v′ are vertices of Xn at distance at least 3, then the stabilisers of
v and v′ intersect trivially. In particular, Hn acts weakly acylindrically on Xn for every
n ≥ 5.

Proof. Since Hn acts on the CAT(0) polygonal complex Xn with trivial face stabilisers,
fixed point sets of subgroups of Hn are trees in the 1-skeleton of Xn. If an element h of
Hn stabilises a sequence e1, e2, e3 of three adjacent edges, then for some vertex v of e2, the
inclusion Ge ↪→ Gv is conjugated to 〈a〉 ↪→ 〈a, b|aba−1 = b2〉. It then follows that for every
edge e′ 6= e containing v, the intersection Ge ∩Ge′ is trivial. Indeed, this is exactly Lemma
2.1 of [23] in the case of 4 generators; the proof being purely about links of vertices, it
generalises without any change to n ≥ 5 generators. Thus, the intersection Ge1 ∩Ge2 ∩Ge3
is trivial.

Notice that, for n ≥ 5, the CAT(-1) polygonal complex Xn can be naturally subdivided
into a hyperbolic CAT(0) square complex. Indeed, the subgraph of the one-skeleton of
the first barycentric subdivision of Xn, obtained by removing edges corresponding to the
inclusion of a vertex of Xn in a polygon of Xn, is naturally the one-skeleton of a CAT(0)
square complex. Moreover, such a CAT(0) square complex is quasi-isometric to Xn, and
thus hyperbolic. In particular, Theorem A implies the following:

Corollary 5.2. For n ≥ 5, the action of Hn on Xn is acylindrical.

We now give two consequences of the acylindricity of the action, which do not follow
automatically from the abstract acylidrical hyperbolicity of the group.

Corollary 5.3 (Strong Tits alternative for generalised Higman groups). For n ≥ 5, the
group Hn satisfies the following form of Tits alternative: A non-cyclic subgroup of Hn

is either contained in a vertex stabiliser, hence embeds in BS(1, 2), or is acylindrically
hyperbolic.

Proposition 5.4. For n ≥ 5, Hn is residually F2-free, i.e. each element of Hn survives in
a quotient of Hn which does not contain a non-abelian free subgroup.
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Proof. Let h be an element of Hn . We construct by induction a sequence of quotients of
Hn

Hn
π1−→ Q1

π2−→ Q2 → · · ·

such that at each stage, Qk acts acylindrically on a hyperbolic metric space Yk, and h
projects to a non-trivial element of Qk. Such a construction uses the theory of rotating
families of Dahmani–Guirardel–Osin and follows the construction in the proof of [14, The-
orem 8.9]; we refer the reader there for additional details. The group Q0 := Hn acts
acylindrically on Y0 := Xn. Let us order all the elements of Hn that act hyperbolically on
Xn in a sequence (hk)k≥1. Let us assume that the quotients Q0, Q1, . . . Qk and hyperbolic
spaces Y0, . . . , Yk are defined. We look at the projection h̄k+1 of hk in Qk. Since Qk acts
acylindrically on the hyperbolic space Yk, such an element acts either hyperbolically or
elliptically on Yk by a result of Bowditch [4, Lemma 2.2].

If hk+1 projects to a an element of Qk acting hyperbolically on Yk, we choose an integer
αk+1 ≥ 1 such that

• the coned-off space associated to the action of � h̄
αk+1

k+1 � on Yk is hyperbolic,

• the quotientQk/� h̄
αk+1

k+1 � acts acylindrically on the aforementioned coned-off space,

• the projection map Qk → Qk/� h̄
αk+1

k+1 � embeds a chosen metric ball of Qk contain-
ing the projection h̄ of h.

We then define Qk+1 := Qk/� h̄
αk+1

k+1 � and Yk+1 is the associated coned-off space.
If hk+1 projects to a torsion h̄k+1 element of Qk, we set Qk+1 := Qk, Yk+1 := Yk, and

αk+1 ≥ 1 be an integer such that h̄αk+1

k+1 is trivial.
It thus follows that the quotient

Q := Hn/� hαk
k , k ≥ 1�

of Hn is such that h projects to a non-trivial element.
Let us prove by contradiction that Q does not contain a non-abelian free subgroup. If Q

contained such a subgroup, the preimage of such a subgroup under the projection Hn → Q
would be a free subgroup F of Hn. As elements acting hyperbolically on Xn are mapped to
torsion elements of Q by construction, we will derive a contradiction if we can prove that
F necessarily contains an element acting hyperbolically. We thus prove the following:

Claim: The subgroup F contains an element acting hyperbolically on Xn.

If that was not the case, then every element of F acts elliptically on Xn (since Xn

has only finitely many isometry types of cells [5]). If the fixed point sets of elements of F
pairwise intersect, they globally intersect by a version of the Helly Theorem [22, Proposition
5.3], hence F is contained in a vertex stabiliser, which is absurd as BS(1, 2) does not contain
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non-abelian free subgroups. Thus, there must exist two elements a, b of F with disjoint fixed
point sets. One could adapt the proof of [23, Proposition 3.2] to show that this implies that
there exists an element acting hyperbolically on Xn in the subgroup generated by a and b.
In order to remain as self-contained as possible, we give a direct proof that the subgroup
〈a, b〉 contains an element acting hyperbolically, using the CAT(0) geometry of the space.

By Lemma 5.1, the fixed point sets of a and b are subcomplexes of diameter at most
2. Let xa, xb be points of the fixed point sets of Fix(a), Fix(b) which realise the distance
α > 0 between these fixed point sets. Let L be the CAT(0) geodesic between va and vb.

We now show that the angle at xa (respectively xb) between L and aL (respectively L
and bL) is at least π. Let σ be the (unique) minimal face of X containing the ‘germ of
L’ at xa, that is, the minimal face of X such that sufficiently small neighbourhoods of xa
in L are contained in σ. If σ is an edge (and thus, xa is a vertex), then the result follows
immediately: Indeed, for every edge e of X and v one of its vertices, an element in the
stabiliser of v either fixes e or sends it to an edge making an angle of at least π with e, by
definition of the action. So let us assume that σ is a square. If xa is in the interior of an
edge of σ, then L must be perpendicular to that edge since L realises the distance between
the fixed point sets, and the result follows immediately. If xa is a vertex of σ, then no edge
of σ is in Fix(a) since L realises the distance between the two fixed point sets. In particular,
for the two edges e, e′ of σ containing xa, the angle at xa between e and ae (respectively e′

and ae′) is at least π by the previous remark, whence the angle at xa between L and aL is
at least π.

As the angle at xa (respectively xb) between L and aL (respectively L and bL) is at
least π, the paths L ∪ aL and L ∪ bL are geodesics. In particular, the distance between
Fix(a) and baFix(a) is at least 2α − 2. Reasoning analogously, one shows that, for every
k ≥ 2, the distance between Fix(a) and (ba)kFix(a) is at least kα − 2. In particular, ba
does not have bounded orbits, so it does not act elliptically, a contradiction.
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