Acylindrical actions on CAT(0) square complexes

Alexandre Martin* ${ }^{*}$

Abstract

For group actions on hyperbolic $\operatorname{CAT}(0)$ square complexes, we show that the acylindricity of the action is equivalent to a weaker form of acylindricity phrased purely in terms of stabilisers of points, which has the advantage of being much more tractable for actions on non-locally compact spaces. For group actions on general CAT(0) square complexes, we show that an analogous characterisation holds for the so-called WPD condition. As an application, we study the geometry of generalised Higman groups on at least 5 generators, the first historical examples of finitely presented infinite groups without non-trivial finite quotients. We show that these groups act acylindrically on the CAT(-1) polygonal complex naturally associated to their presentation. As a consequence, such groups satisfy a strong version of the Tits alternative and are residually F_{2}-free, that is, every element of the group survives in a quotient that does not contain a non-abelian free subgroup.

Acylindrical actions were first considered by Sela for groups acting on simplicial trees [30]. In Sela's terminology, given a (minimal) action of a group on a simplicial tree, the action is said to be acylindrical if there exists an integer $k \geq 1$ such that no non-trivial element of the group fixes pointwise two points at distance at least k. This definition was extended to actions on arbitrary geodesic metric spaces by Bowditch [4], in his study of the action of the mapping class group of a closed hyperbolic surface on its associated curve complex. Recall that an action of a group G on a metric space X is acylindrical if for every $r \geq 0$ there exist constants $L(r), N(r) \geq 0$ such that for every points x, y of X at distance at least $L(r)$, there are at most $N(r)$ elements h of G such that $d(x, h x), d(y, h y) \leq r$. For $r=0$, one recovers Sela's definition of acylindricity, at least for torsion-free groups. As noticed by Bowditch [4], in the case of group actions on simplicial trees, acylindricity is equivalent to this weaker acylindricity condition at $r=0$.

[^0]Groups that act acylindrically on a hyperbolic space share many features with relatively hyperbolic groups (see [27]), and techniques from dynamics in negative curvature are available to study them. While acylindrical actions on hyperbolic spaces seldom appear naturally, weaker but more frequent forms of 'hyperbolic behaviour' implying acylindrical hyperbolicity have been investigated, see [2,9, 11, 17, 26,31. To date, one of the most general criteria to show the acylindrical hyperbolicity of a group is the following:
Theorem (see [1, Theorem H]). Let G be a group acting by isometries on a geodesic metric space X. Let g be an infinite order element with quasi-isometrically embedded orbits and assume that the following holds:

- g is a strongly contracting element, that is, there exists a point x of X such that the closest-point projections on the orbit $\langle g\rangle x$ of the balls of X that are disjoint from $\langle g\rangle x$ have uniformly bounded diameter,
- g satisfies the WPD condition, that is, for every $r \geq 0$ and every point x of X, there exists an integer m such that there are only finitely many elements h of G such that $d(x, h x), d\left(g^{m} x, h g^{m} x\right) \leq r$.

Then G is either virtually cyclic or acylindrically hyperbolic.
However, checking the acylindricity of an action, or checking that a given hyperbolic element satisfies the WPD condition, is generally tedious. Indeed, these conditions require us to understand 'coarse' stabilisers of pairs of points, which can be particularly challenging for actions on non-locally compact spaces.

In this article, we introduce a weaker notion of acylindricity (and of the WPD condition), which still implies the usual notion of acylindricity for large classes of complexes. This new notion has the advantage of being phrased purely in terms of stabilisers of points, and is thus much easier to handle in general. Other weak forms of acylindricity have been considered by various authors, for instance Delzant [15] and Hamenstädt [20]. In this article, we will be interested in the following weak form of acylindricity, which is the case $r=0$ mentioned earlier in the usual definition of acylindricity:

Definition (weak acylindricity). Let G be a group acting on a geodesic metric space X. We say that the action is weakly acylindrical if there exist constants $L, N \geq 0$ such that two points of X at distance at least L are pointwise fixed by at most N elements of G.

This notion can be further generalised to non-uniform weak acylindricity, that is, to actions such that there exists a constant L such that pairs of points at distance at least L are pointwise fixed by only finitely many group elements. It should be noted that for groups with a uniform bound on the size of their finite subgroups, these two notions coincide.

While acylindricity is a priori stronger than the weak acylindricity considered here, the main goal of this paper is to show that these notions are in fact equivalent when dealing
with actions on particularly well behaved spaces, generalising Bowditch's observation for actions on simplicial trees. Our first result is the following:

Theorem A. Let G be a group acting weakly acylindrically on a hyperbolic CAT(0) square complex. Then the action is acylindrical.

As an application, we consider generalised Higman groups, as introduced by Higman 21. The generalised Higman groups $H_{n}, n \geq 4$, were defined by Higman by generators and relations:

$$
H_{n}:=\left\langle a_{i}, i \in \mathbb{Z} / n \mathbb{Z} \mid a_{i} a_{i+1} a_{i}^{-1}=a_{i+1}^{2}, i \in \mathbb{Z} / n \mathbb{Z}\right\rangle
$$

These groups are historically the first examples of finitely presented infinite groups without non-trivial finite quotients [21]. In [23], the author studied the action of H_{4} on a (nonhyperbolic) CAT(0) square complex naturally associated to its presentation. For $n \geq 5, H_{n}$ acts cocompactly on a CAT(-1) polygonal complex X_{n}, and in particular on a hyperbolic CAT(0) square complex by taking an appropriate subdivision. Such an action is easily shown to be weakly acylindrical. In particular, we obtain the following result:

Theorem B. For $n \geq 5$, the action of H_{n} on X_{n} is acylindrical.
The acylindrical hyperbolicity of generalised Higman groups was first proved by MinasyanOsin [26], using prior work of Schupp [29]. While acylindrical hyperbolicity alone implies strong consequences for the group (see 27] and details therein), having this well understood acylindrical action of H_{n} on a hyperbolic complex allows us to obtain results which do not follow solely from the abstract acylindrical hyperbolicity of the group. In particular, we obtain the following:

Corollary \mathbf{C} (Strong Tits alternative for generalised Higman groups). For $n \geq 5$, a noncyclic subgroup of H_{n} is either contained in a vertex stabiliser, hence embeds in $B S(1,2)$, or is acylindrically hyperbolic.

Corollary D. For $n \geq 5$, the group H_{n} is residually F_{2}-free, that is, every element of the group survives in a quotient that does not contain a non-abelian free subgroup.

Let us now turn to groups acting on CAT(0) square complexes that are not necessarily hyperbolic. Paralleling what we just did for acylindricity, we will be interested in the following weakening of the WPD condition, which again has the advantage of dealing only with stabilisers of pairs of points:

Definition. Let G be a group acting on a geodesic metric space X and let g be an infinite order element with quasi-isometrically embedded orbits. We say that g satisfies the weak $W P D$ condition (or that the action is (non-uniformly) weakly acylindrical in the direction of g) if for every point x of X, there exists an integer m such that there exists only finitely many group elements fixing both x and $g^{m} x$.

Our second main result is the following:
Theorem E. Let G be a group acting by isometries on a CAT(0) square complex X. Let g be a strongly contracting element for the $\operatorname{CAT}(0)$ metric and suppose that g satisfies the weak WPD condition. Then g satisfies the WPD condition. In particular, G is either virtually cyclic or acylindrically hyperbolic.

As a non-uniformly weakly acylindrical action is non-uniformly weakly acylindrical in the direction of each of its strongly contracting elements, we obtain the following corollary:

Corollary F. Let G be a group acting non-uniformly weakly acylindrically on a CAT(0) square complex X. If g is a strongly contracting element of G for the $\operatorname{CAT}(0)$ metric, then g satisfies the WPD condition. In particular, G is either virtually cyclic or acylindrically hyperbolic.

Notice that the Rank Rigidity Theorem for CAT(0) cube complexes of Caprace-Sageev [10, Theorem A] provides us with a way to show the existence of strongly contracting isometries. In particular, we obtain the following corollary:

Corollary G. Let G be a group acting non-uniformly weakly acylindrically on a CAT(0) square complex X such that:

- the action is essential,
- the action does not have a fixed point in $X \cup \partial_{\infty} X$,
- the complex X is not the product of two unbounded trees.

Then G contains strongly contracting elements for the CAT(0) metric, and every such element satisfies the WPD condition. In particular, G is either virtually cyclic or acylindrically hyperbolic.

For instance, this corollary can be used to recover the acylindrical hyperbolicity of the Higman group on 4 generators directly from the action on its associated (non-hyperbolic) CAT(0) square complex [23]. Indeed, such an action is weakly acylindrical [23, Corollary 3.6], and the Rank Rigidity Theorem of Caprace-Sageev can be applied to show the existence of strongly contracting group elements [23, Remark 2.2].

Since these results first appeared, this weak notion of acylindricity has been used in other contexts. Genevois [16, Thm 8.33] proved that weak acylindricity implies acylindricity for actions on finite-dimensional CAT(0) cube complexes. Chatterji-Martin 12 used a related weakening of the WPD condition to show the acylindrical hyperbolicity of many groups acting on general CAT(0) cube complexes, with applications to certain Artin groups. Finally, recent work of Martin-Przytycki proved that weak acylindricity implies acylindricity for action on two-dimensional piecewise hyperbolic CAT (-1) complexes with
finitely many types of shapes 24 , which was used to show the Tits alternative for large classes of Artin groups. In light of these developments, it is natural to ask for what other classes of spaces this notion of weak acylindricity (weak WPD element respectively) implies the usual notion of acylindricity (WPD element respectively).

Organisation of the article. The strategy we follow is the following: For a given $r>0$, to every pair of points x, y in X and every group element g moving x and y by at most r, we associate a geodesic quadrangle between the points $x, y, g x, g y$, and we fill this loop by using an appropriate disc diagram. The aim is then to show that, if x and y are sufficiently far apart, then such 'filling surfaces' must have large portions in common. In particular, the associated group elements will necessary act the same way on a very long common geodesic segment, which is where the weaker forms of acylindricity considered in this paper enter the picture.

Thus, after recalling standard results about the geometry of CAT(0) square complexes and disc diagrams in Section 1, we study in detail the combinatorial geometry of disc diagrams in Section 2, Section 3 studies the way grids (that is, $\operatorname{CAT}(0)$ square complexes isometric to Euclidean rectangles tiled by unit squares) can be mapped to a given CAT(0) square complex. With these tools at hand, we prove the main theorems in Section 4 . Finally, Section 5 is devoted to the geometry of generalised Higman groups.

Acknowledgements. The author thanks his former colleagues at the University of Vienna, and in particular Federico Berlai and Markus Steenbock, for discussions on Higman's group that motivated this work. The author also thanks Anthony Genevois for useful comments.

1 Preliminaries on CAT(0) square complexes

This section contains standard results about $\operatorname{CAT}(0)$ square complexes which will be used in this article. Throughout this section, X will be a $\operatorname{CAT}(0)$ square complex.

1.1 Disc diagrams and the combinatorial Gauß-Bonnet Theorem

A disc diagram D over X is a contractible planar square complex endowed with a combinatorial map $D \rightarrow X$ that is an embedding on each square. A disc diagram D over X is called reduced if no two distinct squares of D that share an edge are mapped to the same square of X. We start by an elementary observation.

Lemma 1.1. Let $\varphi: D \rightarrow X$ be a reduced disc diagram. Then D is a $\operatorname{CAT}(0)$ square complex.

Proof. Since the disc diagram is reduced, the restriction to the link of any vertex is a local isometry. In particular, it sends a simple closed loop of that look to a simple closed loop in the link of the image. As X is a CAT(0) square complex by assumption, simple closed
loops in the links of vertices have at least 4 edges. Thus simple closed loops in the links of vertices of D have at least 4 edges, hence D is a $\operatorname{CAT}(0)$ square complex.

A disc diagram is non-degenerate if its boundary is homeomorphic to a circle, and is degenerate otherwise. Recall that, by the Lyndon-van Kampen Theorem, one can associate to every non-backtracking loop $S \rightarrow X$ a reduced disc diagram whose restriction to the boundary is the given loop.

Definition 1.2 (disc diagram between geodesics, quadrangle). Let γ_{-}, γ_{+}be two geodesics of X, with vertices u_{-}, v_{-}and u_{+}, v_{+}respectively. A disc diagram between γ_{-}and γ_{+} consists of the following data:

- geodesic paths in γ_{u}, γ_{v} in X between u_{-}, u_{+}and v_{-}, v_{+}respectively,
- a reduced disc diagram $\varphi: D \rightarrow X$ whose boundary decomposes as the concatenation of 4 paths $P_{+}, P_{v}, P_{-}, P_{u}$ such that φ sends $P_{+}, P_{v}, P_{-}, P_{u}$ bijectively to $\gamma_{+}, \gamma_{v}, \gamma_{-}, \gamma_{u}$.

The boundary paths P_{+}, P_{-}are called the upper side and lower side of D respectively. The boundary paths P_{v}, P_{u} are called the gates of D. A non-degenerate disc diagram between two geodesics is called a quadrangle.

More generally, given a planar CAT(0) square complex D homeomorphic to a disc and a decomposition of its boundary into geodesic segments $P_{+}, P_{v}, P_{-}, P_{u}$ as above, we say that D is a square complex between P_{-}and P_{+}.

Figure 1: A quadrangle.

We now explain our main tool in controlling the geometry of reduced disc diagrams. Given a planar contractible square complex D, the curvature of a vertex v of D is given by:

$$
\kappa_{D}(v)=2 \pi-\pi \cdot \chi(\operatorname{link}(v))-n_{v} \frac{\pi}{2}
$$

where n_{v} denotes the number of squares of D containing v. A vertex of D is internal if its link is connected and is called a boundary vertex otherwise. The curvature of an internal vertex of D is non-positive by Lemma 1.1. The curvature of a boundary vertex is $\frac{\pi}{2}$ if it is
contained in a single square of D, and non-positive otherwise. We call a boundary vertex of D a corner if it has non-zero curvature. The following version of the combinatorial Gauß-Bonnet Theorem follows the presentation of McCammond-Wise [25, Theorem 4.6].

Theorem 1.3 (Combinatorial Gauß-Bonnet Theorem). Let D be planar contractible square complex. Then:

$$
\sum_{v \text { vertex of } D} \kappa_{D}(v)=2 \pi
$$

1.2 Hyperplanes in a $\mathrm{CAT}(0)$ square complex

We briefly recall some notations and an elementary results about hyperplanes in a CAT(0) square complex. A hyperplane is a connected subspace of X which intersects each square of X, isometrically identified with $[-1,1] \times[-1,1]$, either in the empty set or in a segment of the form $\{0\} \times[-1,1]$ or $[-1,1] \times\{0\}$. An edge of X intersecting a given hyperplane is said to be dual to that hyperplane. Reciprocally, one can associate to every edge e of X a unique hyperplane meeting e, and such a hyperplane is said to be dual to e. The combinatorial hyperplane associated to a given hyperplane (also referred to in the literature as the carrier of the hyperplane) is the minimal subcomplex of X containing that hyperplane. Equivalently, it is the reunion of all the faces of X containing an edge dual to that hyperplane. A hyperplane separates X in exactly two connected components. A minimal subcomplex of X containing one of these components is called a combinatorial half-space.

In this article, we will only deal with combinatorial hyperplanes, and by a slight abuse of notations, we will denote by H combinatorial hyperplanes and by H_{e} the combinatorial hyperplane (associated to the hyperplane) dual to a given edge e of X. We recall the following standard result (see for instance [19, Lemma 13.4]):

Lemma 1.4. Combinatorial hyperplanes and combinatorial half-spaces of a CAT(0) square complex are combinatorially convex.

We also have the following:
Lemma 1.5. Combinatorial half-spaces are convex for the $\operatorname{CAT}(0)$ metric.
Proof. They are locally convex for the CAT(0) metric, and locally convex connected subsets of a CAT(0) space are globally convex (see for instance [8, Theorem 1.10] for a proof of this fact).

The following useful result is well-known, see for instance [19, Lemma 13.1]:
Lemma 1.6. A combinatorial geodesic of a $\operatorname{CAT}(0)$ square complex does not contain two distinct edges that define the same hyperplane.

If $\varphi: D \rightarrow X$ is a reduced disc diagram, then D is a CAT(0) square complex by Lemma 1.1. The rails of a combinatorial hyperplane of D are the two maximal subcomplexes of that combinatorial hyperplane which we do not contain an edge dual to the associated hyperplane.

1.3 Combinatorial intervals

Recall that the combinatorial interval between two vertices v, v^{\prime} of the $\operatorname{CAT}(0)$ square complex X, which we denote $\operatorname{Int}_{X}\left(v, v^{\prime}\right)$, is the minimal subcomplex of X containing all the combinatorial geodesics between v and v^{\prime}. Equivalently, it is the full subcomplex of X associated to the reunion of all the combinatorial geodesics between v and v^{\prime}. The following is a direct consequence of Lemma 1.6:

Lemma 1.7. The combinatorial interval between two vertices of X is the intersection of all the combinatorial half-spaces containing these two vertices.

Thus, Lemma 1.5 implies the following:
Corollary 1.8. Combinatorial intervals are convex for the CAT(0) metric.
We also recall the following result (see [7. Theorem 1.16]):
Lemma 1.9. A combinatorial interval of a $\mathrm{CAT}(0)$ square complex isometrically embeds in \mathbb{R}^{2} with its standard square tiling.

2 Disc diagrams and isometric embeddings in the Euclidean plane

As disc diagrams will be our main tool in proving the results presented in the introduction, this section is devoted to study the combinatorial geometry of a reduced disc diagram $\varphi: D \rightarrow X$. The goal of this section is threefold: to obtain a useful criterion ensuring that the $\operatorname{CAT}(0)$ square complex D isometrically embeds in \mathbb{R}^{2} with its standard square tiling (Proposition 2.3), to obtain a criterion ensuring that the disc diagram $\varphi: D \rightarrow X$ is an isometric embedding (Proposition 2.4), and to prove that for a sufficiently well behaved disc diagram, the map restricts to an isometric embedding on a large subcomplex (Proposition 2.7). Throughout this section again, X will be a given CAT(0) square complex.

2.1 Singularities and (almost) Euclidean quadrangles

Definition 2.1 (singularities, almost Euclidean and Euclidean quadrangles). A singularity of a quadrangle $\varphi: D \rightarrow X$ is one of the following:

- an internal vertex of negative curvature,
- a corner of curvature at most $-\pi$,
- a pair of consecutive corners of curvature $-\frac{\pi}{2}$ in the interior of one of the sides P_{+} and P_{-}.

A quadrangle is called almost Euclidean if it contains no singularity. It is called Euclidean if in addition the boundary of D does not contain two consecutive corners of curvature $-\frac{\pi}{2}$.

More generally, a planar square complex homeomorphic to a disc is Euclidean if it contains no internal vertex of negative curvature, no boundary vertex of curvature at most $-\pi$, and no pair of consecutive corners of curvature $-\frac{\pi}{2}$.

The following lemma, which shows that a given quadrangle cannot be 'too far' from being almost Euclidean, will be used in Section 4.

Lemma 2.2. Let $\varphi: D \rightarrow X$ be a quadrangle. Then D contains at most 4 singularities.
Proof. Let us denote by $P_{i}, i=1, \ldots, 4$, the four geodesic sides of the boundary of D. Since each P_{i} is a combinatorial geodesic, its interior does not contain two consecutive corners of positive curvature (see [23, Lemma 3.8] and its proof). In particular, it follows that

$$
\sum_{v \in \grave{P}_{i}} \kappa_{D}(v) \leq \frac{\pi}{2}
$$

and if P_{i} contains n_{i} singularities in its interior, a similar argument yields

$$
\sum_{v \in \grave{P}_{i}} \kappa_{D}(v) \leq \frac{\pi}{2}-n_{i} \frac{\pi}{2}
$$

Since an internal vertex of D has negative curvature if and only if it is a singularity, we have

$$
\sum_{v \in \check{D}} \kappa_{D}(v) \leq-n \frac{\pi}{2}
$$

where n is the number of internal singularities of D. Finally, each of the remaining four vertices corresponding to the intersection of two adjacent sides P_{i}, P_{j} brings a curvature of at most $\frac{\pi}{2}$. The combinatorial Gauß-Bonnet Theorem 1.3 thus yields the following inequality:

$$
2 \pi \leq 4 \cdot \frac{\pi}{2}+4 \cdot \frac{\pi}{2}-\left(\sum_{1 \leq i \leq 4} n_{i}\right) \frac{\pi}{2}-n \frac{\pi}{2}
$$

and the number $n+\sum_{i} n_{i}$ of singularities of D is thus bounded above by 4 .

2.2 Embeddability in the Euclidean plane

Proposition 2.3. Let D be a Euclidean square complex. Then D embeds isometrically in \mathbb{R}^{2} with its standard square tiling.

Proof. Let H be a (combinatorial) hyperplane of D. Let L_{+}, L_{-}be the two rails of H. We say that another hyperplane H^{\prime} osculates H if $H \cap H^{\prime}$ is non-empty but does not contain any square of D.

Claim 1: There exists at most one hyperplane of D that osculates H along L_{+}.
In order to prove this claim, first notice that if a square of D meets H, it meets it along an edge, by the curvature condition on Euclidean square complexes. For every hyperplane H^{\prime} of D osculating H along L_{+}, set

$$
J_{H^{\prime}}:=H^{\prime} \cap H .
$$

By combinatorial convexity of hyperplanes in a CAT(0) square complex complex (Lemma (1.4), it follows that each $J_{H^{\prime}}$ is a sub-segment of L_{+}. Moreover, if two such osculating hyperplanes $H^{\prime}, H^{\prime \prime}$ define sub-segments of L_{+}that meet along a single vertex, then the curvature condition on almost Euclidean complex implies that $H^{\prime}=H^{\prime \prime}$. Suppose now by contradiction that there exist at least two hyperplanes of D osculating H along L_{+}. It follows from the previous discussion that we can choose a maximal non-empty sub-segment J of L_{+}such that no edge of J is contained in a hyperplane of D osculating H along L_{+}, and such that the extremities v_{1} and v_{2} of J are contained in two hyperplanes H_{1} and H_{2} respectively which osculate H along L_{+}. By maximality of J, the curvature condition on almost Euclidean quadrangles implies that each v_{i} is boundary vertex with curvature $-\frac{\pi}{2}$. By definition of J, there exists no corner of D between v_{1} and v_{2}, which contradicts the fact that a Euclidean square complex does not contain two consecutive corners of curvature $-\frac{\pi}{2}$. This concludes the proof of Claim 1 .

Let H_{+}and H_{-}be the hyperplanes of D osculating H along L_{+}and L_{-}respectively (the argument is similar if there exists only one or zero such osculating hyperplane). Choose isometric embeddings

$$
\psi: H \hookrightarrow \mathbb{R}^{2}, \psi_{+}: H_{+} \hookrightarrow \mathbb{R}^{2} \text { and } \psi_{-}: H_{-} \hookrightarrow \mathbb{R}^{2}
$$

such that the images of ψ, ψ_{-}and ψ_{+}are contained in distinct horizontal hyperplanes of \mathbb{R}^{2} and such that

$$
\psi\left(H \cap H_{-}\right)=\psi_{-}\left(H \cap H_{-}\right), \psi\left(H \cap H_{+}\right)=\psi_{+}\left(H \cap H_{+}\right) .
$$

From the previous discussion on curvature in almost Euclidean quadrangles, it also follows that

$$
\psi(H) \cap \psi_{-}\left(H_{-}\right)=\psi_{-}\left(H \cap H_{-}\right), \psi(H) \cap \psi_{+}\left(H_{+}\right)=\psi_{+}\left(H \cap H_{+}\right) .
$$

Thus, we can glue these maps together into a combinatorial embedding

$$
H_{-} \cup H \cup H_{+} \hookrightarrow \mathbb{R}^{2}
$$

that is a local isometry, and which sends each of these combinatorial hyperplanes inside a horizontal hyperplane of \mathbb{R}^{2} (with its usual square tiling). Reasoning by induction, we have that D is covered by a finite sequence H_{i} of hyperplanes, which we call horizontal, such that, for distinct i and j, we have that $H_{i} \cap H_{j}$ is empty if $j \neq i \pm 1$ and is contained in the (unique) rail common to H_{i} and H_{j} otherwise. By induction, we thus obtain a combinatorial embedding $\psi: D \hookrightarrow \mathbb{Z}^{2}$ where each H_{i} is mapped isometrically into some horizontal hyperplane of \mathbb{Z}^{2}.

Claim 2: The map $\psi: D \hookrightarrow \mathbb{Z}^{2}$ is an isometric embedding.

To prove this claim, let P be a combinatorial geodesic in D, which we can write as a finite concatenation

$$
P=P_{0} e_{1} P_{1} e_{2} P_{2} \ldots
$$

where each e_{i} is an edge of D defining one of the horizontal hyperplanes, and P_{i} is a segment contained in one of the rails of some horizontal hyperplane of D. Thus, $\psi(P)$ consists of the concatenation

$$
\psi(P)=\psi\left(P_{0}\right) \psi\left(e_{1}\right) \psi\left(P_{1}\right) \psi\left(e_{2}\right) \psi\left(P_{2}\right) \ldots
$$

of horizontal segments $\psi\left(P_{i}\right)$ of \mathbb{Z}^{2} and vertical edges $\psi\left(e_{i}\right)$. Choosing an orientation for P yields an orientation for each e_{i} and P_{i} and hence for their images under ψ. Showing that $\psi(P)$ is an oriented geodesic of \mathbb{Z}^{2} thus amounts to showing that all the $\psi\left(e_{i}\right)$ have the same orientation (up or down) and that all the $\psi\left(P_{i}\right)$ have the same orientation (left or right). By contradiction let us assume that this is not the case. Up to an isometry of \mathbb{Z}^{2} preserving the set of its horizontal hyperplanes, we thus have two cases to consider:

Figure 2: Two impossible configurations.

Case 1: P contains a sub-segment $e_{i} P_{i} e_{i+1}$ such that $\psi\left(e_{i}\right)$ and $\psi\left(e_{i+1}\right)$ have different orientations (one up, one down, as depicted on the left in Figure 2). But by construction of ψ, this implies that both e_{i} and e_{i+1} define the same horizontal hyperplane of D, which contradicts Lemma 1.6 .

Case 2: P contains a sub-segment of the form $P_{i} e_{i+1} e_{i+2} \ldots e_{k} P_{k}$, for some $i<k$, such that $\psi\left(P_{i}\right)$ and $\psi\left(P_{k}\right)$ have different orientations (one left, one right, as depicted on the right in Figure 22. For $i+1 \leq j \leq k$, if the square of \mathbb{Z}^{2} to the left of $\psi\left(e_{j}\right)$ is not contained in $\psi(D)$, then e_{j} is contained in the boundary of D. If such a square is contained in $\psi(D)$ for every $i+1 \leq j \leq k$, then the last edge of P_{i} and the first edge of P_{k} define the same (hyperplane), contradicting Lemma 1.6. Otherwise, choose a maximal sub-segment of $e_{i+1} \ldots e_{k}$ such that for each edge of it, the square of \mathbb{Z}^{2} on its left is not in $\psi(D)$. Then its endpoints are boundary vertices of curvature $-\frac{\pi}{2}$ as D is a non-degenerate disc diagram, and no other corner is between these two corners, contradicting the fact that a Euclidean square complex does not contain two consecutive corners of curvature $-\frac{\pi}{2}$.

This concludes the proof of Claim 2, and thus finishes the proof of Proposition 2.3 .

2.3 Isometric embeddings

Proposition 2.4. A Euclidean disc diagram $\varphi: D \rightarrow X$ is an isometric embedding.
We will need the following result 19 , Lemma 2.11]:
Lemma 2.5. Let $\varphi: X_{1} \rightarrow X_{2}$ be a combinatorial immersion between two $\operatorname{CAT}(0)$ square complexes, and assume that the link of a vertex v of X_{1} is sent (injectively) to a full subgraph of the link of $\varphi(v)$. Then φ is an isometric embedding.

Proof of Lemma 2.4. By Proposition 2.3, we can assume that D is a subcomplex of \mathbb{R}^{2}. We now describe an algorithm to complete the Euclidean disc diagram $\varphi: D \rightarrow X$ into a Euclidean disc diagram $\varphi^{\prime}: D^{\prime} \rightarrow X$, where D^{\prime} is a subcomplex of \mathbb{R}^{2} containing D such that the inclusion $D \hookrightarrow D^{\prime}$ is an isometric embedding, and such that for every vertex w of D^{\prime}, the induced map on the link of w sends the link of w in D^{\prime} to a full subgraph of X.

We proceed by induction and construct maps $\varphi_{i}: D_{i} \rightarrow X$ where $\left(D_{i}\right)$ is an increasing sequence of non-degenerate sub-diagram of \mathbb{R}^{2}, such no D_{i} contains two consecutive corners of negative curvature, and such that each inclusion $D_{i} \hookrightarrow D_{i+1}$ is an isometric embedding. Set $D_{0}:=D$ and $\varphi_{0}:=\varphi: D_{0} \rightarrow X$. Suppose that D_{0}, \ldots, D_{n} and $\varphi_{0}, \ldots, \varphi_{n}$ have been constructed. If D_{n} contains a vertex w such that the map φ_{n} sends the link of w to a non-full subgraph of X, then, since the disc diagram is non-degenerate, necessarily w is a corner of curvature $-\frac{\pi}{2}$. Let C be the unique square of \mathbb{R}^{2} containing w which is not contained in D_{n}. Then $C \cap D_{n}$ consists of exactly two edges, since D_{n} does not contain two consecutive corners of negative curvature by the inductive hypothesis. Thus, there is
a unique way to extend $\varphi_{n}: D_{n} \rightarrow X$ to $\varphi_{n+1}: D_{n+1} \rightarrow X$, where $D_{n+1}:=D_{n} \cup C$. Moreover, the inclusion $D_{n} \hookrightarrow D_{n+1}$ is an isometric embedding, D_{n+1} does not contain two consecutive corners of negative curvature, and $\varphi_{n+1}: D_{n+1} \rightarrow X$ is reduced.

This algorithm eventually stabilises at some stage $N \geq 0$. Indeed, if we choose a big square of \mathbb{R}^{2} containing D, then it contains also every D_{i}. The map $D \rightarrow X$ thus factorises as $D \hookrightarrow D_{N} \xrightarrow{\varphi_{N}} X$. Moreover, as φ_{N} is reduced by construction, it is automatically an immersion, as D_{N} is a subcomplex of \mathbb{R}^{2}. Thus, φ_{N} is an isometric embedding by Lemma 2.5, and the same holds for $D \rightarrow X$.

2.4 Euclidean quadrangles in disc diagrams

Definition 2.6 (width). A quadrangle $\varphi: D \rightarrow X$ between geodesic segments $\gamma_{-}, \gamma+$ of X is of width at most r if its sides are at Hausdorff distance at most r in D.

Analogously, a planar CAT(0) square complex D, homeomorphic to a disc, between segments P_{-}and P_{+}is of width at most r if P_{-}and P_{+}are at Hausdorff distance at most r in D.

Proposition 2.7. For every $r \geq 0$, there exists a constant $L_{\mathrm{emb}}(r) \geq 0$ such that the following holds: Let $\varphi: D \rightarrow X$ be an almost Euclidean quadrangle, of width at most r, between two geodesics γ_{-}and γ_{+}, and let $\gamma_{-}^{\prime} \subset \gamma_{-}$be a sub-segment at distance at least $L_{\mathrm{emb}}(r)$ from the endpoints of γ_{-}. Then there exists a Euclidean sub-quadrangle D^{\prime} of D, of width at most r, between γ_{-}^{\prime} and a sub-segment $\gamma_{+}^{\prime} \subset \gamma_{+}$.

Proof. Since vertices of almost Euclidean quadrangles have uniformly bounded valence by definition, there exists a constant $N(r)$ such that every combinatorial ball of radius r in a non-degenerate almost Euclidean quadrangle contains at most $N(r)$ edges. Moreover, there exists a constant $L_{1}(r)$ such that the following holds:

Let $\varphi: D \rightarrow X$ be an almost Euclidean disc diagram of width at most r. Let v_{1}, v_{2} be the vertices of γ_{-}at distance $2 N(r+1)+1$ from the endpoints u_{1}, u_{2} of γ_{-}. Since D has width at most r, the combinatorial ball of radius r around v_{1} or v_{2} disconnects D. In particular, a rail of a hyperplane crossing an edge of γ_{-}between u_{i} and v_{i} which does not cross an edge of $B\left(v_{i}, r\right)$ contains at most $L_{1}(r)$ edges.

Now set

$$
L_{\mathrm{emb}}(r):=(2 N(r+1)+1)+L_{1}(r) .
$$

Let $\varphi: D \rightarrow X$ be a non-degenerate almost Euclidean (reduced) disc diagram of width at most r, between two geodesics γ_{-}and γ_{+}, with $\left|\gamma_{-}\right| \geq 2 L_{\mathrm{emb}}(r)$. Let v_{1}, v_{2} be the vertices of γ_{-}at distance $2 N(r+1)+1$ from the endpoints u_{1}, u_{2} of γ_{-}. By Lemma 1.6, for each $i=1,2$, there exists an edge a_{i} of γ_{-}between u_{i} and v_{i} such that the combinatorial hyperplane $H_{a_{i}}$ does not meet $B\left(u_{i}, r\right) \cup B\left(v_{i}, r\right)$. In particular, each $H_{a_{i}}$ crosses γ_{+}. Moreover, $H_{a_{1}}$ and $H_{a_{2}}$ are disjoint as in addition each $B\left(v_{i}, r\right)$ disconnects D. Thus, $H_{a_{1}}$ and $H_{a_{2}}$ defines a Euclidean sub-quadrangle D^{\prime} of D whose gates are contained in the rails
of some combinatorial hyperplanes (see Figure 3).

Figure 3: The construction of the Euclidean sub-quadrangle D^{\prime}.

In particular, $\varphi_{\mid}: D^{\prime} \rightarrow X$ is a Euclidean quadrangle, and the restriction of φ to D^{\prime} isometrically embeds in \mathbb{R}^{2} by 2.3 . Since the rails of each $H_{a_{i}}$ have length at most $L_{1}(r)$, and γ_{-}is at distance at least $L_{1}(r)$ from a_{1} and a_{2}, we can choose a sub-quadrangle $\varphi^{\prime \prime}: D^{\prime \prime} \rightarrow X$ of width at most r between γ_{-}^{\prime} and a sub-segment $\gamma_{+}^{\prime \prime} \subset \gamma_{+}$, which concludes the proof.

3 Grids and their combinatorial geometry

In this section, we study the way certain subcomplexes of the Euclidean plane with its standard tiling can be mapped to a given $\operatorname{CAT}(0)$ square complex. Throughout this section, X is a given $\mathrm{CAT}(0)$ square complex.

Definition 3.1 (grid). A grid of D is a $\operatorname{CAT}(0)$ square complex isometric to $I_{l} \times I_{h}, l \geq 1$, $h \geq 0$, where I_{l} and I_{h} denote a simplicial segment on l and h edges respectively. Such a grid is said to be of length l and width h.

A grid of X is a reduced disc diagram $\varphi: D \rightarrow X$.
Remark 3.2. It follows from Lemma 2.5 that a grid of X is an isometric embedding. Therefore, we will sometimes use the term 'grid of X ' to denote the image of such a disc diagram.

Proposition 3.3. Let $\varphi: I_{m} \times I_{n} \rightarrow X$ be a combinatorial map such that $\varphi_{I_{m} \times\{0\}}$ is a combinatorial geodesic. Then φ factorises as

$$
I_{m} \times I_{n} \xrightarrow{i d \times \varphi_{n}} I_{m} \times T_{n} \stackrel{h}{\hookrightarrow} X,
$$

where T_{n} is a simplicial tree, $\varphi_{n}: I_{n} \rightarrow T_{n}$ is a combinatorial map, and $I_{m} \times T_{n} \hookrightarrow X$ is an isometric embedding.

Proof. We prove the result by induction on n, for m fixed. The result for $n=1$ is immediate as combinatorial hyperplanes embed isometrically in a $\operatorname{CAT}(0)$ cube complex [28, Theorem 4.10]. Suppose the result is true at rank $n \geq 1$ and consider a map $\varphi: I_{m} \times I_{n+1} \rightarrow X$ satisfying the assumptions of the lemma. The restriction of φ to $I_{m} \times I_{n}$ factorises by the induction hypothesis. Denote by $C_{i, j}$ the square of $I_{m} \times I_{n+1}$ on the i-th column (starting from the left) and the j-th line (starting from the bottom).

If there exists a $1 \leq i_{0} \leq m$ such that $\varphi\left(C_{i_{0}, n+1}\right)=\varphi\left(C_{i_{0}, j_{0}}\right)$, then $\varphi\left(C_{i, n+1}\right)=\varphi\left(C_{i, j_{0}}\right)$ for every $1 \leq i \leq m$. Indeed, this follows by induction, by starting from $C_{i_{0}, j_{0}}$ and moving through adjacent squares in the j_{0}-th line, since, in the $\operatorname{CAT}(0)$ square complex X, two squares sharing two adjacent edges are the same. Thus, if there exists a $1 \leq i_{0} \leq m$ such that $\varphi\left(C_{i_{0}, n+1}\right)=\varphi\left(C_{i_{0}, j_{0}}\right)$, then φ factorises as

$$
I_{m} \times I_{n+1} \xrightarrow{i d \times \varphi_{n+1}} I_{m} \times T_{n} \hookrightarrow X,
$$

where $I_{m} \times T_{n} \hookrightarrow X$ comes from the induction hypothesis, $\varphi_{n+1}: I_{n+1} \rightarrow T_{n}$ is the unique combinatorial map such that $i d \times \varphi_{n+1}$ restricts to $i d \times \varphi_{n}$ on $I_{m} \times I_{n}$ and is such that $\left(i d \times \varphi_{n+1}\right)\left(C_{i, n+1}\right)=\left(i d \times \varphi_{n}\right)\left(C_{i, j_{0}}\right)$ for every $1 \leq i \leq m$.

If there does not exist a $1 \leq i_{0} \leq m$ such that $\varphi\left(C_{i_{0}, n+1}\right)=\varphi\left(C_{i_{0}, j_{0}}\right)$, then write I_{n+1} as the reunion of I_{n} and an edge e glued along a vertex v, and consider the tree $T_{n} \cup_{\varphi_{n}(v)} e^{\prime}$ obtained by attaching to T_{n} an edge e^{\prime} along $\varphi_{n}(v)$. Then φ factorises as

$$
I_{m} \times I_{n+1} \xrightarrow{i d \times \varphi_{n+1}} I_{m} \times\left(T_{n} \cup_{\varphi_{n}(v)} e^{\prime}\right) \xrightarrow{h^{\prime}} X,
$$

where $\varphi_{n+1}: I_{n+1} \rightarrow T_{n} \cup_{\varphi_{n}(v)} e^{\prime}$ is the unique combinatorial map that restricts to φ_{n} on I_{n} and sends e to e^{\prime}, and h^{\prime} restricts to h on $I_{m} \times T_{n}$. By construction, the map $I_{m} \times\left(T_{n} \cup_{\varphi_{n}(v)} e^{\prime}\right) \xrightarrow{h^{\prime}} X$ is a local isometry, i.e. it is injective on the link of vertices, as h already is. Moreover, as links of vertices of X have girth at least 4, it follows that for every vertex v of $I_{m} \times\left(T_{n} \cup_{\varphi_{n}(v)} e^{\prime}\right)$, the image of the link of v under h^{\prime} is a full subgraph of the link of $h^{\prime}(v)$. Thus, h^{\prime} is an isometric embedding by Lemma 2.5 .

4 Proof of the main theorems

This section is devoted to the proof of Theorems A and E. The proofs being extremely similar, we start with the slightly more technical Theorem E and explain in Section 4.5 how to adapt the proof to deduce Theorem A.

4.1 Strongly contracting axes

A CAT(0) square complex has two metrics naturally associated it, depending on whether we are considering the ℓ_{1} - or ℓ_{2}-metric on its squares. In the ℓ_{1}-case, we recover the combinatorial distance on the set of vertices, and in the ℓ_{2}-case we recover the $\operatorname{CAT}(0)$
metric. In what follows, we will indicate with subscripts which metric is being considered, whether talking about the translation length $|\cdot|_{i}$, the distance $d_{i}(\cdot, \cdot)$, etc.

For the rest of Sections 4.1, 4.3 and 4.4, we assume that we are given a $\operatorname{CAT}(0)$ square complex X, a group G acting on it by isometries, and an element $g \in G$ which is strongly contracting (for the ℓ_{2}-metric) and satisfies the weak WPD condition. An ℓ_{2}-axis of g will mean a geodesic line of X (for the ℓ_{2}-metric) on which g acts by translation. An ℓ_{1}-axis (or combinatorial axis) of g will mean a geodesic line of the 1 -skeleton of X (for the ℓ_{1}-metric) on which g acts by translation. Combinatorial axes of hyperbolic isometries of $\operatorname{CAT}(0)$ square complexes were shown to exist by Haglund [18]. We choose, for $i=1$ or 2 , an ℓ_{i}-axis Λ_{i} for g.

Lemma-Definition 4.1 (tubular constant). Since Λ_{2} is strongly contracting by assumption, [3, Corollary 3.4] implies that we can choose a tubular constant C_{2} such that for every two points x, y of X which project to two points of Λ_{2} at distance at least C_{2}, then any geodesic from x to y meets the C_{2}-neighbourhood of Λ.

Lemma-Definition 4.2 (the constant δ). There exists a constant $\delta>0$ such that Λ_{1} and Λ_{2} are at Hausdorff distance at most δ from one another (for both the ℓ_{1-} and the ℓ_{2}-metric).

Proof. By [3, Lemma 3.8], there exists a constant C_{2}^{\prime} such that for every pair of points u, v in the C_{2}-neighbourhood of Λ_{2}, a ball disjoint from the CAT(0) geodesic $[u, v]$ projects on $[u, v]$ to a subset of diameter strictly less than C_{2}^{\prime}. Choose integers $m, m^{\prime} \geq 1$ such that $m|g|_{2}>C_{2}$ and $m^{\prime}|g|_{2}>C_{2}^{\prime}+|g|_{1}+2$. Let x_{1} be a point of Λ_{1} and let x_{2} be its projection on Λ_{2} (and thus $g^{2 m+m^{\prime}} x_{2}$ is the projection of $g^{n+2 m} x_{1}$ on Λ_{2}).

Let u be a point of the CAT(0) geodesic between x_{1} and $g^{m^{\prime}+2 m} x_{1}$ which projects to the point $g^{m} x_{2} \in \Lambda_{2}$. Since $d_{2}\left(x_{2}, g^{m} x_{2}\right)=m|g|_{2}>C_{2}$, there exists a point y in the sub-segment between x and u and a point $y_{2} \in \Lambda_{2}$ in between x_{2} and $g^{m} x_{2}$ such that $d_{2}\left(y, y_{2}\right) \leq C_{2}$. Analogously, let v be a point of the geodesic between x and $g^{m+2 m^{\prime}} x_{1}$ which projects to the point $g^{m+m^{\prime}} x_{2} \in \Lambda_{2}$. Since $d_{2}\left(g^{m^{\prime}+m} x_{2}, g^{m^{\prime}+2 m} x_{2}\right)=m|g|_{2}>C_{2}$, there exists a point z in the sub-segment between v and $g^{m^{\prime}+2 m} x$ and a point $z_{2} \in \Lambda_{2}$ in between $g^{m^{\prime}+m} x_{2}$ and $g^{m^{\prime}+2 m} x_{2}$ such that $d_{2}\left(z, z_{2}\right) \leq C_{2}$. By convexity of the $\operatorname{CAT}(0)$ metric, it follows that the geodesic between y and z is contained in the C_{2}-neighbourhood of Λ_{2}.

Let us now consider the combinatorial interval $\operatorname{Int}_{X}\left(x_{1}, g^{m^{\prime}+2 m} x_{1}\right)$ between x_{1} and $g^{m^{\prime}+2 m} x_{1}$. By Corollary 1.8 and Lemma 1.9, it is a convex subcomplex (for the CAT(0) metric) and we can think of it as a subcomplex of \mathbb{R}^{2} with its standard tiling. Let K be the subset of \mathbb{R}^{2} consisting of those points whose orthogonal projection on the bi-infinite line generated by the segment $[y, z]$ is contained in $[y, z]$. It follows from the definition of C_{2}^{\prime} that $\operatorname{Int}_{X}\left(x_{1}, g^{m^{\prime}+2 m} x_{1}\right) \cap K$ is contained in the C_{2}^{\prime}-neighbourhood of $[y, z]$. Thus, every combinatorial geodesic from x_{1} to $g^{m^{\prime}+2 m} x_{1}$ contains a sub-interval of ℓ_{2}-length at least $d_{2}(y, z) \geq|g|_{1}+2$, and thus a sub-segment of ℓ_{1}-length at least $\left|g_{1}\right|$, which is C_{2}^{\prime}-close to
$[y, z]$. In particular, the axis Λ_{1} contains a sub-segment of ℓ_{1}-length at least $\left|g_{1}\right|$ which is $\left(C_{2}^{\prime}+C_{2}\right)$-close to Λ_{2} for the ℓ_{2}-metric, and thus Λ_{1} and Λ_{2} are at Hausdorff distance at most $C_{2}^{\prime}+C_{2}$.

An immediate corollary is the following:
Corollary-Definition 4.3 (the constant C_{\square}). There exists a constant C_{\square} such that every grid whose interior is disjoint from the axis Λ_{1} projects on Λ_{1} (for the ℓ_{1}-metric) with a diameter strictly smaller than C_{\square}.

Lemma 4.4. Let γ_{1} be a geodesic segment contained in Λ_{1} and let h be a group element that moves the endpoints of γ_{1} by a distance of at most r (for the ℓ_{1}-metric). Let γ_{1}^{\prime} be a sub-segment of γ_{1}. Then γ_{1}^{\prime} and $h \gamma_{1}^{\prime}$ are at Hausdorff distance at most $2 r+8 \delta$ (for the ℓ_{1}-metric).

Proof. By lemma 4.2, Λ_{1} and Λ_{2} are at Hausdorff distance at most δ for the ℓ_{1}-metric and for the ℓ_{2}-metric. Let $\gamma_{2}, \gamma_{2}^{\prime}$ be the ℓ_{2}-projections, of $\gamma_{1}, \gamma_{1}^{\prime}$ on the convex subset Λ_{2}. The subsets γ_{1} and $\gamma_{2}\left(\gamma_{1}^{\prime}\right.$ and γ_{2}^{\prime} respectively) are at Hausdorff distance at most δ for the ℓ_{2}-metric by construction. We thus have:

$$
\begin{aligned}
d_{1}\left(\gamma_{1}^{\prime}, h \gamma_{1}^{\prime}\right) & \leq d_{1}\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)+d_{1}\left(\gamma_{2}^{\prime}, h \gamma_{2}^{\prime}\right)+d_{1}\left(h \gamma_{2}^{\prime}, h \gamma_{1}^{\prime}\right) \\
& \leq 4 d_{2}\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)+d_{1}\left(\gamma_{2}^{\prime}, h \gamma_{2}^{\prime}\right) \\
& \leq 4 \delta+2 d_{2}\left(\gamma_{2}^{\prime}, h \gamma_{2}^{\prime}\right) \\
& \leq 4 \delta+2(r+2 \delta) \leq 2 r+8 \delta
\end{aligned}
$$

the last inequalities following from the convexity of the CAT(0) metric, since h moves the endpoints of γ_{1} by at most r.

4.2 Staircases

Definition 4.5. A Euclidean $\mathrm{CAT}(0)$ square complex $D=D\left(P_{-}, P_{+}\right)$between geodesic segments P_{-}and P_{+}is called a staircase if P_{-}contains at least one corner of D in its interior.

Lemma 4.6. Let $D=D\left(P_{-}, P_{+}\right)$be a Euclidean CAT(0) square complex of width at most r between geodesic segments P_{-}and P_{+}of D, and $\varphi_{i}: D \rightarrow X$ a family of combinatorial maps that all coincide on P_{-}. Let $k \geq 1$. If P_{-}contains at least $2 r+2 k$ corners, then the φ_{i} coincide on a sub-geodesic of P_{+}of length at least k.

Proof. Recall that D embeds in \mathbb{R}^{2} with its standard square tiling by Lemma 1.9 . Thus, we will assume that D is a subcomplex of \mathbb{R}^{2}.

Up to an isometry of \mathbb{R}^{2}, we can assume that the following holds: For every horizontal (respectively vertical) edge of P_{-}, the unique square above it (respectively to its left) is in D (see Figure 4).

Let v and v^{\prime} be the first and last corners of P_{-}of curvature $-\frac{\pi}{2}$. We will prove that the φ_{i} coincide on

$$
K:=D \cap \operatorname{Int}_{\mathbb{R}^{2}}\left(v, v^{\prime}\right)
$$

where $\operatorname{Int}_{\mathbb{R}^{2}}\left(v, v^{\prime}\right)$ is the combinatorial interval between v and v^{\prime}. We order the squares of K into a sequence $C_{1}, C_{2} \ldots$ by starting from the downmost horizontal hyperplane of K and reading from right to left; Once a horizontal hyperplane has been exhausted, move to the one above it and apply the same procedure.

Figure 4: Ordering the squares of K. The subcomplex K is the shaded region.

We now show by induction that the φ_{i} coincide on $K_{n}:=\cup_{1 \leq i \leq n} C_{i}$. This holds for $n=1$. Indeed, two edges of C_{1} are in P_{-}. As the φ_{i} coincide on P_{-}, the $\mathrm{CAT}(0)$ condition implies that they also coincide on C_{1}. Suppose that the φ_{i} coincide on K_{n} for $n \geq 1$. Then the right and bottom edges of C_{n+1} belong to $P_{-} \cup K_{n}$, and the same reasoning thus implies that the φ_{i} coincide on C_{n+1}.

Since P_{-}contains at least $2 r+2 k$ corners, we can choose a vertex w in P_{-}such that there exist at least $r+k$ corners between w and v, and between w and and v^{\prime}. It thus follows that

$$
K \supset D \cap B_{\mathbb{R}^{2}}(w, r+k)
$$

where $B_{\mathbb{R}^{2}}(\cdot)$ denotes the ball in \mathbb{R}^{2} for the combinatorial distance. As the geodesic P_{+} meets the r-neighbourhood of w by assumption, it follows that K contains a sub-geodesic of P_{+}of length at least k, and the φ_{i} thus coincide on a sub-geodesic of P_{+}of length at least k.

4.3 Corridors over the axis Λ_{1}

Definition 4.7 (Corridor). Let $D=D\left(\gamma_{-}, \gamma_{+}\right)$be a Euclidean quadrangle. We say that D is a corridor if every vertex in the interior of P_{-}and P_{+}has zero curvature in D.

Remark-Definition 4.8 (the constants L and N). The WPD condition for g implies that there exist constants L and N such that there do not exist N distinct group elements that fix pointwise two points of Λ_{1} at distance at least L. We thus choose two such constants $L, N \geq 0$ for the remaining of this section.

The aim of this section is to prove the following intermediate result:
Proposition 4.9. For every $r>0$, there exist constants $L_{0}(r), N_{0}(r)$ such that the following holds: For every x, y in Λ_{1}, for every sub-segment γ of Λ_{1} contained in the sub-segment of Λ_{1} between x and y, for every sub-segment $\gamma_{-} \subset \gamma$ of length at least $L_{0}(r)$, there exist at most $N_{0}(r)$ elements h of G such that $d(x, h x), d(y, h y)<r$, and such that there exist a quadrangle between γ and $h \gamma$ together with a sub-quadrangle between $\gamma-$ and a sub-segment $\gamma_{+} \subset h \gamma$ which is a corridor of width at most $4 r+4 C_{\square}+16 \delta$.

The reason for the constant $4 r+4 C_{\square}+16 \delta$ will become apparent in the next section. A key tool in controlling such quadrangles is the following operations of 'concatenating' and 'piling up' disc diagrams.

Definition 4.10 (concatenation of disc diagrams). Let $\varphi: D \rightarrow X\left(\varphi^{\prime}: D^{\prime} \rightarrow X\right.$ respectively) be a quadrangle between two combinatorial geodesic γ_{-}and $\gamma_{+}\left(\gamma_{-}^{\prime}\right.$ and γ_{+}^{\prime} respectively). Assume that γ_{+}and γ_{-}^{\prime} intersect along a non-empty geodesic sub-segment.

The two disc diagrams $\varphi: D \rightarrow X$ and $\varphi^{\prime}: D^{\prime} \rightarrow X$ can be concatenated into a disc diagram $\Phi: D \cdot D^{\prime} \rightarrow X$ where $D \cdot D^{\prime}$ is the planar contractible square complex obtained from the disjoint union of D and D^{\prime} by identifying a point x in the upper side of D with a point x^{\prime} in the lower side of D^{\prime} precisely when $\varphi(x)=\varphi^{\prime}\left(x^{\prime}\right)$.

Definition 4.11 (piling up of disc diagrams). Let γ be a combinatorial geodesic of X. Let $\left(h_{i}\right)$ a sequence of group elements and denote by $\varphi_{h_{i}}: D\left(h_{i}\right) \rightarrow X$ a quadrangle between γ and $h_{i} \gamma$. For each integer $i \in \mathbb{Z}$, the map $h_{1} \ldots h_{i} \varphi_{h_{i+1}}$ defines a disc diagram between $h_{1} \ldots h_{i} \gamma$ and $h_{1} \ldots h_{i+1} \gamma$. Thus, for each n we can successively concatenate the disc diagrams $h_{1} \ldots h_{i} \varphi_{h_{i+1}}$ into a disc diagram between γ and $h_{1} \cdots h_{n} \gamma$. We say that this disc diagram is obtained by piling up the sequence of disc diagrams $\left(\varphi_{h_{i}}: D\left(h_{i}\right) \rightarrow X\right)_{1 \leq i \leq n}$.

We now start the proof of Proposition 4.9, which in splits in several steps. Throughout this proof, whenever x, y are vertices of $\Lambda_{1}, \gamma \subset \Lambda_{1}$ is a sub-segment, and $\gamma_{-} \subset \gamma$ is a sub-segment, we will say that an element g of G satisfies the property $\left(P_{r}\right)$ with respect to x, y, γ, γ_{-}if $d(x, g x), d(y, g y)<r$, and there exists a quadrangle $D(g)$ between γ and $g \gamma$ and a sub-quadrangle $D^{\prime}(g)$ between γ_{-}and a sub-segment $\gamma_{+} \subset g \gamma$ which is a corridor. The proof is split in several steps.

Step 1. Let x, y be vertices of Λ_{1} at distance at least $2\left(4 r+4 C_{\square}+16 \delta\right), \gamma$ a sub-segment of Λ_{1} between them, and $\gamma_{-} \subset \gamma$ a subsegment of length at least $2\left(4 r+4 C_{\square}+16 \delta\right)$. Let h be an element of G satisfying the property $\left(P_{r}\right)$ with respect to x, y, γ, γ_{-}, and denote by
$\varphi_{h}: D(h) \rightarrow X$ an associated quadrangle and $D^{\prime}(h)$ the associated sub-quadrangle which is a corridor. Let $k, n \geq 1$ be constants that will be chosen later. Let $\Phi_{n}: D^{n}(h) \rightarrow X$ be the disc diagram between γ and $h^{n} \gamma$ obtained by piling up n copies of the disc diagram $\varphi_{h}: D(h) \rightarrow X$.

By Lemma 2.3, $D^{\prime}(g)$ contains a sub-quadrangle which is a grid $G_{1}(g)$, of length $\left|\gamma_{-}\right|-$ $2\left(4 r+4 C_{\square}+16 \delta\right)$ and width $l \leq 4 r+4 C_{\square}+16 \delta$. We call this integer l the width of g. Moreover, by Lemma 4.4, the upper side of $G_{1}(g)$ and the h-translate of the bottom side of $G_{1}(g)$ are at Hausdorff distance at most $\left(4 r+4 C_{\square}+16 \delta\right)+(2 r+8 \delta)=6 r+4 C_{\square}+24 \delta$. If $\left|\gamma_{-}\right|>2\left(4 r+4 C_{\square}+16 \delta\right)+2(i-1)\left(6 r+4 C_{\square}+24 \delta\right)$ for some $i \geq 1$, then $D^{\prime}(g)$ contains a subquadrangle which is a grid $G_{i}(g)$, of length $\left|\gamma_{-}\right|-\left(2\left(4 r+4 C_{\square}+16 \delta\right)+2(i-1)\left(6 r+4 C_{\square}+24 \delta\right)\right)$ and width $l \leq 4 r+4 C_{\square}+16 \delta$, over the maximal sub-segment of γ_{-}at distance at least $4 r+4 C_{\square}+16 \delta+(i-1)\left(6 r+4 C_{\square}+24 \delta\right)$ of the extremities of γ_{-}.

As a consequence, if $\left|\gamma_{-}\right|>k+2\left(4 r+4 C_{\square}+16 \delta\right)+2(n-1)\left(6 r+4 C_{\square}+24 \delta\right)$, then $D^{n}(g)$ contains a sub-quadrangle $G^{n}(g)$ between a sub-segment of γ_{-}and a sub-segment of $g^{n} \gamma_{-}$, which is a grid $k \times n l$. Such a grid $G^{n}(g)$ is obtained as the concatenation of sub-grids $G_{n, i}(g)$, where each $G_{n, i}(g)$ is a sub-grid $k \times l$ of $G_{n-1-i}(g)$ between a sub-segment of γ and a sub-segment of $g \gamma$. We also choose a vertical path $P_{n}(g)$ of length $n l$ in $G^{n}(g)$, which we write as the concatenation of n vertical paths $P_{n, i}(g)$ of length l, each $P_{n, i}(g)$ belonging to $G_{n, i}(g)$ (see Figure 5).

Figure 5: Piling up $n=3$ copies of a sub-corridor of $D(g)$ of width 3. Here, the (impossible) case where the paths $\Phi_{n}\left(P_{n, i}(g)\right)$ and $\Phi_{n}\left(P_{n, i+1}(g)\right)$ backtrack on exactly one edge.

By Proposition 3.3. the restriction of Φ_{n} to $G^{n}(g) \cong I_{k} \times I_{n l}$ factorises as

$$
I_{k} \times I_{n l} \xrightarrow{i d \times \Psi_{n}} I_{k} \times T_{n l} \hookrightarrow X,
$$

Note that for every $0 \leq i<n$, the paths $\Phi_{n}\left(P_{n, i}(g)\right)$ and $\Phi_{n}\left(P_{n, i+1}(g)\right)$ backtrack on the same number l^{\prime} of edges because of Proposition 3.3. If we had $l^{\prime}<\frac{l}{2}$, then the image $\Phi_{n}\left(P_{n}\right)$ would contain an isometrically embedded path, and the length of such paths grows linearly with n. In particular for some constant $n_{0} \geq 1$ that is independent of x and y, this
length would be bigger than the constant C_{\square} (Definition 4.3). If k is bigger than C_{\square}, then it would follow that X would contain an embedded square of side C_{\square} whose projection on γ has diameter C_{\square}, contradicting Lemma4.3.

Step 2. We thus start by defining the following constant:
$L_{0}(r):=\left(\max \left(L, C_{\square},|g|_{1}\right)+36 r+24 C_{\square}+144 \delta\right)+2\left(4 r+4 C_{\square}+16 \delta\right)+2\left(n_{0}-1\right)\left(6 r+4 C_{\square}+24 \delta+|g|_{1}\right)$,
Let x, y be vertices of Λ_{1} at distance at least $L_{0}(r), \gamma$ be the sub-segment of Λ_{1} between them, and $\gamma_{-} \subset \gamma$ a subsegment of length at least $L_{0}(r)$. Let h be a group element that satisfies the property $\left(P_{r}\right)$ with respect to x, y, γ, and γ_{-}. From the previous paragraph, and using the same notations, it follows that $\Phi_{n}\left(P_{n, i}(h)\right)$ and $\Phi_{n}\left(P_{n, i+1}(h)\right)$ backtrack on at least $\frac{l}{2}$ edges. For α a real number between 0 and the width of h, we denote by $\ell_{\alpha}(h)$ the horizontal line of $G_{1}(h)$ at distance α from P_{-}, and by $\ell_{\alpha}^{\prime}(h)$ the sub-segment $\ell_{\alpha}(h) \cap G_{2}(h)$. Since $\Phi_{n}\left(P_{n, i}(h)\right)$ and $\Phi_{n}\left(P_{n, i+1}(h)\right)$ backtrack on at least $\frac{l}{2}$ edges for each i, it follows that

$$
h \varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right) \subset \varphi\left(\ell_{\frac{l}{2}}(h)\right) .
$$

Thus, both $h \varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ and $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ are contained in the segment $\varphi\left(\ell_{\frac{l}{2}}(h)\right)$.
We claim that $h \varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ and $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ are at Hausdorff distance at most $6 r+4 C_{\square}+24 \delta$. Indeed, this follows from the triangular inequality, as $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ is $\left(2 r+6 C_{\square}\right)$-close to the segment $\varphi\left(\ell_{0}^{\prime}(h)\right)$ by the width assumption, the same holds for $h \ell_{\frac{l}{2}}^{\prime}(h)$ and $h \ell_{0}^{\prime}(h)$, and $\ell_{0}^{\prime}(g)$ and $h \ell_{0}^{\prime}(g)$ are at most $(2 r+8 \delta)$-close by Lemma 4.4 .

Thus, $h \varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ and $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ are contained in the segment $\varphi\left(\ell_{\frac{l}{2}}(h)\right)$ and are at Hausdorff distance at most $6 r+4 C_{\square}^{2}+24 \delta$ from one another. In particular, the two sub-segments share an edge, as they have a length of at least $L+36 r+24 C_{\square}+144 \delta$.

Step 3. Let us show that, for an element h as in the previous step, the subset $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ is contained in a combinatorial axis of g which is parallel to Λ_{1}, meaning that there exists an isometric embedding $\mathbb{R} \times I_{k} \hookrightarrow X$ such that $\mathbb{R} \times\{0\}$ is sent to Λ_{1} and $\mathbb{R} \times\{k\}$ is sent to the aforementioned combinatorial axis of g containing $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$.

Note that $h g$ has translation length at most $|g|_{1}+r$. By concatenating the disc diagrams $(h g)^{i} \varphi_{h}: D(h) \rightarrow X$ for $i \geq 0$, the same reasoning as before shows that $h g \varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$ and $\varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$ are contained in a common segment and are at Hausdorff distance at most $|g|_{1}+6 r+4 C_{\square}+24 \delta$. As we already now that $h \varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$ and $\varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$ are contained in a segment and are at Hausdorff distance at most $6 r+4 C_{\square}+24 \delta$, it follows that $h g \varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$ and $h \varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$, and thus $g \varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$ and $\varphi_{h}\left(\ell_{l / 2}^{\prime}(h)\right)$, are contained in a segment and are at Hausdorff distance at most $|g|_{1}+12 r+8 C_{\square}+48 \delta$. As the length of $\ell_{l / 2}^{\prime}(h)$ is strictly greater than $|g|_{1}+12 r+8 C_{\square}+48 \delta$ by construction, it follows that these two segments
share at least an edge. Moreover, they cannot coincide as g is a hyperbolic isometry of X. Thus, the same argument as before shows that $\Lambda_{h}:=\bigcup_{i \in \mathbb{Z}} g^{i} \varphi_{h}\left(\ell_{l / 2}(h)\right)$ is a combinatorial axis for g, and it contains $\varphi\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ by construction. Furthermore, by definition of $L_{0}(r)$, there exists a sub-quadrangle between a fundamental domain of Λ_{1} for the action of $\langle g\rangle$ and a fundamental domain of Λ_{h} for the action of $\langle g\rangle$ which is a grid. This in turn implies that Λ_{1} and Λ_{h} are parallel.

Step 4. Let x, y be vertices of Λ_{1}, let γ be the sub-segment of Λ_{1} between them, and $\gamma_{-} \subset \gamma$ a sub-segment of length at least $L_{0}(r)$. Let us now consider two elements h and h^{\prime} satisfying $\left(P_{r}\right)$ with respect to x, y, γ and $\gamma-$ and having the same width $l \leq 4 r+4 C_{\square}+16 \delta$. Denote by $\varphi_{h}: D(h) \rightarrow X$ and $\varphi_{h^{\prime}}: D\left(h^{\prime}\right) \rightarrow X$ the associated disc diagrams. Consider elements h_{i} of $G, i \geq 1$, such that $h_{i}=h$ if i is odd and $h_{i}=h^{\prime}$ otherwise. As before, we can construct the disc diagram $\Phi_{n}: D^{n}\left(h, h^{\prime}\right) \rightarrow X$ obtained by piling up the disc diagrams $\left(\varphi_{h_{i}}: D\left(h_{i}\right) \rightarrow X\right)_{1 \leq i \leq n}$. As before, $D^{n}\left(h, h^{\prime}\right)$ contains a sub-diagram $G^{n}\left(h, h^{\prime}\right)$ between a sub-segment of γ_{-}and a sub-segment of $h_{1} \cdots h_{n} \gamma_{-}$, which is a grid $k \times n l$. Moreover, this map factorises by Proposition 3.3, and we have to consider the image under Φ_{n} of a vertical path $P_{n}\left(h, h^{\prime}\right)$ of length $n l$, which is the concatenation of paths $P_{n, i}\left(h_{i}\right) \subset h_{1} \cdots h_{i} D\left(h_{i}\right)$. Here again, note that for every i, the paths $\Phi_{n}\left(P_{n, 2 i-2}\left(h_{2 i-1}\right)\right)$ and $\Phi_{n}\left(P_{n, 2 i-1}\left(h_{2 i}\right)\right)$ backtrack on the same number $l_{\text {even }}$ of edges, while $\Phi_{n}\left(P_{2 i-1}\left(h_{2 i}\right)\right)$ and $\Phi_{n}\left(P_{2 i}\left(h_{2 i+1}\right)\right)$ backtrack on the same number $l_{\text {odd }}$ of edges. Using the same reasoning, at least one of the two integers $l_{\text {even }}$ and $l_{\text {odd }}$ is at least $\frac{l}{2}$. Let us assume for instance that this holds for $l_{\text {even }}$. As before, it then follows that $\varphi_{h}\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ and $\left(h^{\prime}\right)^{-1} \varphi_{h^{\prime}}\left(\ell_{\frac{l}{2}}^{\prime}\left(h^{\prime}\right)\right)$ are at Hausdorff distance at most $6 r+4 C_{\square}+24 \delta$. But as $\left(h^{\prime}\right)^{-1} \varphi_{h^{\prime}}\left(\ell_{\frac{l}{2}}^{\prime}\left(h^{\prime}\right)\right)$ and $\varphi_{h^{\prime}}^{\overline{2}}\left(\ell_{\frac{l}{2}}^{\prime}\left(h^{\prime}\right)\right)$ are also at Hausdorff distance at most $6 r+4 C_{\square}+24 \delta$ by Step 2, it follows that $\varphi_{h}\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ and $\varphi_{h^{\prime}}\left(\ell_{\frac{l}{2}}^{\prime}\left(h^{\prime}\right)\right)$ are at Hausdorff distance at most $12 r+8 C_{\square}+48 \delta$.

Step 5. We define the following constant:

$$
N_{0}(r):=\left(4 r+4 C_{\square}+16 \delta+1\right)\left(12 r+8 C_{\square}+48 \delta+1\right)(N+1) .
$$

Let x, y be vertices of Λ_{1}, γ the sub-segment of Λ_{1} between them, and $\gamma_{-} \subset \gamma$ a subsegment of length at least $L_{0}(r)$. Suppose by contradiction that there at least $N_{0}(r)$ distinct elements satisfying the property $\left(P_{r}\right)$ with respect to x, y, γ and γ_{-}. For each such element h we consider an associated corridor $\varphi_{h}: D(h) \rightarrow X$ and use the same notations as above. From Step 4 , it follows that for every two such elements h, h^{\prime} with the same width l, the segments $\varphi_{h}\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ and $\varphi_{h^{\prime}}\left(\ell_{\frac{l}{2}}^{\prime}\left(h^{\prime}\right)\right)$ are at Hausdorff distance at most $12 r+8 C_{\square}+48 \delta$ from one another, and are contained in a segment of X. Choose $\left(12 r+8 C_{\square}+48 \delta+1\right)(N+1)$ such elements of the same width. It follows that the intersection ℓ of all the segments $\varphi_{h}\left(\ell_{\frac{l}{2}}^{\prime}(h)\right)$ has length at least $L+12 r+8 C_{\square}+48 \delta=\left(L+36 r+24 C_{\square}+144 \delta\right)-2\left(12 r+8 C_{\square}+48 \delta\right)$. Let ℓ^{\prime} be the maximal sub-segment of ℓ at distance $6 r+4 C_{\square}+24 \delta$ from the endpoints of
ℓ. Each of the $\left(12 r+24 C_{\square}+16 \delta+1\right)(N+1)$ elements send ℓ^{\prime} to a translate contained in ℓ by Step 2. Thus, we can choose at least $N+1$ distinct such elements whose action on ℓ^{\prime} coincide. As ℓ^{\prime} is of length at least L and is contained in a combinatorial axis of g parallel to Λ_{1} by Step 3, we obtain N group elements which stabilise points of Λ_{1} at distance L, a contradiction. This finishes the proof of Proposition 4.9 .

4.4 Finishing the proof of Theorem E

Lemma 4.12. Let γ be a segment of Λ_{1} of length at least $2 C_{\square}$, and let h be a group element that moves the endpoints of γ by at most r. Suppose that there exists a reduced disc diagram $\varphi: D \rightarrow X$ between γ and $h \gamma$. Then D has width at most $2 r+4 C_{\square}$.

Proof. Recall that D is a $\operatorname{CAT}(0)$ square complex by Lemma 1.1. Let I be the combinatorial interval between the endpoints of the lower path of D, and consider the restriction φ_{\mid}: $I \rightarrow X$. If $\varphi_{\mid}: I \rightarrow X$ is non-degenerate, then it is a Euclidean disc diagram, as I isometrically embeds in \mathbb{R}^{2} by Lemma 1.9 . In such a case, φ_{\mid}is an isometric embedding by Lemma 2.4 . If $\varphi_{\mid}: I \rightarrow X$ is degenerate, then the restriction of φ_{\mid}to each of the maximal subcomplexes of I homeomorphic to a 2-disc is an isometric embedding by the same argument. It follows from Proposition 2.3 and Lemma 4.3 that two combinatorial geodesics of X between the endpoints of γ are at Hausdorff distance at most $2 C_{\square}$ from another. Thus, any two combinatorial geodesics of D between the endpoints of the upper path of D are at Hausdorff distance at most $2 C_{\square}$.

Recall that combinatorial intervals are convex for the CAT(0) metric by Corollary 1.8 . Thus, the CAT(0) geodesic P_{+}^{\prime} between the endpoints of the upper path P_{+}of D is at Hausdorff distance at most $2 C_{\square}$ from P_{+}. Analogously, the $\operatorname{CAT}(0)$ geodesic P_{-}^{\prime} between the endpoints of the lower path P_{-}of D is at Hausdorff distance at most $2 C_{\square}$ from P_{-}. But by convexity of the CAT(0) metric, P_{-}^{\prime} and P_{+}^{\prime} are at Hausdorff distance at most r for the ℓ_{2}-metric. Thus, P_{-}and P_{+}are at Hausdorff distance at most $2 r+4 C_{\square}$ for the ℓ_{1}-metric.

Recall that the interval between two vertices of a CAT(0) square complex embeds isometrically in \mathbb{R}^{2} endowed with its square tiling (Lemma 1.9). We can thus define the following constant:

Definition 4.13. For every $R \geq 0$, we choose a constant $N_{\text {int }}(R)$ such that there exist at most $N_{\text {int }}(R)$ combinatorial geodesics between two vertices of X at distance at most R.

Further recall that a Euclidean quadrangle $D=D\left(\gamma_{-}, \gamma_{+}\right)$isometrically embeds in \mathbb{Z}^{2} by Lemma 1.9. We can thus define the following constant:

Definition 4.14. For every $R \geq 0$, we choose a constant $N_{\text {quad }}(R, r)$ on the number of Euclidean quadrangles $D=D\left(\gamma_{-}, \gamma_{+}\right)$of width at most $4 r+4 C_{\square}+16 \delta$ and such that $\left|\gamma_{-}\right| \leq R$, up to isometries which preserve pointwise the upper lower sides of the quadrangles.

We are now ready to prove Theorem E. We split the proof in several steps. The first 7 steps deal with points on the axis Λ_{1}. Note that, for such points, the acylindricity condition amounts to proving that there exist constants $L_{\text {axis }}(r), N_{\text {axis }}(r)$ such that for every two points x, y of Λ_{1} at least $L_{\text {axis }}(r)$ apart, at most $N_{\text {axis }}(r)$ group elements move x and y by at most r.

Let $r>0$. We start by defining the following constants:

$$
\begin{aligned}
& L_{1}(r):=2 L_{\mathrm{emb}}\left(4 r+4 C_{\square}+16 \delta\right)+\left(24 r+8 C_{\square}+78 \delta+2 L\right)\left(L_{0}(r)+2\right), \\
& L_{2}(r):=5 \cdot L_{1}(r), \\
& N_{1}(r):=(8 r+32 \delta+1) N_{\text {quad }}\left(L_{1}(r)\right) N, \\
& N_{2}(r):=\max \left(N_{0}(r), N_{1}(r)\right), \\
& N_{3}(r):=(8 r+32 \delta+1) L(r)^{2} N_{\text {int }}(L(r)) N, \\
& N_{4}(r):=5 \cdot 2^{24 r+8 C \square+78 \delta+2 L} N_{2}(r) .
\end{aligned}
$$

Finally, we define the two constants:

$$
\begin{aligned}
& L_{\mathrm{axis}}(r):=3 \cdot L_{2}(r), \\
& N_{\text {axis }}(r):=4 \max \left(N_{3}(r), N_{4}(r)\right) .
\end{aligned}
$$

We now show that, for every vertices x, y of Λ_{1} at distance at least $L_{\text {axis }}(r)$, there do not exist $N_{\text {axis }}(r)$ distinct elements h of G such that $d(x, h x), d(y, h y) \leq r$. This will be done in seven steps.

By contradiction, suppose that there exist vertices x, y of Λ_{1} at distance at least $L_{\text {axis }}(r)$ and $N_{\text {axis }}(r)$ distinct group elements h of G such that $d(x, h x), d(y, h y) \leq r$. For simplicity, we arrange these elements as a finite sequence $\left(h_{i}\right)$. Choose a taut geodesic γ between x and y.

Step 1. Decompose γ as the concatenation of geodesic segments

$$
\gamma:=\alpha \cup \gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \cup \beta,
$$

such that each of the segments γ_{i} has length $L_{2}(r)$. We sort the chosen group elements into four classes, depending on the nature of both $h_{i} \gamma \cap \gamma_{1}$ and $h_{i} \gamma \cap \gamma_{3}$: empty or non-empty. Since $N(r)=4 \max \left(N_{3}(r), N_{4}(r)\right)$, we can choose at least $\max \left(N_{3}(r), N_{4}(r)\right)$ such elements in the same class.

Assume by contradiction that all the $h_{i} \gamma \cap \gamma_{1}$ and $g_{i} \gamma \cap \gamma_{3}$ are non-empty. Then since we are considering at least $L(r)^{2} \cdot(8 r+32 \delta+1) N_{\text {int }}(L(r)) N$ group elements, we can choose at least $(8 r+32 \delta+1) N_{\text {int }}(L(r)) N$ such elements such that the $h_{i} \gamma$ all contain two fixed vertices $v_{1} \in \gamma_{1}$ and $v_{3} \in \gamma_{3}$. Now the sub-segment of $h_{i} \gamma$ between v_{1} and v_{3} is in $\operatorname{Int}_{X}\left(v_{1}, v_{3}\right)$, which contains at most $N_{\text {int }}(L(r))$ by construction, so we can find at least $(8 r+32 \delta+1) N$ elements such that the $h_{i} \gamma$ all contain a chosen combinatorial geodesic γ^{\prime} between v_{1} and
v_{3}. It thus follows that the segments $h_{i}^{-1} \gamma^{\prime}$ are contained in γ and are at Hausdorff distance at most $4 r+16 \delta$ of one another by Lemma 4.4. Since there are at least $(8 r+32 \delta+1) N$ such elements h_{i}^{-1}, it thus follows that the action of at least N of them coincide on γ^{\prime}, and thus N distinct elements of G fix pointwise γ^{\prime}, which is of length at least $L_{2}(r) \geq L$, a contradiction.

Step 2. From the previous step, we can thus assume that, for each of the given elements h_{i}, the segments $h_{i} \gamma$ and γ_{1}, and in particular $h_{i} \gamma_{1}$ and γ_{1}, are disjoint. Moreover, $h_{i} \gamma_{1}$ and γ_{1} are at Hausdorff distance at most $2 r+8 \delta$ by Lemma 4.4. Thus, we choose for each i a quadrangle $D\left(h_{i}\right)$, of width at most $4 r+4 C_{\square}+16 \delta$ by Lemma 4.12 , between γ_{1} and $h_{i} \gamma_{1}$.

Decompose γ_{1} as the concatenation of geodesic segments

$$
\gamma_{1}:=\gamma_{1,1} \cup \ldots \cup \gamma_{1,5}
$$

such that each of the 5 segments γ_{i} has length $L_{1}(r)$. We subdivide each $h_{i} \gamma_{1}$ into a concatenation

$$
h_{i} \gamma_{1}:=\gamma_{1,1}^{i} \cup \ldots \cup \gamma_{1,5}^{i}
$$

such that one can subdivide the non-degenerate quadrangle $D\left(h_{i}\right)$ into a concatenation of 5 non-degenerate quadrangles:

$$
D\left(h_{i}\right):=D_{1}\left(h_{i}\right) \cdots D_{5}\left(h_{i}\right)
$$

where each $D_{k}\left(h_{i}\right)$ is a non-degenerate sub-quadrangle between $\gamma_{1, k}$ and $\gamma_{1, k}^{i}$ which has width at most $4 r+4 C_{\square}+16 \delta$.

Step 3. By Lemma 2.2, for each i at least one of these non-degenerate sub-quadrangles is almost Euclidean. Now, since we have at least $N_{\text {non-deg }}(r)=5 \cdot 2^{24 r+8 C \square+78 \delta+2 L} N_{2}(r)$ such elements, there exists an integer $1 \leq k \leq 5$ such that, for at least $2^{24 r+8 C \square+78 \delta+2 L} N_{2}(r)$ of these group elements, the sub-quadrangle $D_{k}\left(h_{i}\right)$ is almost Euclidean.

Step 4. Since $\gamma_{1, k}$ is of length

$$
L_{1}(r)=2 L_{\mathrm{emb}}\left(4 r+4 C_{\square}+16 \delta\right)+\left(24 r+8 C_{\square}+78 \delta+2 L\right)\left(L_{0}(r)+2\right),
$$

we can choose a subsegment $\widetilde{\gamma}_{1, k}$ of $\gamma_{1, k}$, of length $\left(24 r+8 C_{\square}+78 \delta+2 L\right)\left(L_{0}(r)+2\right)$ and at distance $L_{\mathrm{emb}}\left(4 r+4 C_{\square}+16 \delta\right)$ from the endpoints of $\gamma_{1, k}$. For each i, Proposition 2.7 allows us to choose a sub-segment $\widetilde{\gamma}_{1, k}^{i}$ of $\gamma_{1, k}^{i}$ and a Euclidean sub-quadrangle $\widetilde{D}_{k}\left(h_{i}\right)$ of $D_{k}\left(h_{i}\right)$ of width at most $4 r+4 C_{\square}+16 \delta$ between $\widetilde{\gamma}_{1, k}$ and $\widetilde{\gamma}_{1, k}^{i}$.

Step 5. Now write $\widetilde{\gamma}_{1, k}$ as the concatenation of $24 r+8 C_{\square}+78 \delta+2 L$ sub-segments $\widetilde{\gamma}_{1, k, l}$ of length $L_{0}(r)+2$. For each i and each l, we can choose a sub-segment $\widetilde{\gamma}_{1, k, l}^{i}$ of $\widetilde{\gamma}_{1, k, l}^{i}$ and a sub-quadrangle $\widetilde{D}_{k, l}\left(h_{i}\right)$ of $\widetilde{D}_{k}\left(h_{i}\right)$ of width at most $4 r+4 C_{\square}+16 \delta$ between $\widetilde{\gamma}_{1, k, l}$ and
$\widetilde{\gamma}_{1, k, l}^{i}$. Among the given $2^{24 r+8 C \square+78 \delta+2 L} N_{2}(r) N$ group elements, we can now then choose $N_{2}(r) N$ of them such that for each l, the associated sub-quadrangles $\left(\widetilde{D}_{1, k, l}\left(h_{i}\right)\right)_{i}$ are all of the same shape: corridor or staircase.

Step 6. If for some l, all the $\left(\widetilde{D}_{1, k, l}\left(h_{i}\right)\right)_{i}$ were corridors, then the fact that $N_{2}(r) \geq$ $N_{0}(r)$ would yield a contradiction with Proposition 4.9, so let us assume that they all are staircases. In particular, for each such $i, \widetilde{D}_{1, k}\left(h_{i}\right)$ contains at least $24 r+8 C_{\square}+78 \delta+2 L$ corners on $\widetilde{\gamma}_{k, 1}$. Since we have at least $(4 r+2) N_{\text {quad }}(r) N$ group elements, at least $(4 r+2) N$ of them define isometric sub-quadrangles. Since $\widetilde{D}_{1, k}\left(h_{i}\right)$ has width at most $4 r+12 C_{\square}$ and contains at least

$$
24 r+8 C_{\square}+78 \delta+2 L=2\left(4 r+4 C_{\square}+16 \delta\right)+2(L+2(4 r+16 \delta))
$$

corners, it follows from Lemma 4.6 that there exists a geodesic segment P of length $L+2(4 r+16 \delta)$ contained in all the $g_{i} \gamma$.

Step 7. It now follows that the segments $g_{i}^{-1} P$ are contained in γ and are at Hausdorff distance at most $4 r+16 \delta$ of one another by Lemma 4.4. Since there are at least $(8 r+32 \delta+1) N$ such elements g_{i}^{-1}, it follows that the action of at least N of them coincide on a geodesic segment of length L, hence N distinct elements of G fix pointwise a sub-segment of length L of Λ_{1}, a contradiction.

This concludes the proof that for vertices x, y of the axis Λ_{1} at distance at least $L_{\text {axis }}(r)$, at most $N_{\text {axis }}(r)$ elements of G move x and y by a distance of at most r. In the final step, we deal with arbitrary points of X.

Step 8. Recall that the tubular constant C_{2} was introduced in Definition 4.1. Let m be an integer such that $m|g|_{2}>C_{2}$. Let n be an integer that will be fixed later, let x be a vertex of X, and let h be a group element such that $d_{1}(x, h x), d_{1}\left(g^{n+2 m} x, h g^{n+2 m} x\right) \leq r$. Consider the (unique) $\operatorname{CAT}(0)$ geodesic between x and $g^{n+2 m} x$. Let also x_{2} be the projection of x on Λ_{2} (and thus $g^{n+2 m} x_{2}$ is the projection of $g^{n+2 m} x$ on Λ_{2}).

Let u be a point of the geodesic between x and $g^{n+2 m} x$ which projects to the point $g^{m} x_{2} \in \Lambda_{2}$. Since $d_{2}\left(x, g^{m} x\right)=m|g|_{2}>C_{2}$, there exists a point y in the sub-segment between x and u and a point $y_{2} \in \Lambda_{2}$ in between x_{2} and $g^{m} x_{2}$ such that $d_{2}\left(y, y_{2}\right) \leq C_{2}$. Analogously, let v be a point of the geodesic between x and $g^{n+2 m} x$ which projects to the point $g^{m+n} x_{2} \in \Lambda_{2}$. Since $d_{2}\left(g^{n+m} x_{2}, g^{n+2 m} x_{2}\right)=m|g|_{2}>C_{2}$, there exists a point z in the sub-segment between v and $g^{n+2 m} x$ and a point $z_{2} \in \Lambda_{2}$ in between $g^{n+m} x_{2}$ and $g^{n+2 m} x_{2}$ such that $d_{2}\left(z, z_{2}\right) \leq C_{2}$. Since Λ_{1} and Λ_{2} are at Hausdorff distance at most δ by Definition-Lemma 4.2, choose points y_{1}, z_{1} on Λ_{1} which are δ-close from y_{2} and z_{2} respectively.

Since $d_{1}(y, h y), d_{1}\left(g^{n+2 m} z, h g^{n+2 m} z\right) \leq r$ by convexity of the ℓ_{2}-metric, it follows that

$$
d_{1}\left(y_{1}, h y_{1}\right), d_{1}\left(z_{1}, h z_{1}\right) \leq 2 r+2 \delta+4 C_{2}
$$

Moreover, we have

$$
\begin{aligned}
d_{2}\left(y_{1}, z_{1}\right) & \geq d_{2}\left(x_{2}, g^{n+2 m} x_{2}\right)-d_{2}\left(x_{2}, y_{2}\right)-d_{2}\left(y_{2}, y_{1}\right)-d_{2}\left(z_{1}, z_{2}\right)-d_{2}\left(z_{2}, g^{n+2 m} x_{2}\right) \\
& \geq n|g|_{2}-2 \delta
\end{aligned}
$$

and thus $d_{1}\left(y_{1}, z_{1}\right) \geq n|g|_{2}-2 \delta$. Thus, we first choose an integer $n(r)$ (which is independent of the point $x)$ such that $n(r)|g|_{2}-2 \delta \geq L_{\text {axis }}\left(2 r+2 \delta+4 C_{2}\right)$. Now set:

$$
\begin{aligned}
m_{\text {final }} & :=n(r)+2 m \\
N_{\text {final }} & :=N_{\text {axis }}\left(2 r+2 \delta+4 C_{2}\right)
\end{aligned}
$$

It thus follows that for every x of X, there exist at most $N_{\text {final }}$ group elements that move x and $g^{m_{\text {final }}} x$ by at most r, for otherwise we could find two points of Λ_{1} at distance at least $L_{\text {axis }}\left(2 r+2 \delta+4 C_{2}\right)$ which are moved by at most $2 r+2 \delta+4 C_{2}$ by $N_{\text {axis }}\left(2 r+2 \delta+4 C_{2}\right)$ distinct group elements, a contradiction.

4.5 Deducing Theorem A

In this section, we explain how to modify the proof of Theorem E to obtain Theorem A. The proof is almost identical: The proof of Theorem E took place 'along the axis' of a strongly contracting WPD element, which displays features of hyperbolic geometry. Under the hypotheses of Theorem A, the whole complex X is hyperbolic, and the following lemmas can be adapted to deal with arbitrary geodesics of X, rather than sub-segments of the combinatorial axis considered in the previous section:

Lemma 4.1 still holds in general hyperbolic metric spaces: For any geodesic γ of length at least $8 \delta^{\prime}, \delta^{\prime}$ the hyperbolicity constant of the space, and any two points x, y of the space that project on γ at distance at least $8 \delta^{\prime}$, then any geodesic from x to y meets the $8 \delta^{\prime}$ neighbourhood of γ (this follows for instance from the Tree Approximation Threorem for hyperbolic spaces [13, Theorem 8.1]).

Lemma 4.2 is reformulated as follows: For every combinatorial geodesic γ of the hyperbolic $\operatorname{CAT}(0)$ square complex X, the unique $\operatorname{CAT}(0)$ geodesic between the endpoints of γ stays $2 C_{\square}$-close to γ, where the no-square constant C_{\square} is reinterpreted as a constant such that X does not contain isometrically embedded $C_{\square} \times C_{\square}$ grids.

Analogously, Lemma 4.4 is reformulated as follows: Let γ be a geodesic segment and let h be a group element that moves the endpoints of γ by a distance of at most r (for the ℓ_{1}-metric). Let γ^{\prime} be a sub-segment of γ. Then γ^{\prime} and $h \gamma^{\prime}$ are at Hausdorff distance at most $2 r+16 C_{\square}$ (for the ℓ_{1}-metric).

Finally, Lemma 4.12 is reformulated as follows: Let γ be a combinatorial geodesic of X of length at least $2 C_{\square}$, and let h be a group element that moves the endpoints of γ by at most r. Suppose that there exists a quadrangle $\varphi: Q \rightarrow X$ between γ and $h \gamma$. Then Q has width at most $2 r+4 C \square$.

With these modifications, we can prove Theorem A by adapting the proof of Theorem E presented in Sections 4.3 and 4.4.

We first start by proving the analogue of Proposition 4.9, namely: For every $r>0$, there exist constants $L_{0}(r), N_{0}(r)$ such that the following holds: For every combinatorial geodesic γ between two points x, y of X, for every sub-segment $\gamma_{-} \subset \gamma$ of length at least $L_{0}(r)$, there exist at most $N_{0}(r)$ elements h of G such that $d(x, h x), d(y, h y)<r$, and such that there exist a quadrangle between γ and $h \gamma$ and a sub-quadrangle between γ_{-}and a sub-segment $\gamma_{+} \subset h \gamma$ which is a corridor of width at most $4 r+36 C_{\square}=2\left(2 r+16 C_{\square}\right)+4 C_{\square}$.

The proof, for abritrary points of X instead of points of Λ_{1}, is almost identical to the proof presented in Section 4.3, up to modifying the constants according to the aforementioned changes (in particular, the constant $|g|_{1}$ is no longer needed in the definition of $L_{0}(r)$ and $N_{0}(r)$). The only notable difference is that Step 3 is no longer needed. Indeed, Steps 1-2 and 4-7 yield a geodesic segment of X of length L pointwise fixed by N group elements, which is sufficient to contradict the weak acylindricity of the action (in Section 4.3, Step 3 was there to show that such a geodesic segment is actually contained in a combinatorial axis of the WPD element g, which was necessary to contradict the weak WPD condition).

We then adapt the results of Section 4.4 for abritrary points of X instead of points of Λ_{1}, namely, we prove the following: For every $r>0$, there exist constants $L(r), N(r)$ such that the following holds: For every two points x, y of X at distance at least $L(r)$, there exist at most $N(r)$ elements h of G such that $d(x, h x), d(y, h y)<r$.

The proof of Steps 1-7 is identical, and yield a geodesic segment of X of length L pointwise fixed by N group elements, which is sufficient to contradict the weak acylindricity of the action (in Section 4.4. Steps 1-7 only dealt with points of the axis Λ_{1} and Step 8 dealt with arbitrary points of X).

5 The geometry of generalised Higman groups

The generalised Higman groups $H_{n}, n \geq 5$ were defined in [21], as the groups with the following presentation:

$$
H_{n}:=\left\langle a_{i}, i \in \mathbb{Z} / n \mathbb{Z} \mid a_{i} a_{i+1} a_{i}^{-1}=a_{i+1}^{2}, i \in \mathbb{Z} / n \mathbb{Z}\right\rangle
$$

These groups can naturally be seen as negatively curved polygons of groups (see for instance [6, Theorem 12.28 and Section 12.29]). The local group associated to the polygon
is trivial. Order cyclically the edges of the polygon into a sequence $\left(e_{i}\right)$. The local group associated to each edge e_{i} of the polygon is a copy of \mathbb{Z} with a chosen generator a_{i}. The local group associated to each vertex of the polygon is the Baumslag-Solitar group $B S(1,2)$. Finally, for each vertex v contained in edges e_{i} and e_{i+1}, the local maps $G_{e_{i}} \rightarrow G_{v}, G_{e_{i+1}} \rightarrow$ G_{v} send the generators a_{i}, a_{i+1} respectively to generators b_{i}, b_{i+1} of $B S(1,2)$ satisfying the relation $b_{i} b_{i+1} b_{i}^{-1}=b_{i+1}^{2}$.

Thus, $H_{n}, n \geq 5$ acts cocompactly on a CAT(-1) polygonal complex with strict fundamental domain an n-gon. Stabilisers of faces are trivial, stabilisers of edges are infinite cyclic, and stabilisers of vertices are isomorphic to $B S(1,2)$. Moreover, for every edge e of X_{n} with vertices v and v^{\prime}, one of the morphisms $G_{e} \hookrightarrow G_{v}, G_{e} \hookrightarrow G_{v^{\prime}}$ is conjugated to $\langle a\rangle \hookrightarrow\left\langle a, b \mid a b a^{-1}=b^{2}\right\rangle$ while the other one is conjugated to $\langle b\rangle \hookrightarrow\left\langle a, b \mid a b a^{-1}=b^{2}\right\rangle$.

Lemma 5.1. If v and v^{\prime} are vertices of X_{n} at distance at least 3, then the stabilisers of v and v^{\prime} intersect trivially. In particular, H_{n} acts weakly acylindrically on X_{n} for every $n \geq 5$.

Proof. Since H_{n} acts on the $\operatorname{CAT}(0)$ polygonal complex X_{n} with trivial face stabilisers, fixed point sets of subgroups of H_{n} are trees in the 1 -skeleton of X_{n}. If an element h of H_{n} stabilises a sequence e_{1}, e_{2}, e_{3} of three adjacent edges, then for some vertex v of e_{2}, the inclusion $G_{e} \hookrightarrow G_{v}$ is conjugated to $\langle a\rangle \hookrightarrow\left\langle a, b \mid a b a^{-1}=b^{2}\right\rangle$. It then follows that for every edge $e^{\prime} \neq e$ containing v, the intersection $G_{e} \cap G_{e^{\prime}}$ is trivial. Indeed, this is exactly Lemma 2.1 of [23] in the case of 4 generators; the proof being purely about links of vertices, it generalises without any change to $n \geq 5$ generators. Thus, the intersection $G_{e_{1}} \cap G_{e_{2}} \cap G_{e_{3}}$ is trivial.

Notice that, for $n \geq 5$, the CAT(-1) polygonal complex X_{n} can be naturally subdivided into a hyperbolic CAT(0) square complex. Indeed, the subgraph of the one-skeleton of the first barycentric subdivision of X_{n}, obtained by removing edges corresponding to the inclusion of a vertex of X_{n} in a polygon of X_{n}, is naturally the one-skeleton of a CAT(0) square complex. Moreover, such a $\operatorname{CAT}(0)$ square complex is quasi-isometric to X_{n}, and thus hyperbolic. In particular, Theorem A implies the following:

Corollary 5.2. For $n \geq 5$, the action of H_{n} on X_{n} is acylindrical.
We now give two consequences of the acylindricity of the action, which do not follow automatically from the abstract acylidrical hyperbolicity of the group.

Corollary 5.3 (Strong Tits alternative for generalised Higman groups). For $n \geq 5$, the group H_{n} satisfies the following form of Tits alternative: A non-cyclic subgroup of H_{n} is either contained in a vertex stabiliser, hence embeds in $B S(1,2)$, or is acylindrically hyperbolic.

Proposition 5.4. For $n \geq 5, H_{n}$ is residually F_{2}-free, i.e. each element of H_{n} survives in a quotient of H_{n} which does not contain a non-abelian free subgroup.

Proof. Let h be an element of H_{n}. We construct by induction a sequence of quotients of H_{n}

$$
H_{n} \xrightarrow{\pi_{1}} Q_{1} \xrightarrow{\pi_{2}} Q_{2} \rightarrow \cdots
$$

such that at each stage, Q_{k} acts acylindrically on a hyperbolic metric space Y_{k}, and h projects to a non-trivial element of Q_{k}. Such a construction uses the theory of rotating families of Dahmani-Guirardel-Osin and follows the construction in the proof of 14, Theorem 8.9]; we refer the reader there for additional details. The group $Q_{0}:=H_{n}$ acts acylindrically on $Y_{0}:=X_{n}$. Let us order all the elements of H_{n} that act hyperbolically on X_{n} in a sequence $\left(h_{k}\right)_{k \geq 1}$. Let us assume that the quotients $Q_{0}, Q_{1}, \ldots Q_{k}$ and hyperbolic spaces Y_{0}, \ldots, Y_{k} are defined. We look at the projection \bar{h}_{k+1} of h_{k} in Q_{k}. Since Q_{k} acts acylindrically on the hyperbolic space Y_{k}, such an element acts either hyperbolically or elliptically on Y_{k} by a result of Bowditch [4, Lemma 2.2].

If h_{k+1} projects to a an element of Q_{k} acting hyperbolically on Y_{k}, we choose an integer $\alpha_{k+1} \geq 1$ such that

- the coned-off space associated to the action of $\ll \bar{h}_{k+1}^{\alpha_{k+1}} \gg$ on Y_{k} is hyperbolic,
- the quotient $Q_{k} / \ll \bar{h}_{k+1}^{\alpha_{k+1}} \gg$ acts acylindrically on the aforementioned coned-off space,
- the projection map $Q_{k} \rightarrow Q_{k} / \ll \bar{h}_{k+1}^{\alpha_{k+1}} \gg$ embeds a chosen metric ball of Q_{k} containing the projection \bar{h} of h.
We then define $Q_{k+1}:=Q_{k} / \ll \bar{h}_{k+1}^{\alpha_{k+1}} \gg$ and Y_{k+1} is the associated coned-off space.
If h_{k+1} projects to a torsion \bar{h}_{k+1} element of Q_{k}, we set $Q_{k+1}:=Q_{k}, Y_{k+1}:=Y_{k}$, and $\alpha_{k+1} \geq 1$ be an integer such that $\bar{h}_{k+1}^{\alpha_{k+1}}$ is trivial.

It thus follows that the quotient

$$
Q:=H_{n} / \ll h_{k}^{\alpha_{k}}, k \geq 1 \gg
$$

of H_{n} is such that h projects to a non-trivial element.
Let us prove by contradiction that Q does not contain a non-abelian free subgroup. If Q contained such a subgroup, the preimage of such a subgroup under the projection $H_{n} \rightarrow Q$ would be a free subgroup F of H_{n}. As elements acting hyperbolically on X_{n} are mapped to torsion elements of Q by construction, we will derive a contradiction if we can prove that F necessarily contains an element acting hyperbolically. We thus prove the following:

Claim: The subgroup F contains an element acting hyperbolically on X_{n}.
If that was not the case, then every element of F acts elliptically on X_{n} (since X_{n} has only finitely many isometry types of cells [5]). If the fixed point sets of elements of F pairwise intersect, they globally intersect by a version of the Helly Theorem [22, Proposition 5.3], hence F is contained in a vertex stabiliser, which is absurd as $B S(1,2)$ does not contain
non-abelian free subgroups. Thus, there must exist two elements a, b of F with disjoint fixed point sets. One could adapt the proof of [23, Proposition 3.2] to show that this implies that there exists an element acting hyperbolically on X_{n} in the subgroup generated by a and b. In order to remain as self-contained as possible, we give a direct proof that the subgroup $\langle a, b\rangle$ contains an element acting hyperbolically, using the CAT(0) geometry of the space.

By Lemma 5.1, the fixed point sets of a and b are subcomplexes of diameter at most 2. Let x_{a}, x_{b} be points of the fixed point sets of $\operatorname{Fix}(a), \operatorname{Fix}(b)$ which realise the distance $\alpha>0$ between these fixed point sets. Let L be the CAT(0) geodesic between v_{a} and v_{b}.

We now show that the angle at x_{a} (respectively x_{b}) between L and $a L$ (respectively L and $b L$) is at least π. Let σ be the (unique) minimal face of X containing the 'germ of L^{\prime} at x_{a}, that is, the minimal face of X such that sufficiently small neighbourhoods of x_{a} in L are contained in σ. If σ is an edge (and thus, x_{a} is a vertex), then the result follows immediately: Indeed, for every edge e of X and v one of its vertices, an element in the stabiliser of v either fixes e or sends it to an edge making an angle of at least π with e, by definition of the action. So let us assume that σ is a square. If x_{a} is in the interior of an edge of σ, then L must be perpendicular to that edge since L realises the distance between the fixed point sets, and the result follows immediately. If x_{a} is a vertex of σ, then no edge of σ is in $\operatorname{Fix}(a)$ since L realises the distance between the two fixed point sets. In particular, for the two edges e, e^{\prime} of σ containing x_{a}, the angle at x_{a} between e and $a e$ (respectively e^{\prime} and $a e^{\prime}$) is at least π by the previous remark, whence the angle at x_{a} between L and $a L$ is at least π.

As the angle at x_{a} (respectively x_{b}) between L and $a L$ (respectively L and $b L$) is at least π, the paths $L \cup a L$ and $L \cup b L$ are geodesics. In particular, the distance between $\operatorname{Fix}(a)$ and $b a \operatorname{Fix}(a)$ is at least $2 \alpha-2$. Reasoning analogously, one shows that, for every $k \geq 2$, the distance between $\operatorname{Fix}(a)$ and $(b a)^{k} \operatorname{Fix}(a)$ is at least $k \alpha-2$. In particular, $b a$ does not have bounded orbits, so it does not act elliptically, a contradiction.

REFERENCES

[1] M. Bestvina, K. Bromberg, and K. Fujiwara. Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci., in press, 2014.
[2] M. Bestvina and K. Fujiwara. Bounded cohomology of subgroups of mapping class groups. Geom. Topol., 6:69-89 (electronic), 2002.
[3] M. Bestvina and K. Fujiwara. A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal., 19(1):11-40, 2009.
[4] B. H. Bowditch. Tight geodesics in the curve complex. Invent. Math., 171(2):281-300, 2008, doi:10.1007/s00222-007-0081-y.
[5] M. R. Bridson. On the semisimplicity of polyhedral isometries. Proc. Amer. Math. Soc., 127(7):21432146, 1999.
[6] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. SpringerVerlag, Berlin, 1999.
[7] J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo, and N. J. Wright. Property A and CAT(0) cube complexes. J. Funct. Anal., 256(5):1408-1431, 2009.
[8] K.-U. Bux and S. Witzel. Local convexity in CAT (κ) spaces. arXiv:1211.1871v2, 2014.
[9] S. Cantat and S. Lamy. Normal subgroups in the Cremona group. Acta Math., 210(1):31-94, 2013. With an appendix by Yves de Cornulier.
[10] P.-E. Caprace and M. Sageev. Rank rigidity for $\operatorname{CAT}(0)$ cube complexes. Geom. Funct. Anal., 21(4):851-891, 2011.
[11] P.-Em. Caprace and D. Hume. Orthogonal forms of Kac-Moody groups are acylindrically hyperbolic. Ann. Inst. Fourier (Grenoble), 65(6):2613-2640, 2015.
[12] I. Chatterji and A. Martin. A note on the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes. In Beyond hyperbolicity (LMS Lecture Notes Series). Cambridge University Press, in press, 2019.
[13] M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des groupes, volume 1441 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1990. Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary.
[14] F. Dahmani, V. Guirardel, and D. Osin. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc., in press, 2012.
[15] T. Delzant. Kähler groups, \mathbb{R}-trees, and holomorphic families of Riemann surfaces. Geom. Funct. Anal., 26(1):160-187, 2016.
[16] A. Genevois. Coning-off CAT(0) cube complexes. arXiv:1603.06513, 2016.
[17] D. Gruber and A. Sisto. Infinitely presented graphical small cancellation groups are acylindrically hyperbolic. Ann. Inst. Fourier (Grenoble), 68(6):2501-2552, 2018.
[18] F. Haglund. Isometries of CAT(0) cube complexes are semi-simple. arXiv:0705.3386v1, 2007.
[19] F. Haglund and D. T. Wise. Special cube complexes. Geom. Funct. Anal., 17(5):1551-1620, 2008, doi:10.1007/s00039-007-0629-4.
[20] U. Hamenstädt. Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math. Soc. (JEMS), 10(2):315-349, 2008.
[21] G. Higman. A finitely generated infinite simple group. J. London Math. Soc., 26:61-64, 1951.
[22] B. Kleiner. The local structure of length spaces with curvature bounded above. Math. Z., 231(3):409456, 1999.
[23] A. Martin. On the cubical geometry of Higman's group. Duke Math. J., 166(4):707-738, 2017.
[24] A. Martin and P. Przytycki. Acylindrical actions for two-dimensional Artin groups of hyperbolic type. arXiv:1906.03154, 2019.
[25] J. P. McCammond and D. T. Wise. Fans and ladders in small cancellation theory. Proc. London Math. Soc. (3), 84(3):599-644, 2002, doi:10.1112/S0024611502013424.
[26] A. Minasyan and D. Osin. Acylindrical hyperbolicity of groups acting on trees. Math. Ann., 362(3-4):1055-1105, 2015.
[27] D. Osin. Acylindrically hyperbolic groups. Trans. Amer. Math. Soc., 368(2):851-888, 2016.
[28] M. Sageev. Ends of group pairs and non-positively curved cube complexes. Proc. London Math. Soc. (3), 71(3):585-617, 1995, doi:10.1112/plms/s3-71.3.585.
[29] P. E. Schupp. Small cancellation theory over free products with amalgamation. Math. Ann., 193:255264, 1971.
[30] Z. Sela. Acylindrical accessibility for groups. Invent. Math., 129(3):527-565, 1997, doi:10.1007/s002220050172.
[31] A. Sisto. Contracting elements and random walks. J. Reine Angew. Math., 742:79-114, 2018.

[^0]: 2010 Mathematics subject classification. 20F65
 Key words and phrases. CAT(0) cube complexes, acylindrical actions, Higman group, Tits alternative.
 *Alexandre Martin. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK. Email: alexandre.martin@hw.ac.uk
 ${ }^{\dagger}$ This work was partially supported by the European Research Council (ERC) grant no. 259527, the Austrian Science Fund (FWF) grant M1810-N25, and the EPSRC New Investigator Award EP/S010963/1.

