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Abstract

This article studies the structure of the automorphism groups of general graph products of
groups. We give a complete characterisation of the automorphisms that preserve the set
of conjugacy classes of vertex groups for arbitrary graph products. Under mild conditions
on the underlying graph, this allows us to provide a simple set of generators for the
automorphism groups of graph products of arbitrary groups. We also obtain information
about the geometry of the automorphism groups of such graph products: lack of property
(T), acylindrical hyperbolicity.
The approach in this article is geometric and relies on the action of graph products of
groups on certain complexes with a particularly rich combinatorial geometry. The first
such complex is a particular Cayley graph of the graph product that has a quasi-median
geometry, a combinatorial geometry reminiscent of (but more general than) CAT(0) cube
complexes. The second (strongly related) complex used is the Davis complex of the graph
product, a CAT(0) cube complex that also has a structure of right-angled building.
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1 Introduction and main results
Graph products of groups, which have been introduced by Green in [Gre90], define
a class of group products that, loosely speaking, interpolates between free and direct
products. For a simplicial graph Γ and a collection of groups G = {Gv | v ∈ V (Γ)}
indexed by the vertex set V (Γ) of Γ, the graph product ΓG is defined as the quotient(

∗
v∈V (Γ)

Gv

)
/〈〈gh = hg, h ∈ Gu, g ∈ Gv, {u, v} ∈ E(Γ)〉〉,

where E(Γ) denotes the edge set of Γ. The two extreme situations where Γ has no
edge and where Γ is a complete graph respectively correspond to the free product and
the direct sum of the groups belonging to the collection G. Graph products include
two intensively studied families of groups: right-angled Artin groups and right-angled
Coxeter groups. Many articles have been dedicated to the study of the automorphism
groups of these particular examples of graph products. In particular, the automorphism
groups of right-angled Coxeter groups have been intensively studied in relation with the
famous rigidity problem for Coxeter groups, see for instance [BMMN02].
Beyond these two cases, the automorphism groups of general graph products of groups
are poorly understood. Most of the literature on this topic imposes very strong con-
ditions on the graph products involved, either on the underlying graph (as in the case
of the automorphisms groups of free products [GL07, Hor16, Hor14]) or on the vertex
groups (most of the case, they are required to be abelian or even cyclic [CG12, GPR12,
CRSV10, RW16]). Automorphism groups of graph products of more general groups (and
their subgroups) are essentially uncharted territory. For instance, the following general
problem is still unsolved:

General Problem. Find a natural / simple generating set for the automorphism group
of a general graph product of groups.

The first result in that direction is the case of right-angled Artin groups or right-angled
Coxeter groups, solved by Servatius [Ser89a] and Laurence [Lau95]. More recently,
Corredor–Guttierez described a generating set for automorphism groups of graph prod-
ucts of cyclic groups [CG12], using previous work of Guttierez–Piggott–Ruane [GPR12].
Beyond these cases however, virtually nothing is known about the automorphism group
of a graph product.
Certain elements in the generating sets of a right-angled Artin groups naturally gener-
alise to more general graph products, and we take a moment to mention them as they
play an important role in the present work:

• For an element g ∈ ΓG, the inner automorphism ι(g) is defined by

ι(g) : ΓG → ΓG, x 7→ gxg−1.

• Given an isometry σ : Γ → Γ and a collection of isomorphisms Φ = {ϕu : Gu →
Gσ(u) | u ∈ V (Γ)}, the local automorphism (σ,Φ) is the automorphism of ΓG
induced by 

⋃
u∈V (Γ)

Gu → ΓG

g 7→ ϕu(g) if g ∈ Gu
.

For instance, in the specific case of right-angled Artin groups, graphic automor-
phisms (i.e. automorphisms of ΓG induced by a graph automorphism of Γ) and
inversions [Ser89b] are local automorphisms.
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• Given a vertex u ∈ V (Γ), a connected component Λ of Γ\star(u) and an element
h ∈ Gu, the partial conjugation (u,Λ, h) is the automorphism of ΓG induced by

⋃
u∈V (Γ)

Gu → ΓG

g 7→
{

g if g /∈ 〈Λ〉
hgh−1 if g ∈ 〈Λ〉

.

Notice that an inner automorphism of ΓG is always a product of partial conjuga-
tions.

The goal of this article is to describe the structure (and provide a generating set) for
much larger classes of graphs products of groups by adopting a new geometric perspec-
tive. In a nutshell, the strategy is to consider the action of graph products ΓG on an
appropriate space and to show that this action can be extended to an action of Aut(ΓG)
on X, in order to exploit the geometry of this action. Such a ‘rigidity’ phenomenon
appeared for instance in the work of Ivanov on the action of mapping class groups of hy-
perbolic surfaces on their curve complexes: Ivanov showed that an automorphism of the
mapping class group induces an automorphism of the underlying curve complex [Iva84].
Another example is given by the Higman group: in [Mar17], the second author com-
puted the automorphism group of the Higman group H4 by first extending the action
of H4 on a CAT(0) square complex naturally associated to its standard presentation to
an action of Aut(H4). In this article, we construct such rigid actions for large classes of
graph products of groups. The results from this article vastly generalise earlier results
obtained by the authors in a previous version (not intended for publication, but still
available on the arXiv as [GM18]).

We now present the main results of this article. For the rest of this introduction,
we fix a finite simplicial graph Γ and a collection G of groups indexed by
V (Γ).

The subgroup of conjugating automorphisms. When studying automorphisms of
graph products of groups, an important subgroup consists of those automorphisms that
send vertex groups to conjugates of vertex groups. This subgroup already appears for
instance in the work of Tits [Tit88], Corredor–Gutierrez [CG12], and Charney–Gutierez–
Ruane [GPR12]. A description of this subgroup was only available for right-angled Artin
groups and other graph products of cyclic groups by work of Laurence [Lau95].
A central result of this paper is a complete characterisation of this subgroup under no
restriction on the vertex groups or the underlying graph. More precisely, let us call a
conjugating automorphism of ΓG an automorphism ϕ of ΓG such that, for every vertex
group Gv ∈ G, there exists a vertex group Gw ∈ G and an element g ∈ ΓG such that
ϕ(Gv) = gGwg

−1. We prove the following:

Theorem A. The subgroup of conjugating automorphisms of ΓG is exactly the subgroup
of Aut(ΓG) generated by the local automorphisms and the partial conjugations.

Generating set and algebraic structure. With this characterisation of conjugating
automorphisms at our disposal, we are able to completely describe the automorphism
group of large classes of graph products, and in particular to give a generating set for
such automorphism groups. To the authors’ knowledge, this result represents the first
results on the algebraic structure of automorphism groups of graph products of general
(and in particular non-abelian) groups.
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Theorem B. If Γ is a finite connected simplicial graph of girth at least 5 and without
vertices of valence < 2, then Aut(ΓG) is generated by the partial conjugations and the
local automorphisms.

This description of the automorphism group in Theorem B simplifies further in the case
where Γ is in addition assumed not to contain any separating star (following [BKS08], a
finite connected graph without vertex of valence < 2, whose girth is at least 5, and that
does not contain separating stars is called atomic), then we get the following decompo-
sition:

Corollary C. If Γ is an atomic graph, then

Aut(ΓG) ' ΓG o

∏
v∈Γ

Aut(Gv)

o Sym(ΓG)

 ,
where Sym(ΓG) is an explicit subgroup of the automorphism group of Γ.

Actually, we obtain a stronger statement characterising isomorphisms between graph
products of groups (see Theorem 3.11), which in the case of right-angled Coxeter groups
is strongly related to the so-called strong rigidity of these groups, and to the famous
isomorphism problem for general Coxeter groups, see [BMMN02].
It should be noted that while the previous theorems impose conditions on the underlying
graph, it can be used to obtain information about more general Coxeter or Artin groups.
Indeed, if the vertex groups in our graph product are (arbitrary) Coxeter groups, then
the resulting graph product is again a Coxeter group (with a possibly much wilder un-
derlying graph), and Corollary C can thus be interpreted as a form of strong rigidity
of these Coxeter groups relative to their vertex groups: up to conjugation and auto-
morphisms of the vertex groups, an automorphism of the graph product comes from a
(suitable) isometry of the underlying graph.

The explicit computation in Corollary C can be used to study the subgroups of such
automorphism groups. In particular, since satisfying the Tits alternative is a property
stable under graph products [AM15] and under extensions, one can deduce from Corol-
lary C a combination theorem for the Tits Alternative for such automorphism groups.

We mention also an application of this circle of ideas to the study of automorphism
groups of graph products of finite groups, with no requirement on the underlying graph.
The following result was only known for graph products of cyclic groups by work of
Corredor–Gutierrez [CG12]:

Theorem D. If all the groups of G are finite, then the subgroup of conjugating auto-
morphisms of ΓG has finite index in Aut(ΓG).

As an interesting application, we are able to determine precisely when a graph product
of finite groups has a finite outer automorphism group. See Corollary 3.21 for a precise
statement.

Geometry of the automorphism group. While the previous results give us infor-
mation about the algebraic structure of the automorphism groups of graph products,
the geometric point of view used in this article also allows us to obtain some information
about their geometry.

The first property we investigate is the notion of acylindrical hyperbolicity introduced by
Osin in [Osi16], which unifies several known classes of groups with ‘negatively curved’
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features such as relatively hyperbolic groups and mapping class groups (we refer to
[Osi17] for more information). One of the most striking consequences of the acylindrical
hyperbolicity of a group is its SQ-universality [DGO17], that is, every countable group
embeds into a quotient of the group we are looking at. Loosely speaking, such groups
are thus very far from being simple.
For general graph products, we obtain the following:

Theorem E. If Γ is an atomic graph and if G is collection of finitely generated groups,
then Aut(ΓG) is acylindrically hyperbolic.

Let us mention that prior to this result, very little was known about the acylindrical
hyperbolicity of the automorphism group of a graph product, even in the case of right-
angled Artin groups. At one end of the RAAG spectrum, Aut(Zn) = GLn(Z) is a higher
rank lattice for n ≥ 3, and thus does not have non-elementary actions on hyperbolic
spaces by a recent result of Haettel [Hae16]. The situation is less clear for Aut(Fn):
while it is known that Out(Fn) is acylindrically hyperbolic for n ≥ 2 [BF10], the case
of Aut(Fn) seems to be open. For right-angled Artin groups whose outer automorphism
group is finite, such as right-angled Artin group over atomic graphs, the problem boils
down to the question of the acylindrical hyperbolicity of the underlying group, for which
a complete answer is known [MO15].

Another property of a more geometric nature group that can be investigated from our
perspective is Kazhdan’s property (T). Property (T) for a group imposes for instance
strong restrictions on the possible homomorphisms starting from that group and plays
a fundamental role in several rigidity statements, including Margulis’ superrigidity. We
only possess a fragmented picture of the status of property (T) for automorphism groups
of right-angled Artin groups. At one end of the RAAG spectrum, Aut(Zn) = GLn(Z)
is known to have property (T) for n ≥ 3. In the opposite direction, it is known that
Aut(Fn) does not have property (T) for n = 2 and 3 [McC89, GL09, BV10]; that it has
property (T) for n ≥ 5 by very recent results of [KNO17, KKN18]; and the case n = 4 is
still open. About more general right-angled Artin groups, a few general criteria can be
found in [AMP16, GS18]. (See also [SS17] for right-angled Coxeter groups.) We obtain
the following result:

Theorem F. If Γ is an atomic graph, then Aut(ΓG) does not have Property (T).

We emphasize that this result does not assume any knowledge of the vertex groups of the
graph product, or the size of its outer automorphism group. In particular, by allowing
vertex groups to be arbitrary right-angled Artin groups, this result provides a very large
class of right-angled Artin groups whose automorphism groups do not have property (T).

Structure of the paper. Let us now detail the strategy and structure of this article.
In Section 2, we recall a few general definitions and statements about graph products,
before introducing the two main complexes studied in this paper: the Davis complex of
a graph product of groups ΓG, and a certain Cayley graph X(Γ,G) of the graph product
that has a particularly rich combinatorial geometry (namely, a quasi-median geometry).
Ideally, one would like to show that the action of the graph product on one of these
complexes extends to an action of the automorphism group. However, this does not
hold in general: in the case of right-angled Artin groups for instance, the presence of
transvections shows that conjugacy classes of vertex groups are not preserved by auto-
morphisms in general. In Section 3, a different action is considered, namely the action
of ΓG on the transversality graph associated to the graph X(Γ,G), and we show that
this action extends to an action of Aut(ΓG). (This transversality graph turns out to
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be naturally isomorphic to the intersection graph of parallelism classes of hyperplanes
in the Davis complex.) This action allows us to prove the central result of our article:
the characterisation of conjugating automorphisms stated in Theorem A. The algebraic
structure of certain automorphism groups is also proved in this section (Theorems B
and D). Finally, Section 4 focuses on the case of graph products of groups over atomic
graphs. We first prove that the action of the graph product on its Davis complex extends
to an action of its automorphism group. Such a rich action on a CAT(0) cube complex
is then used to prove Theorems E and F.

The point of view of quasi-median graphs. We take a moment to justify the
point of view adopted in this article, and in particular the central role played by the
quasi-median geometry of some Cayley graph of a graph product. This is a very natu-
ral object associated to the group, and its geometry turns out to be both similar and
simpler than that of the (perhaps more familiar) Davis complex. Quasi-median graphs
have been studied in great detail by the first author [Gen17]. However, we wish to
emphasize that we provide in this article self-contained proofs of all the com-
binatorial/geometric results about this graph, in order to avoid relying on
the (yet unpublished, at the time of writing) manuscript [Gen17]. In particular,
no prerequisite on quasi-median geometry is needed to read this article.
Let us explain further the advantages of this (quasi-median) graph over the Davis com-
plex. First, the geodesics of this graph encode the normal forms of group elements, which
makes its geometry more natural and easier to work with; see Section 2.2 for more de-
tails. Moreover, although a quasi-median graph is not the 1-skeleton of a CAT(0) cube
complex, it turns out to have essentially the same type of geometry. More precisely,
hyperplanes may be defined in quasi-median graphs in a similar fashion, and so that
the geometry reduces to the combinatorics of hyperplanes, as for CAT(0) cube com-
plexes; see for instance Theorem 2.14 below. Roughly speaking, quasi-median graphs
may be thought of as ‘almost’ CAT(0) cube complexes in which hyperplanes cut the
space into at least two pieces but possibly more. The analogies between these classes
of spaces go much further, and we refer to [Gen17, Section 2] for a dictionary between
concepts/results in CAT(0) cube complexes and their quasi-median counterparts. Hy-
perplanes in the quasi-median graph turn out to be easier to work with than hyperplanes
in the Davis complex, due to the absence of parallel hyperplanes, which makes some of
the arguments simpler and cleaner. Hyperplanes in this quasi-median graph are closely
related to the tree-walls of the Davis complex introduced by M. Bourdon in [Bou97]
for certain graph products of groups, and used in a previous version of this article (not
intended for publication) [GM18].
Quasi-median graphs provide a convenient combinatorial framework that encompasses
and unifies many of the tools used to study graph products until now: the normal forms
proved in E. Green’s thesis [Gre90] (see also [Gen19] for a more geometric approach),
the action on a right-angled building with an emphasis on the combinatorics of certain
subspaces (tree-walls) [Bou97, TW11, Cap14, DMSS18], the action on a CAT(0) cube
complex (Davis complex), etc. An indirect goal of this article is thus to convince the
reader that the quasi-median graph associated to a graph product of groups provides a
rich and natural combinatorial setting to study this group, and ought to be investigated
further. Finally, let us mention that decomposing non-trivially as a graph product can
be characterised by the existence of an appropriate action on a quasi-median graph,
see [Gen17, Corollary 10.57]. Thus, quasi-median geometry is in a sense ‘the’ natural
geometry associated with graph products.
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2 Geometries associated to graph products of groups

2.1 Generalities about graph products

Given a simplicial graph Γ, whose set of vertices is denoted by V (Γ), and a collection of
groups G = {Gv | v ∈ V (Γ)} (the vertex groups), the graph product ΓG is defined as the
quotient (

∗
v∈V (Γ)

Gv

)
/〈〈gh = hg, h ∈ Gu, g ∈ Gv, {u, v} ∈ E(Γ)〉〉,

where E(Γ) denotes the set of edges of Γ. Loosely speaking, it is obtained from the
disjoint union of all the Gv’s, called the vertex groups, by requiring that two adjacent
vertex groups commute. Notice that, if Γ has no edges, ΓG is the free product of the
groups of G; on the other hand, if Γ is a complete graph, then ΓG is the direct sum of the
groups of G. Therefore, a graph product may be thought of as an interpolation between
free and direct products. Graph products also include two classical families of groups:
If all the vertex groups are infinite cyclic, ΓG is known as a right-angled Artin group;
and if all the vertex groups are cyclic of order two, then ΓG is known as a right-angled
Coxeter group.

Convention. In all the article, we will assume for convenience that the groups of G
are non-trivial. Notice that it is not a restrictive assumption, since a graph product
with some trivial factors can be described as a graph product over a smaller graph all
of whose factors are non-trivial.

If Λ is an induced subgraph of Γ (ie., two vertices of Λ are adjacent in Λ if and only if
they are adjacent in Γ), then the subgroup, which we denote by 〈Λ〉, generated by the
vertex groups corresponding to the vertices of Λ is naturally isomorphic to the graph
product ΛG|Λ, where G|Λ denotes the subcollection of G associated to the set of vertices
of Λ. This observation is for instance a consequence of the normal form described below.

For the rest of Section 2, we fix a finite simplicial graph Γ and a collection G
of groups indexed by V (Γ).

Normal form. A word in ΓG is a product g1 · · · gn where n ≥ 0 and where, for every
1 ≤ i ≤ n, gi belongs to Gi for some Gi ∈ G; the gi’s are the syllables of the word, and
n is the length of the word. Clearly, the following operations on a word does not modify
the element of ΓG it represents:

(O1) delete the syllable gi = 1;
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(O2) if gi, gi+1 ∈ G for some G ∈ G, replace the two syllables gi and gi+1 by the single
syllable gigi+1 ∈ G;

(O3) if gi and gi+1 belong to two adjacent vertex groups, switch them.

A word is reduced if its length cannot be shortened by applying these elementary moves.
Given a word g1 · · · gn and some 1 ≤ i < n, if the vertex group associated to gi is adjacent
to each of the vertex groups of gi+1, ..., gn, then the words g1 · · · gn and g1 · · · gi−1 ·
gi+1 · · · gn · gi represent the same element of ΓG; We say that gi shuffles to the right.
Analogously, one can define the notion of a syllable shuffling to the left. If g = g1 · · · gn
is a reduced word and h is a syllable, then a reduction of the product gh is given by

• g1 · · · gn if h = 1;

• g1 · · · gi−1 · gi+1 · · · gn if gi and h belong to the same vertex group, gi shuffles to
the right and gi = h−1;

• g1 · · · gi−1 · gi+1 · · · gn · (gih) if gi and h belong to the same vertex group, gi shuffles
to the right, gi 6= h−1 and (gih) is thought of as a single syllable.

In particular, every element of ΓG can be represented by a reduced word, and this word
is unique up to applying the operation (O3). It is worth noticing that a reduced word
has also minimal length with respect to the generating set

⋃
u∈V (Γ)

Gu. We refer to [Gre90]

for more details (see also [Gen19] for a more geometric approach). We will also need
the following definition:

Definition 2.1. Let g ∈ ΓG. The head of g, denoted by head(g), is the collection of
the first syllables appearing in the reduced words representing g. Similarly, the tail of g,
denoted by tail(g), is the collection of the last syllables appearing in the reduced words
representing g.

Some vocabulary. We conclude this paragraph with a few definitions about graphs
used in the article.

• A subgraph Λ ⊂ Γ is a join if there exists a partition V (Λ) = AtB, where A and
B are both non-empty, such that any vertex of A is adjacent to any vertex of B.

• Given a vertex u ∈ V (Γ), its link, denoted by link(u), is the subgraph generated
by the neighbors of u.

• More generally, given a subgroup Λ ⊂ Γ, its link, denoted by link(Λ), is the
subgraph generated by the vertices of Γ which are adjacent to all the vertices of Λ.

• Given a vertex u ∈ V (Γ), its star, denoted by star(u), is the subgraph generated
by link(u) ∪ {u}.

• More generally, given a subgraph Λ ⊂ Γ, its star, denoted by star(Λ), is the
subgraph generated by link(Λ) ∪ Λ.

2.2 The quasi-median graph associated to a graph product of groups

This section is dedicated to the geometry of the following Cayley graph of ΓG:

X(Γ,G) := Cayl

ΓG,
⋃

u∈V (Γ)
Gu\{1}

 ,
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ie., the graph whose vertices are the elements of the groups ΓG and whose edges link two
distinct vertices x, y ∈ ΓG if y−1x is a non-trivial element of some vertex group. Like
in any Cayley graph, edges of X(Γ,G) are labelled by generators, namely by elements
of vertex groups. By extension, paths in X(Γ,G) are naturally labelled by words of
generators. In particular, geodesics in X(Γ,G) correspond to words of minimal length.
More precisely:

Proposition 2.2. Fix two vertices g, h ∈ X(Γ,G). If s1 · · · sn is a reduced word repre-
senting g−1h, then

g, gs1, gs1s2, . . . , gs1 · · · sn−1, gs1 · · · sn−1sn = h

define a geodesic in X(Γ,G) from g to h. Conversely, if s1, . . . , sn is the sequence of
elements of ΓG labelling the edges of a geodesic in X(Γ,G) from g to h, then s1 · · · sn is
a reduced word representing g−1h. As a consequence, the distance in X(Γ,G) between g
and h coincides with the length |g−1h| of any reduced word representing g−1h.

The Cayley graph as a complex of prisms. The first thing we want to highlight
is that the Cayley graph X(Γ,G) has naturally the structure of a complex of prisms. We
begin by giving a few definitions:

Definition 2.3. Let X be a graph. A clique of X is a maximal complete subgraph. A
prism P ⊂ X is an induced subgraph which decomposes as a product of cliques of X in
the following sense: There exist cliques C1, . . . , Ck ⊂ P of X and a bijection between
the vertices of P and the k-tuples of vertices C1 × · · · × Ck such that two vertices of
P are linked by an edge if and only if the two corresponding k-tuples differ on a single
coordinate. The number of factors, namely k, is referred to as the cubical dimension of
P . More generally, the cubical dimension of X is the highest cubical dimension of its
prisms.

The first observation is that cliques of X(Γ,G) correspond to cosets of vertex groups.

Lemma 2.4. The cliques of X(Γ,G) coincide with the cosets gGu, where g ∈ ΓG and
u ∈ V (Γ).

Proof. First of all, observe that the edges of a triangle ofX(Γ,G) are labelled by elements
of ΓG that belong to the same vertex group. Indeed, if the vertices x, y, z ∈ X(Γ,G)
generate a triangle, then z−1x, z−1y and y−1x are three non-trivial elements of vertex
groups such that z−1x = (z−1y) · (y−1x). Of course, the product (z−1y) · (y−1x) cannot
be reduced, which implies that (z−1y) and (y−1x) belong to the same vertex group, say
Gu. From the previous equality, it follows that z−1x belongs to Gu as well, concluding
the proof of our claim. We record its statement for future use:

Fact 2.5. In X(Γ,G), the edges of a triangle are labelled by elements of a common
vertex group.

As a consequence, the edges of any complete subgraph of X(Γ,G) are all labelled by
elements of the same vertex group. Thus, we have proved that any clique of X(Γ,G)
is generated by gGu for some g ∈ ΓG and u ∈ V (Γ). Conversely, fix some g ∈ ΓG and
u ∈ V (Γ). By definition of X(Γ,G), it is clearly a complete subgraph, and, if C denotes
a clique containing gGu, we already know that C = hGv for some h ∈ ΓG and v ∈ V (Γ).
Since

〈Gu, Gv〉 =


Gu ×Gv if u and v are adjacent in Γ
Gu ∗Gu if u and v are non-adjacent and distinct
Gu = Gv if u = v

,
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it follows from the inclusion gGu ⊂ C = hGv that u = v. Finally, since two cosets of
the same subgroup either coincide or are disjoint, we conclude that gGu = C is a clique
of X(Γ,G).

Next, we observe that prisms of X(Γ,G) correspond to cosets of subgroups generated
by complete subgraphs of Γ.

Lemma 2.6. The prisms of X(Γ,G) coincide with the cosets g〈Λ〉 where g ∈ ΓG and
where Λ ⊂ Γ is a complete subgraph.

Proof. If g ∈ ΓG and if Λ ⊂ Γ is a complete subgraph, then g〈Λ〉 is the product of the
cliques gGu where u ∈ Λ. A fortiori, g〈Λ〉 is a prism. Conversely, let P be a prism of
X(Γ,G). Fix a vertex g ∈ P and let C be a collection of cliques all containing g such
that P is the product of the cliques of C. As a consequence of Lemma 2.4, there exists a
subgraph Λ ⊂ Γ such that C = {gGu | u ∈ Λ}. Fix two distinct vertices u, v ∈ Λ and two
elements a ∈ Gu, b ∈ Gv. Because P is a prism, the edges (g, ga) and (g, gb) generate
a square in X(Γ,G). Let x denote its fourth vertex. It follows from Proposition 2.2
that g−1x has length two and that the geodesics from g to x are labelled by the reduced
words representing g−1x. As g and x are opposite vertices in a square, there exist two
geodesics between them. The only possibility is that g−1x = ab and that a and b belong
to adjacent vertex groups, so that g, ga, gb and gab = gba are the vertices of our square.
A fortiori, u and v are adjacent in Γ. The following is a consequence of our argument,
which we record for future use:

Fact 2.7. Two edges of X(Γ,G) sharing an endpoint generate a square if and only if
they are labelled by adjacent vertex groups. If so, two opposite sides of the square are
labelled by the same element of ΓG.

Thus, we have proved that Λ is a complete subgraph of Γ. Since the prisms P and g〈Λ〉
both coincide with the product of the cliques of C, we conclude that P = g〈Λ〉, proving
our lemma.

An immediate consequence of Lemma 2.6 is the following statement:

Corollary 2.8. The cubical dimension of X(Γ,G) is equal to clique(Γ), the maximal
cardinality of a complete subgraph of Γ.

Hyperplanes. Now, our goal is to define hyperplanes in X(Γ,G) and to show that
they behave essentially in the same way as hyperplanes in CAT(0) cube complexes.

Definition 2.9. A hyperplane ofX(Γ,G) is a class of edges with respect to the transitive
closure of the relation claiming that two edges which are opposite in a square or which
belong to a common triangle are equivalent. The carrier of a hyperplane J , denoted
by N(J), is the subgraph of X(Γ,G) generated by J . Two hyperplanes J1 and J2 are
transverse if they intersect a square along two distinct pairs of opposite edges, and they
are tangent if they are distinct, not transverse and if their carriers intersect.
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Figure 1: Four hyperplanes in a quasi-median graph, colored in red, blue, green, and
orange. The orange hyperplane is transverse to the blue and red hyperplanes. The green
and orange hyperplanes are tangent.

We refer to Figure 1 for examples of hyperplanes in a graph. We begin by describing
the hyperplanes of X(Γ,G). For convenience, for every vertex u ∈ V (Γ) we denote by
Ju the hyperplane which contains all the edges of the clique Gu. Our description of the
hyperplanes of X(Γ,G) is the following:

Theorem 2.10. For every hyperplane J of X(Γ,G), there exist some g ∈ ΓG and u ∈
V (Γ) such that J = gJu. Moreover, N(J) = g〈star(u)〉 and stab(J) = g〈star(u)〉g−1.

The key step in proving Theorem 2.10 is the following characterisation:

Proposition 2.11. Fix a vertex u ∈ V (Γ) and two adjacent vertices x, y ∈ X(Γ,G).
The following statements are equivalent:

(i) the edge (x, y) is dual to the hyperplane Ju;

(ii) x ∈ 〈star(u)〉 and x−1y ∈ Gu;

(iii) the projections of x and y onto the clique Gu are distinct.

The third point requires an explanation. The projection of a vertex onto a clique refers
to the unique vertex of the clique which minimises the distance to our initial vertex.
The existence of such a projection is justified by the following lemma:

Lemma 2.12. Fix a vertex u ∈ V (Γ) and let g ∈ X(Γ,G). There exists a unique vertex

of the clique Gu minimising the distance to g, namely
{

1 if head(g) ∩Gu = ∅
head(g) ∩Gu if head(g) ∩Gu 6= ∅

.

Proof. Suppose that head(g) ∩Gu = ∅. Then, for every h ∈ Gu, one has

d(g, h) = |h−1g| = |g|+ 1 = d(g, 1) + 1 > d(g, 1)

since the product h−1g is necessarily reduced. It shows that 1 is the unique vertex of
Gu minimising the distance to g. Next, suppose that head(g) ∩ Gu 6= ∅. Thus, we can
write g as a reduced product hg′ where h belongs to Gu\{1} and where g′ ∈ ΓG satisfies
head(g′) ∩Gu = ∅. Notice that head(g) ∩Gu = {h}. Then

d(g, k) = |k−1g| = |(k−1h) · g′| = |g′|+ 1 = d(g, h) + 1 > d(g, h)

for every k ∈ Gu\{h} since the product (k−1h) · g′ is necessarily reduced. This proves
that h is the unique vertex of Gu minimising the distance to g.
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Proof of Proposition 2.11. Suppose that (i) holds. There exists a sequence of edges

(x1, y1), (x2, y2), . . . , (xn−1, yn−1), (xn, yn) = (x, y)

such that (x1, y1) ⊂ Gu, and such that, for every 1 ≤ i ≤ n − 1, the edges (xi, yi)
and (xi+1, yi+1) either belong to the same triangle or are opposite in a square. We
argue by induction over n. If n = 1, there is nothing to prove. Now suppose that
xn−1 ∈ 〈star(u)〉 and that x−1

n−1yn−1 ∈ Gu. If (xn−1, yn−1) and (xn, yn) belong to the
same triangle, it follows from Fact 2.5 that xn ∈ 〈star(u)〉 and x−1

n yn ∈ Gu. Otherwise,
if (xn−1, yn−1) and (xn, yn) are opposite sides in a square, we deduce from Fact 2.5 that

there exists some a ∈ 〈link(u)〉 such that either
{
xn = xn−1a
yn = yn−1a

or
{
xn = yn−1a
yn = xn−1a

. As

a consequence, xn ∈ 〈star(u)〉 and x−1
n yn ∈ Gu. Thus, we have proved the implication

(i)⇒ (ii).

Now, suppose that (ii) holds. There exists some ` ∈ Gu\{1} such that y = x`, and, since
〈star(u)〉 = Gu × 〈link(u)〉, we can write x as a reduced product ab for some a ∈ Gu
and b ∈ 〈link(u)〉. Notice that y is represented by the reduced product (a`) · b. We
deduce from Lemma 2.12 that the projections of x and y onto the clique Gu are a and
a` respectively. They are distinct since ` 6= 1. Thus, we have proved the implication
(ii)⇒ (iii).

Suppose that (iii) holds. Write x as a product a·x1 · · ·xn, where a ∈ Gu and x1, . . . , xn ∈
ΓG are generators, such that a = 1 and x1 · · ·xn is reduced if head(g)∩Gu = ∅, and such
that a ·x1 · · ·xn is reduced otherwise; notice that in the latter case, head(g)∩Gu = {a}.
According to Lemma 2.12, the projection of x onto the clique Gu is a. Next, because
x and b are adjacent, there exists a generator b ∈ ΓG such that y = xb. Since x
and y must have different projections onto the clique Gu, we deduce from Lemma 2.12
that necessarily b shuffles to the left in the product x1 · · ·xn · b (see Section 2.1 for the
definition) and belongs to Gu. (In this case, the projection of y onto the clique Gu is
ab, which distinct from a since b 6= 1.) As a consequence, the xi’s belong to 〈link(u)〉.
Finally, it is sufficient to notice that any two consecutive edges of the sequence

(a, ab), (ax1, abx1), . . . , (ax1 · · ·xn−1, abx1 · · ·xn−1), (ax1 · · ·xn, abx1 · · ·xn) = (x, y)

are opposite sides of a square in order to deduce that (x, y) and (a, ab) ⊂ Gu are dual to
the same hyperplane, namely Ju. Thus, we have proved the implication (iii)⇒ (i).

Proof of Theorem 2.10. Let J be a hyperplane of X(Γ,G). Fixing a clique C dual to J ,
we know from Lemma 2.4 that there exist g ∈ ΓG and u ∈ V (Γ) such that C = gGu,
hence J = gJu. It is a consequence of Proposition 2.11 that a vertex of X(Γ,G) belongs
to N(Ju) if and only if it belongs to 〈star(u)〉, so N(J) = gN(Ju) = g〈star(u)〉.

It remains to show that stab(J) = g〈star(u)〉g−1. Fix a non-trivial element a ∈ Gu.
Then the hyperplane dual to the edge (g, ga) is J . If h ∈ stab(J), then J must be also
dual to h·(g, ga), and we deduce from Proposition 2.11 that hg must belong to g〈star(u),
hence h ∈ g〈star(u)〉g−1. Conversely, if h belongs to g〈star(u)〉g−1, then hg ∈ g〈star(u)〉
and (hg)−1(ga) ∈ Gu so that Proposition 2.11 implies that gJu = J is the hyperplane
dual to the edge h · (g, ga), hence hJ = J since these two hyperplanes turn out to be
dual to the same edge. This concludes the proof of the theorem.

It is worth noticing that, as a consequence of Theorem 2.10, the hyperplanes of X(Γ,G)
are naturally labelled by V (Γ). More precisely, since any hyperplane J of X(Γ,G)
is a translate of some Ju, we say that the corresponding vertex u ∈ V (Γ) labels J .
Equivalently, by noticing that the edges of X(Γ,G) are naturally labelled by vertices
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of Γ, the vertex of Γ labelling a hyperplane coincides with the common label of all its
edges (as justified by Facts 2.5 and 2.7). Let us record the following elementary but
quite useful statement:

Lemma 2.13. Two transverse hyperplanes of X(Γ,G) are labelled by adjacent vertices
of Γ, and two tangent hyperplanes of X(Γ,G) are labelled by distinct vertices of Γ.

Proof. The assertion about transverse hyperplanes is a direct consequence of Fact 2.7.
Now, let J1 and J2 be two tangent hyperplanes, and let u1, u2 ∈ V (Γ) denote their
labels respectively. Since these two hyperplanes are tangent, there exists a vertex g ∈
X(Γ,G) which belongs to both N(J1) and N(J2). Fix two cliques, say C1 and C2
respectively, containing g and dual to J1 and J2. According to Lemma 2.4, we have
C1 = gGu1 and C2 = gGu2 . Clearly, u1 and u2 must be distinct, since otherwise C1 and
C2 would coincide, contradicting the fact that J1 and J2 are tangent. Therefore, our
two hyperplanes J1 and J2 are indeed labelled by distinct vertices of Γ.

Now we want to focus on the second goal of this paragraph by showing that hyperplanes
of X(Γ,G) are closely related to its geometry. Our main result is the following:

Theorem 2.14. The following statements hold:

• For every hyperplane J , the graph X(Γ,G)\\J is disconnected. Its connected com-
ponents are called sectors.

• Carriers of hyperplanes are convex.

• For any two vertices x, y ∈ X(Γ,G), d(x, y) = #{hyperplanes separating x and y}.

• A path in X(Γ,G) is a geodesic if and only if it intersects each hyperplane at most
once.

In this statement, we denoted by X(Γ,G)\\J , where J is a hyperplane, the graph
obtained from X(Γ,G) by removing the interiors of the edges of J .

Proof of Theorem 2.14. Let J be a hyperplane of X(Γ,G). Up to translating J by an
element of ΓG, we may suppose without loss of generality that J = Ju for some u ∈ V (Γ).
Fix a non-trivial element a ∈ Gu. We claim that the vertices 1 and a are separated by
Ju. Indeed, if x1, . . . , xn define a path from 1 to a in X(Γ,G), there must exist some
1 ≤ i ≤ n − 1 such that the projections of xi and xi+1 onto the clique Gu are distinct,
since the projections of 1 and a onto Gu are obviously 1 and a respectively and are
distinct. It follows from Proposition 2.11 that the edge (xi, xi+1) is dual to Ju. This
concludes the proof of the first point in the statement of our theorem.

The convexity of carriers of hyperplanes is a consequence of the characterisation of
geodesics given by Proposition 2.2 and of the description of carriers given by Theo-
rem 2.10.

Let γ be a geodesic between two vertices x, y ∈ X(Γ,G). Suppose by contradiction
that it intersects a hyperplane at least twice. Let e1, . . . , en be the sequence of edges
corresponding to γ. Fix two indices 1 ≤ i < j ≤ n such that ei and ej are dual to the
same hyperplane, say J , and such that the subpath ρ = ei+1 ∪ · · · ∪ ej−1 intersects each
hyperplane at most once and does not intersect J . Notice that, as a consequence of the
convexity of N(J), this subpath must be contained in the carrier N(J). Therefore, any
hyperplane dual to an edge of ρ must be transverse to J . It follows that, if xi denotes
the generator labelling the edge ei for every 1 ≤ i ≤ n, then xi shuffles to the end in
the product xi · xi+1 · · ·xj−1; moreover, xi and xj belong to the same vertex group.
Consequently, the product x1 · · ·xn is not reduced, contradicting the fact that γ is a
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geodesic according to Proposition 2.2. Thus, we have proved that a geodesic in X(Γ,G)
intersects each hyperplane at most once. This implies the inequality

d(x, y) ≤ #{hyperplanes separating x and y}.

The reverse inequality is clear since any path from x to y must intersect each hyperplane
separating x and y, proving the equality. As a consequence, if a path between x and y
intersects each hyperplane at most once, then its length coincides with the number of
hyperplanes separating x and y, which coincides itself with the distance between x and
y. A fortiori, such a path must be a geodesic. This concludes the proof of the third and
fourth points in the statement of the theorem.

Projections on parabolic subgroups. We saw in Lemma 2.12 that it is possible to
project naturally vertices of X(Γ,G) onto a given clique. Now, we want to extend this
observation to a wider class of subgraphs. More precisely, if Λ is a subgraph of Γ, then
we claim that vertices of X(Γ,G) project onto the subgraph 〈Λ〉. This covers cliques
but also carriers of hyperplanes according to Theorem 2.10. Before stating and proving
the main result of this paragraph, we would like to emphasize that, as a consequence of
Proposition 2.2, such a subgraph 〈Λ〉 is necessarily convex.

Proposition 2.15. Fix a subgraph Λ ⊂ Γ and a vertex g ∈ X(Γ,G). There exists a
unique vertex x of 〈Λ〉 minimising the distance to g. Moreover, any hyperplane separat-
ing g from x separates g from 〈Λ〉 (ie., g and 〈Λ〉 lie in distinct sectors delimited by the
hyperplane).

Proof. Fix a vertex x ∈ 〈Λ〉 minimising the distance to g, and a geodesic [g, x] from g to
x. We say that an edge of [g, x] is bad if the hyperplane dual to it crosses 〈Λ〉. Let e be
the bad edge of [g, x] which is closest to x. As a consequence, the edges of [g, x] between
e and x have their hyperplanes which are disjoint from 〈Λ〉. This implies that these
hyperplanes are all transverse to the hyperplane J dual to e, so that, as a consequence
of Lemma 2.13, the syllable s of g−1x labelling e belongs to the tail of g−1x. Moreover,
the fact that J crosses 〈Λ〉 implies that it is labelled by a vertex of Λ, hence s ∈ 〈Λ〉.
We deduce from Proposition 2.2 that there exists a geodesic from g to x whose last
edge is labelled by s. Since s and x both belong to 〈Λ〉, it follows that the penultimate
vertex along our geodesic, namely xs−1, belongs to 〈Λ〉 and satisfies d(g, xs−1) < d(g, x),
contradicting the definition of x. Thus, we have proved that a geodesic from g to x does
not contain any bad edge. In other words, any hyperplane separating g from x separates
g from 〈Λ〉. This proves the second assertion of our proposition.

Now, suppose that y ∈ 〈Λ〉 is a second vertex minimising the distance to g. If x and y are
distinct, then there exists a hyperplane J separating them. Because such a hyperplane
necessarily crosses 〈Λ〉, we deduce from the first paragraph of our proof that J does not
separate g from x; similarly, J does not separate g from y. But this implies that J does
not separate x and y, contradicting the choice of J . This proves that x and y necessarily
coincide, concluding the proof of our proposition.

Below, we record several easy consequences of Proposition 2.15.

Corollary 2.16. Let Λ be a subgraph of Γ and let x, y ∈ X(Γ,G) be two vertices. The
hyperplanes separating the projections of x and y onto 〈Λ〉 are precisely the hyperplanes
separating x and y which intersect 〈Λ〉. In particular, any hyperplane separating these
projections also separates x and y.

Proof. Let x′, y′ ∈ 〈Λ〉 denote respectively the projections of x and y onto 〈Λ〉. If J
is a hyperplane separating x′ and y′ then it has to cross 〈Λ〉. As a consequence of
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Proposition 2.15, J cannot separate x and x′ nor y and y′. Therefore, it has to separate
x and y. Conversely, suppose that J is a hyperplane separating x and y which intersects
〈Λ〉. Once again according to Proposition 2.15, J cannot separate x and x′ nor y and
y′. Therefore, it has to separate x′ and y′. This concludes the proof of our lemma.

Corollary 2.17. Let Λ,Ξ ⊂ Γ be two subgraphs and let g, h ∈ ΓG. The diameter of
the projection of g〈Λ〉 onto h〈Ξ〉 is at most the number of hyperplanes intersecting both
g〈Λ〉 and h〈Ξ〉.

Proof. For convenience, let p : X(Γ,G)→ h〈Ξ〉 denote the projection onto h〈Ξ〉. Let D
denote the number (possibly infinite) of hyperplanes intersecting both g〈Λ〉 and h〈Ξ〉.
We claim that, for every vertices x, y ∈ g〈Λ〉, the distance between p(x) and p(y) is at
most D. Indeed, as a consequence of Corollary 2.16, any hyperplane separating p(x) and
p(y) separates x and y, so that any hyperplane separating p(x) and p(y) must intersect
both g〈Λ〉 and h〈Ξ〉. Consequently, the diameter of p(g〈Λ〉) is at most D.

Corollary 2.18. Let Λ,Ξ ⊂ Γ be two subgraphs and let g, h ∈ ΓG be two elements. Fix
two vertices x ∈ g〈Λ〉 and y ∈ h〈Ξ〉 minimising the distance between g〈Λ〉 and h〈Ξ〉.
The hyperplanes separating x and y are precisely those separating g〈Λ〉 and h〈Ξ〉.

Proof. Let J be a hyperplane separating x and y. Notice that x is the projection of y
onto g〈Λ〉, and similarly y is the projection of x onto h〈Ξ〉. By applying Proposition 2.15
twice, it follows that J is disjoint from both g〈Λ〉 and h〈Ξ〉. Consequently, J separates
g〈Λ〉 and h〈Ξ〉. Conversely, it is clear that any hyperplane separating g〈Λ〉 and h〈Ξ〉
also separates x and y.

Corollary 2.19. Let Λ,Ξ ⊂ Γ be two subgraphs and let g, h ∈ ΓG be two elements. If
g〈Λ〉 ∩ h〈Ξ〉 = ∅ then there exists a hyperplane separating g〈Λ〉 and h〈Ξ〉.

Proof. Fix two vertices x ∈ g〈Λ〉 and y ∈ h〈Ξ〉minimising the distance between g〈Λ〉 and
h〈Ξ〉. Because these two subgraphs are disjoint, x and y must be distinct. According to
Corollary 2.18, taking a hyperplane separating x and y provides the desired hyperplane.

Hyperplane stabilisers. A useful tool when working with the Cayley graph X(Γ,G)
is the notion of rotative-stabiliser.

Definition 2.20. Let Γ be a simplicial graph and G a collection of groups indexed by
V (Γ). Given a hyperplane J of X(Γ,G), its rotative-stabiliser is the following subgroup
of ΓG:

stab	(J) :=
⋂

C clique dual to J
stab(C).

We begin by describing rotative-stabilisers of hyperplanes in X(Γ,G). More precisely,
our first main result is the following:

Proposition 2.21. The rotative-stabiliser of a hyperplane J of X(Γ,G) coincides with
the stabiliser of any clique dual to J . Moreover, stab	(J) acts freely and transitively on
the set of sectors delimited by J , and it stabilises each sector delimited by the hyperplanes
transverse to J ; in particular, it stabilises the hyperplanes transverse to J .

Proof. Let J be a hyperplane of X(Γ,G). Up to translating J by some element of ΓG,
we may suppose without loss of generality that J = Ju for some u ∈ V (Γ). As a
consequence of Proposition 2.11, the cliques of X(Γ,G) dual to Ju correspond to the
cosets gGu where g ∈ 〈link(u)〉. Clearly, they all have the same stabiliser, namely Gu.
This proves the first assertion of our proposition.
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Next, if follows from Proposition 2.11 that two vertices of X(Γ,G) belong to the same
sector delimited by Ju if and only if they have the same projection onto the clique
Gu. Therefore, the collection of sectors delimited by Ju is naturally in bijection with
the vertices of the clique Gu. Since stab	(Ju) = Gu acts freely and transitively on the
vertices of the clique Gu, it follows that this rotative-stabiliser acts freely and transitively
on the set of sectors delimited by Gu.

Finally, let J1 and J2 be two transverse hyperplanes. Up to translating J1 and J2 by
an element of ΓG, we may suppose without loss of generality that the vertex 1 belongs
to N(J1)∩N(J2). As a consequence, there exist vertices u, v ∈ V (Γ) such that J1 = Ju
and J2 = Jv. According to Lemma 2.13, u and v are adjacent in Γ. As a by-product,
one gets the following statement, which we record for future use:

Fact 2.22. The rotative-stabilisers of two transverse hyperplanes of X(Γ,G) commute,
ie., any element of one rotative-stabiliser commutes with any element of the other.

For every vertex x ∈ X(Γ,G) and every element g ∈ stab	(Ju) = Gu, we deduce
from Lemma 2.12 that x and gx have the same projection onto the clique Gv since
the vertex groups Gu and Gv commute. Because two vertices of X(Γ,G) belong to the
same sector delimited by Jv if and only if they have the same projection onto the clique
Gv, according to Proposition 2.11, we conclude that stab	(Ju) stabilises each sector
delimited by Jv.

We also record the following preliminary lemma which will be used later.

Lemma 2.23. Let x ∈ X(Γ,G) be a vertex and let J,H be two hyperplanes of X(Γ,G).
Suppose that J separates x from H and let g ∈ stab	(J) denote the unique element send-
ing H into the sector delimited by J which contains x. Then d(1, N(gH)) < d(1, N(H)).

Proof. Let y ∈ N(H) denote the projection of x onto N(H) and fix a geodesic [x, y]
between x and y. Because J separates x from H, [x, y] must contain an edge [a, b] dual
to J . Let [x, a] and [b, y] denote the subpath of [x, y] between x and a, and b and y,
respectively. Notice that gb = a since g stabilises the clique containing [a, b] and sends
the sector delimited by J which contains H (and a fortiori b) to the sector delimited by
J which contains x (and a fortiori a). As a consequence, [x, a] ∪ g[b, y] defines a path
from x to gN(H) of length d(x, y)− 1, so that

d(1, gN(H)) ≤ d(x, y)− 1 = d(1, N(H))− 1,

concluding the proof.

One feature of rotative-stabilisers is that they can be used to play ping-pong. As an
illustration, we prove a result that will be fundamental in Section 3.2. Let us first
introduce some notation:

Definition 2.24. A collection of hyperplanes J of X(Γ,G) is peripheral if, for every
J1, J2 ∈ J , J1 does not separate 1 from J2.

Lemma 2.25. Fix a collection of hyperplanes J , and, for every J ∈ J , let S(J) denote
the sector delimited by J that contains 1. If J is peripheral, then g /∈

⋂
J∈J

S(J) for every

non-trivial g ∈ 〈stab	(J) | J ∈ J 〉.

Proof. For every J ∈ J , let R(J) denote the union of all the sectors delimited by J
that do not contain the vertex 1. In order to prove our lemma we have to show that
g ∈

⋃
J∈J

R(J) for every non-trivial element g ∈ 〈stab	(J) | J ∈ J 〉. We deduce from

Proposition 2.21 that:
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• If J1, J2 ∈ J are two transverse hyperplanes, then g · R(J1) = R(J1) for every
g ∈ stab	(J2);

• If J1, J2 ∈ J are two distinct hyperplanes which are not transverse, then g ·R(J1)
is contained in R(J2) for every non-trivial g ∈ stab	(J2).

• For every hyperplane J ∈ J and every non-trivial element g ∈ stab	(J), g belongs
to R(J).

Let Φ be the graph whose vertex-set is J and whose edges connect two transverse
hyperplanes, and set H = {GJ = stab	(J) | J ∈ J }. As a consequence of Fact 2.22,
we have a natural surjective morphism φ : ΦH → 〈stab	(J) | J ∈ J 〉. It follows that
a non-trivial element g ∈ 〈stab	(J) | J ∈ J 〉 can be represented as a non-empty and
reduced word in ΦH, say w such that φ(w) = g. We claim that g belongs to R(J) for
some vertex J ∈ V (Φ) such that head(w) contains a syllable of GJ .

We argue by induction on the length of w. If w has length one, then w ∈ GJ\{1} for
some J ∈ V (Φ). Our third point above implies that g ∈ R(J). Now, suppose that w has
length at least two. Write w = ab where a is the first syllable of w and b the rest of the
word. Thus, a ∈ GJ\{1} for some J ∈ V (Φ). We know from our induction hypothesis
that φ(b) ∈ R(I) where I is a vertex of Φ such that head(b) contains a syllable of GI .
Notice that I 6= J since otherwise the word w = ab would not be reduced. Two cases
may happen: either I and J are not adjacent in Φ, so that our second point above
implies that g = φ(ab) ∈ φ(a) · R(I) ⊂ R(J); or I and J are adjacent, so that our first
point above implies that g = φ(ab) ∈ φ(a) · R(I) = R(I). It is worth noticing that,
in the former case, head(w) contains a syllable of GJ , namely a; in the latter case, we
know that we can write b as a reduced product cd where c is a syllable of GI , hence
w = ab = acd = cad since a and c belong to the commuting vertex groups GI and GJ ,
which implies that head(w) contains a syllable of GI . This concludes the proof of our
lemma.

2.3 The Davis complex associated to a graph product of groups

In this section, we recall an important complex associated to a graph product of groups,
whose structure will be used in Section 4.

Definition 2.26 (Davis complex). The Davis complex D(Γ,G) associated to the graph
product ΓG is defined as follows:

• Vertices correspond to left cosets of the form g〈Λ〉 for g ∈ ΓG and Λ ⊂ Γ a (possibly
empty) complete subgraph.

• For every g ∈ ΓG and complete subgraphs Λ1,Λ2 ⊂ Γ that differ by exactly one
vertex v, one puts an edge between the vertices g〈Λ1〉 and g〈Λ2〉. The vertex v is
called the label of that edge.

• One obtains a cubical complex from this graph by adding for every k ≥ 2 a k-cube
for every subgraph isomorphic to the 1-skeleton of a k-cube.

This complex comes with an action of ΓG: The group ΓG acts on the vertices by left
multiplication on left cosets, and this action extends to the whole complex.

If all the local groups Gv are cyclic of order 2, then ΓG is a right-angled Coxeter group
(generally denoted WΓ), and D(Γ,G) is the standard Davis complex associated to a
Coxeter group in that case. The Davis complex associated to a general graph product
has a similarly rich combinatorial geometry. More precisely:
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Theorem 2.27 ([Dav98]). The Davis complex D(Γ,G) is a CAT(0) cube complex.

We mention here a few useful observations about the action of ΓG on D(Γ,G).

Observation 2.28. The following holds:

• The action is without inversions, that is, an element of ΓG fixing a cube of D(Γ,G)
globally fixes that cube pointwise.

• The stabiliser of a vertex corresponding to a coset g〈Λ〉 is the subgroup g〈Λ〉g−1 .

• The action of ΓG on D(Γ,G) is cocompact, and a strict fundamental domain K
for this action is given by the subcomplex spanned by cosets of the form 〈Λ〉 (that
is, cosets associated to the identity element of ΓG).

The CAT(0) geometry of the Davis complex can be used for instance to recover the
structure of finite subgroups of graph products due to Green [Gre90], which will be used
in Section 3.3:

Lemma 2.29 ([Gre90, Lemma 4.5]). A finite subgroup of ΓG is contained in a conjugate
of the form g〈Λ〉g−1 for g ∈ ΓG and Λ ⊂ Γ a complete subgraph.

Proof. Let H ≤ ΓG be a finite subgroup. Since D(Γ,G) is a (finite-dimensional, hence
complete) CAT(0) cube complex by Theorem 2.27, the CAT(0) fixed-point theorem
[BH99, Corollary II.2.8] implies that H fixes a point of D(Γ,G). Since the action is
without inversions, it follows that H fixes a vertex, that is, H is contained in a conjugate
of the form g〈Λ〉g−1 for g ∈ ΓG and Λ ⊂ Γ a complete subgraph.

Remark 2.30. It is also possible to give a proof of Lemma 2.29 using the geometry
of the quasi-median graph X(Γ,G) introduced in Section 2.2. Indeed, if H is a finite
subgroup of ΓG, then it follows from [Gen17, Theorem 2.115] that H stabilises a prism
of X(Γ,G), so that the conclusion of Lemma 2.29 then follows from Lemma 2.6.

2.4 Relation between the Davis complex and the quasi-median graph

There is a very close link between the Davis complex and the quasi-median graph
X(Γ,G), which we now explain.

Let us consider the set of ΓG-translates of the fundamental domain K introduced in
Section 2.3. Two such translates gK and hK share a codimension 1 face if and only if
gh−1 is a non-trivial element of some vertex group Gv. Thus, the set of such translates
can be seen as a chamber system over the vertex set V (Γ) that defines a building with
underlying Coxeter group WΓ, as explained in [Dav98, Paragraph 5]. Moreover, the
Davis complex is then quasi-isometric to the geometric realisation of that building (see
[Dav98, Paragraph 8] for the geometric realisation of a building).
When thought of as a complex of chambers associated to a building, a very interesting
graph associated to the Davis complex is its dual graph. This is the simplicial graph
whose vertices correspond to the ΓG-translates of the fundamental domain K, and such
that two vertices gK and hK are joined by an edge if and only if the translates share
a codimension 1 face, or in other words if gh−1 is a non-trivial element of some local
group Gv. Since the action of ΓG is free and transitive on the set of ΓG-translates of K,
this dual graph can also be described as the simplicial graph whose vertices are elements
of ΓG and such that two elements g, g′ ∈ ΓG are joined by an edge if and only if there
is some non-trivial element s ∈ Gv of some vertex group such that g′ = gs. Thus, this
dual graph is exactly the quasi-median graph X(Γ,G).
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3 Descriptions of automorphism groups
In this section, we study an important class of automorphisms of a graph product of
groups. Until the end of Section 3.1, we fix a finite simplicial graph Γ and
a collection of groups G indexed by V (Γ). Applications to particular classes of
graphs products will then be given in Sections 3.3 and 3.4.

Definition 3.1. A conjugating automorphism of ΓG is an automorphism ϕ : ΓG → ΓG
satisfying the following property: For every G ∈ G, there exist H ∈ G and g ∈ ΓG such
that ϕ(G) = gHg−1. Let ConjAutΓ,G(ΓG) be the subgroup of conjugating automor-
phisms of ΓG. In order to lighten notations, we will simply denote it ConjAut(ΓG) in
the rest of this article, by a slight abuse of notation that we comment on below.

Remark 3.2. We emphasize that the subgroup ConjAutΓ,G(ΓG) of Aut(ΓG) heavily
depends on the chosen decomposition of ΓG as a graph product under consideration, and
not just on the group ΓG itself. For instance, let ΓG be the graph product corresponding
to a single edge whose endpoints are both labelled by Z, and let ΦH be the graph product
corresponding to a single vertex labelled by Z2. Both ΓG and ΦH are isomorphic to Z2,
but ConjAutΓ,G(ΓG) is finite while ConjAutΦ,H(ΦH) = GL(2,Z).
Thus, writing ConjAut(ΓG) instead of ConjAutΓ,G(ΓG) is indeed an abuse of notation.
However, in this article we will only consider a single graph product decomposition at a
time, so this lighter notation shall not lead to confusion.

Our goal in this section is to find a simple and natural generating set for ConjAut(ΓG).
For this purpose we need the following definitions:

Definition 3.3. We define the following automorphisms of ΓG:

• Given an isometry σ : Γ → Γ and a collection of isomorphisms Φ = {ϕu : Gu →
Gσ(u) | u ∈ V (Γ)}, the local automorphism (σ,Φ) is the automorphism of ΓG
induced by 

⋃
u∈V (Γ)

Gu → ΓG

g 7→ ϕu(g) if g ∈ Gu
.

The group of local automorphisms of ΓG is denoted by Loc(ΓG). Again, this
subgroup should be denoted LocΓ,G(ΓG) as it depends on the chosen decomposition
as a graph product, but we will use the same abuse of notation as above. Also, we
denote by Loc0(ΓG) the group of local automorphisms satisfying σ = Id. Notice
that Loc0(ΓG) is a finite-index subgroup of Loc(ΓG) naturally isomorphic to the
direct sum

⊕
u∈V (Γ)

Aut(Gu).

• Given a vertex u ∈ V (Γ), a connected component Λ of Γ\star(u) and an element
h ∈ Gu, the partial conjugation (u,Λ, h) is the automorphism of ΓG induced by

⋃
u∈V (Γ)

Gu → ΓG

g 7→
{

g if g /∈ 〈Λ〉
hgh−1 if g ∈ 〈Λ〉

.

Notice that an inner automorphism of ΓG is always a product of partial conjuga-
tions.

We denote by ConjP(ΓG) the subgroup of Aut(ΓG) generated by the inner automor-
phisms, the local automorphisms, and the partial conjugations. Again, this subgroup
should be denoted ConjPΓ,G(ΓG) as it depends on the chosen decomposition as a graph
product, but we will use the same abuse of notation as above.
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It is clear that the inclusion ConjP(ΓG) ⊂ ConjAut(ΓG) holds. The main result of this
section is that the reverse inclusion also holds. Namely:

Theorem 3.4. The group of conjugating automorphisms of ΓG coincides with ConjP(ΓG).

In Sections 3.3 and 3.4, we deduce a description of automorphism groups of specific
classes of graph products.

3.1 Action of ConjAut(ΓG) on the transversality graph

In this section, our goal is to extract from the quasi-median graph associated to a given
graph product a graph on which the group of conjugating automorphisms acts. Let us
recall that, until the end of Section 3.1, we fix a finite simplicial graph Γ and
a collection of groups G indexed by V (Γ).

Definition 3.5. The transversality graph T (Γ,G) is the graph whose vertices are the
hyperplanes of X(Γ,G) and whose edges connect two hyperplanes whenever they are
transverse.

Note that the transversality graph is naturally isomorphic to the crossing graph of
the Davis complex D(Γ,G), that is, the simplicial graph whose vertices are parallelism
classes of hyperplanes of D(Γ,G) and whose edges correspond to transverse (classes of)
hyperplanes. One of the advantages of working with the transversality graph instead
is that it does not require to talk about parallelism classes or to choose particular
representatives in proofs, which will make some of the arguments in this section simpler.
From this definition, it is not clear at all that the group of conjugating automorphisms
acts on the corresponding transversality graph. To solve this problem, we will state and
prove an algebraic characterisation of the transversality graph. This description is the
following:

Definition 3.6. The factor graph F (Γ,G) is the graph whose vertices are the conjugates
of the vertex groups and whose edges connect two conjugates whenever they commute
(ie., every element of one subgroup commutes with every element of the other one).

The main result of this section is the following algebraic characterisation:

Proposition 3.7. The map {
T (Γ,G) → F (Γ,G)
J 7→ stab	(J)

induces a graph isomorphism T (Γ,G)→ F (Γ,G).

Proof. Because the rotative-stabilisers of a hyperplane is indeed a conjugate of a vertex
group, according to Lemma 2.4 and Proposition2.21, our map is well-defined. Let G ∈ G
be a vertex group and let g ∈ ΓG. Then gGg−1 is the stabiliser of the clique gG, and
we deduce from Proposition 2.21 that it is also the rotative-stabilisers of the hyperplane
dual to gG. Consequently, our map is surjective. To prove its injectivity, it is sufficient
to show that two distinct hyperplanes J1, J2 which are not transverse have different
rotative-stabilisers. More generally, we want to prove the following observation:

Fact 3.8. The rotative-stabilisers of two distinct hyperplanes J1, J2 of X(Γ,G) have a
trivial intersection.

Indeed, if we fix a clique C dual to J2, then it must be entirely contained in a sector
delimited by J1. But, if g ∈ stab	(J1) is non-trivial, then it follows from Proposition 2.21
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that g does not stabilise the sector delimited by J1 which contains C. Hence gJ2 6= J2.
A fortiori, g does not belong to the rotative-stabilisers of J2, proving our fact.

In order to conclude the proof of our proposition, it remains to show that two distinct
hyperplanes J1 and J2 of X(Γ,G) are transverse if and only if their rotative-stabilisers
commute.

Suppose first that J1 and J2 are not transverse. Let g ∈ stab	(J1) and h ∈ stab	(J2)
be two non-trivial elements. Since we know from Proposition 2.21 that g does not
stabilise the sector delimited by J1 which contains J2, necessarily J1 separates J2 and
gJ2. Similarly, we deduce that J2 separates J1 and hgJ2; and that J1 separates J2 and
gJ2. Therefore, both J1 and J2 separate hgJ2 and gJ2 = ghJ2. A fortiori, hgJ2 6= ghJ2
so that gh 6= hg. Thus, we have proved that the rotative-stabilisers of J1 and J2 do not
commute.

Next, suppose that J1 and J2 are transverse. Up to translating by an element of ΓG,
we may suppose suppose without loss of generality that the vertex 1 belongs to N(J1)∩
N(J2). As a consequence, there exist vertices u, v ∈ V (Γ) such that J1 = Ju and J2 = Jv.
We know from Lemma 2.13 that u and v are adjacent. Therefore, stab	(J1) = Gu and
stab	(J2) = Gv commute.

Interestingly, if ϕ : ΓG → ΦH is an isomorphism between two graph products that sends
vertex groups to conjugates of vertex groups, then ϕ naturally defines an isometry{

F (Γ,G) → F (Φ,H)
H 7→ ϕ(H) .

By transferring this observation to transversality graphs through the isomorphism pro-
viding by Proposition 3.7, one gets the following statement:

Fact 3.9. Let Γ,Φ be two simplicial graphs and G,H two collections of groups indexed
by V (Γ), V (Φ) respectively. Suppose that ϕ : ΓG → ΦH is an isomorphism between two
graph products which sends vertex groups to conjugates of vertex groups. Then ϕ defines
an isometry T (Γ,G)→ T (Φ,H) via

J 7→ hyperplane whose rotative-stabiliser is ϕ(stab	(J)).

In the case Γ = Φ, by transferring the action ConjAut(ΓG) y F (Γ,G) defined by:{
ConjAut(ΓG) → Isom(F (Γ,G))

ϕ 7→ (H 7→ ϕ(H))

to the transversality graph T (Γ,G), one gets the following statement:

Fact 3.10. The group ConjAut(ΓG) acts on the transversality graph T (Γ,G) via{
ConjAut(ΓG) → Isom(T (Γ,G))

ϕ 7→ (J 7→ hyperplane whose rotative-stabiliser is ϕ(stab	(J))) .

Moreover, if ΓG is centerless and if we identify the subgroup of inner automorphism
Inn(ΓG) ≤ ConjAut(ΓG) with ΓG via{

ΓG → Inn(ΓG)
g 7→ (x 7→ gxg−1) ,

then the action ConjAut(ΓG) y T (Γ,G) extends the natural action ΓG y T (Γ,G) in-
duced by ΓG y X(Γ,G).
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3.2 Characterisation of conjugating automorphisms

This section is dedicated to the proof of Theorem 3.4, which will be based on the
transversality graph introduced in the previous section. In fact, we will prove a stronger
statement, namely:

Theorem 3.11. Let Γ,Φ be two simplicial graphs and G,H two collections of groups
indexed by V (Γ), V (Φ) respectively. Suppose that there exists an isomorphism ϕ : ΓG →
ΦH which sends vertex groups of ΓG to conjugates of vertex groups of ΦH. Then there
exist an automorphism α ∈ ConjP(ΓG) and an isometry s : Γ → Φ such that ϕα sends
isomorphically Gu to Hs(u) for every u ∈ V (Γ).

It should be noted that the proof of Theorem 3.11 we give below is constructive. Namely,
given two graph products ΓG and ΦH, it is possible to construct an algorithm that de-
termines whether a given isomorphism ϕ : ΓG → ΦH sends vertex groups to conjugates
of vertex groups. In such a case, that algorithm also produces a list of partial conju-
gations (u1,Λ1, h1), . . ., (uk,Λk, hk) ∈ Aut(ΓG) and an isometry s : Γ → Φ such that
ϕ ◦ (u1,Λ1, h1) · · · (uk,Λk, hk) sends Gu isomorphically to Hs(u) for every u ∈ V (Γ).
However, since such algorithmic considerations are beyond the scope of this article, we
will not develop this further.

Recall from Fact 3.9 that such an isomorphism ϕ : ΓG → ΦH defines an isometry
T (Γ,G)→ T (Φ,H) via

J 7→ hyperplane whose rotative-stabiliser is ϕ(stab	(J)).

By setting J = {Ju | u ∈ V (Γ)}, we define the complexity of ϕ by

‖ϕ‖ =
∑
J∈J

d(1, N(ϕ · J)),

where N(·) denotes the carrier of a hyperplane; see Definition 2.9. Theorem 3.11 will
be an easy consequence of the following two lemmas:

Lemma 3.12. Let ϕ be as in the statement of Theorem 3.11. If ‖ϕ‖ ≥ 1 then there
exists some automorphism α ∈ ConjP(ΓG) such that ‖ϕα‖ < ‖ϕ‖.

Lemma 3.13. Let ϕ be as in the statement of Theorem 3.11. If ‖ϕ‖ = 0 then there
exists an isometry s : Γ → Φ such that ϕ sends isomorphically Gu to Hs(u) for every
u ∈ V (Γ).

Before turning to the proof of these two lemmas, we need the following observation:

Claim 3.14. Let ϕ be as in the statement of Theorem 3.11. If ϕ · J is peripheral (see
Definition 2.24) then ‖ϕ‖ = 0.

Proof. Notice that

〈stab	(J) | J ∈ ϕ · J 〉 = ϕ (〈stab	(J) | J ∈ J 〉) = ΦH.

We deduce from Lemma 2.25 that, if we denote by S(J) the sector delimited by ϕ·J which
contains 1, then g /∈

⋂
J∈ϕ·J

S(J) for every g ∈ ΦH\{1}. Since the action ΦHy X(Φ,H)

is vertex-transitive, it follows that
⋂

J∈ϕ·J
S(J) = {1}, which implies that 1 ∈

⋂
J∈ϕ·J

N(J),

and finally that ‖ϕ‖ = 0, proving our claim.

22



Proof of Lemma 3.12. We deduce from Claim 3.14 that ϕ ·J is not peripheral, ie., there
exist two distinct vertices a, b ∈ V (Γ) such that ϕ ·Ja separates 1 from ϕ ·Jb. Notice that
a and b are not adjacent in Γ as the hyperplanes ϕ ·Ja and ϕ ·Jb are not transverse. Let
x ∈ stab	(ϕ · Ja) be the element sending ϕ · Jb into the sector delimited by ϕ · Ja which
contains 1. Notice that stab	(ϕ ·Ja) = ϕ (stab	(Ja)), so there exists some y ∈ stab	(Ja)
such that x = ϕ(y).

Now, let α denote the partial conjugation of ΓG which conjugates by y the vertex groups
of the connected component Λ of Γ\star(a) which contains b. According to Fact 3.10, α
can be thought of as an isometry of T (Γ,G). We claim that ‖ϕα‖ < ‖ϕ‖. Notice that
ϕα · Ju = ϕ · Ju for every u /∈ Λ, and that

ϕα · Ju = ϕ · yJu = ϕ(y) · ϕ · Ju = x · ϕ · Ju

for every u ∈ Λ. Therefore, in order to prove the inequality ‖ϕα‖ < ‖ϕ‖, it is sufficient
to show that d(1, N(x · ϕ · Ju)) < d(1, N(ϕ · Ju)) for every u ∈ Λ. It is a consequence of
Lemma 2.23 and of the following observation:

Fact 3.15. For every u ∈ Λ, ϕ · Ju is contained in the sector delimited by ϕ · Ja which
contains ϕ · Jb.

Let u ∈ Λ be a vertex. By definition of Λ, there exists a path

u1 = u, u2, . . . , un−1, un = b

in Γ that is disjoint from star(a). This yields a path

ϕ · Ju1 = ϕ · Ju, ϕ · Ju2 , . . . , ϕ · Jun−1 , ϕ · Jun = ϕ · Jb

in the transversality graph T (Γ,G). As a consequence of Lemma 2.13, none of these
hyperplanes are transverse to ϕ · Ja, which implies that they are all contained in the
same sector delimited by ϕ ·Ja, namely the one containing ϕ ·Jb, proving our fact. This
concludes the proof of our lemma.

Proof of Lemma 3.13. If ‖ϕ‖ = 0 then 1 ∈
⋂

J∈ϕ·J
N(J), which implies that ϕ · J ⊂ K

where K = {Ju | u ∈ V (Φ)}. Let Λ be the subgraph of Φ such that ϕ · J = {Ju | u ∈
V (Λ). Notice that

〈stab	(J) | J ∈ ϕ · J 〉 = ϕ (〈stab	(J) | J ∈ J 〉) = ΦH.

Therefore, one has

Gu = stab	(Ju) ≤ ΦH = 〈stab	(J) | J ∈ ϕ · J 〉 = 〈Λ〉

for every u ∈ V (Φ), hence Λ = Φ. This precisely means that ϕ · J = K. In other
words, there exists a map s : V (Γ) → V (Φ) such that ϕ sends isomorphically Gu to
Hs(u) for every u ∈ V (Γ). Notice that s necessarily defines an isometry since ϕ sends
two (non-)transverse hyperplanes to two (non-)transverse hyperplanes.

Proof of Theorem 3.11. Given our isomorphism ϕ : ΓG → ΦH, we apply Lemma 3.12
iteratively to find automorphisms α1, . . . , αm ∈ ConjP(ΓG) such that ‖ϕα1 · · ·αm‖ = 0.
Set α = α1 · · ·αm. By Lemma 3.13, there exists an isometry s : Γ → Φ such that ϕ
sends isomorphically Gu to Hs(u) for every u ∈ V (Γ).

Proof of Theorem 3.4. An immediate consequence of Theorem 3.11 is that ConjAut(ΓG) =
Loc(ΓG) ·ConjP(ΓG). As Loc(ΓG) is contained in ConjP(ΓG), it follows that ConjP(ΓG)
and ConjAut(ΓG) coincide.
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3.3 Application to graph products of finite groups

In this section, we focus on graph products of finite groups. This includes, for instance,
right-angled Coxeter groups. The main result of this section, which will be deduced
from Theorem 3.4, is the following:

Theorem 3.16. Let Γ be a finite simplicial graph and G a collection of finite groups
indexed by V (Γ). Then the subgroup generated by partial conjugations has finite index
in Aut(ΓG).

Before turning to the proof of the theorem, we will need the following preliminary result
about general graph products of groups:

Lemma 3.17. Let Γ be a simplicial graph and G a collection of groups indexed by V (Γ).
Fix two subgraphs Λ1,Λ2 ⊂ Γ and an element g ∈ ΓG. If 〈Λ1〉 ⊂ g〈Λ2〉g−1, then Λ1 ⊂ Λ2
and g ∈ 〈Λ1〉 · 〈link(Λ1)〉 · 〈Λ2〉.

Proof. Notice that the subgroups 〈Λ1〉 and g〈Λ2〉g−1 coincide with the stabiliser of the
subgraphs 〈Λ1〉 and g〈Λ2〉 respectively. We claim that any hyperplane intersecting 〈Λ1〉
also intersects g〈Λ2〉.

Suppose by contradiction that this is not the case, ie., there exists some hyperplane J
intersecting 〈Λ1〉 but not g〈Λ2〉. Fix a clique C ⊂ 〈Λ1〉 dual to J . There exist u ∈ Λ1
and h ∈ 〈Λ1〉 such that stab(C) = h〈u〉h−1. As a consequence, stab(C), which turns
out to coincide with the rotative stabiliser of J according to Proposition 2.21, stabilises
〈Λ1〉. On the other hand, a non-trivial element of stab	(J) sends g〈Λ2〉 into a sector
that does not contain g〈Λ2〉: a fortiori, it does not stabilise g〈Λ2〉, contradicting our
assumptions. This concludes the proof of our claim.

Because the cliques dual to the hyperplanes intersecting 〈Λ1〉 are labelled by vertices of
Λ1, and similarly that the cliques dual to the hyperplanes intersecting g〈Λ2〉 are labelled
by vertices of Λ2, we deduce from the previous claim that Λ1 ⊂ Λ2, proving the first
assertion of our lemma.

Next, let x ∈ 〈Λ1〉 and y ∈ g〈Λ2〉 be two vertices minimising the distance between 〈Λ1〉
and g〈Λ2〉. Fix a path α from 1 to x in 〈Λ1〉, a geodesic β between x and y, and a path
γ from y to g in g〈Λ2〉. Thus, g = abc where a, b, c are the words labelling the paths
α, β, γ. Notice that a ∈ 〈Λ1〉 and c ∈ 〈Λ2〉. The labels of the edges of β coincide with
the labels of the hyperplanes separating x and y, or equivalently (according to Corollary
2.18), to the labels of the hyperplanes separating 〈Λ1〉 and g〈Λ2〉. But we saw that any
hyperplane intersecting 〈Λ1〉 intersects g〈Λ2〉 as well, so any hyperplane separating 〈Λ1〉
and g〈Λ2〉 must be transverse to any hyperplane intersecting 〈Λ1〉. Because the set of
labels of the hyperplanes of 〈Λ1〉 is V (Λ1), we deduce from Lemma 2.13 that the vertex
of Γ labelling an edge of β is adjacent to all the vertices of Λ1, ie., it belongs to link(Λ1).
Thus, we have proved that b ∈ 〈link(Λ1)〉, hence g = abc ∈ 〈Λ1〉 · 〈link(Λ1)〉 · 〈Λ2〉.

We now move to the proof of Theorem 3.16. For the rest of Section 3.3, we fix a
finite simplicial graph Γ and a collection of finite groups G indexed by V (Γ).

Lemma 3.18. The maximal finite subgroups of ΓG are exactly the g〈Λ〉g−1 where g ∈ ΓG
and where Λ ⊂ Γ is a maximal complete subgraph of Γ.

Proof. Let H ≤ ΓG be a maximal finite subgroup. By Lemma 2.29, there exist g ∈ ΓG
and a complete subgraph Λ ⊂ Γ such that H is contained in g〈Λ〉g−1. Since H is a
maximal finite subgroup, then H = g〈Λ〉g−1 since g〈Λ〉g−1 is clearly finite. Moreover,
the maximality of H implies that Λ is a maximal complete subgraph of Γ.
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Conversely, let g ∈ ΓG be an element and Λ ⊂ Γ a complete subgraph. Clearly, g〈Λ〉g−1

is finite. Now, suppose that Λ is a maximal complete subgraph of Γ. If F is a finite
subgroup of ΓG containing g〈Λ〉g−1, we know that F = h〈Ξ〉h−1 for some h ∈ ΓG and
for some complete subgraph Ξ ⊂ Γ, so that we deduce from the inclusion

g〈Λ〉g−1 ≤ F = h〈Ξ〉h−1

and from Lemma 3.17 that Λ ⊂ Ξ. By maximality of Λ, necessarily Λ = Ξ. We also
deduce from Lemma 3.17 that h ∈ g〈Λ〉 · 〈link(Λ)〉 · 〈Λ〉. But the maximality of Λ implies
that link(Λ) = ∅, hence h ∈ g〈Λ〉. Therefore

F = h〈Ξ〉h−1 = h〈Λ〉h−1 = g〈Λ〉g−1.

Thus, we have proved that g〈Λ〉g−1 is a maximal finite subgroup of ΓG.

Corollary 3.19. The maximal finite subgroups of ΓG are self-normalising.

Proof. By Lemma 3.18, maximal finite subgroups are of the form g〈Λ〉g−1 for a maximal
clique Λ ⊂ Γ. Since a maximal clique has an empty link, it follows from Lemma 3.17
that such subgroups are self-normalising.

Proof of Theorem 3.16. As a consequence of Lemma 3.18, ΓG contains only finitely
many conjugacy classes of maximal finite subgroups, so Aut(ΓG) contains a finite-index
subgroup H such that, for every maximal finite subgroup F ≤ ΓG and every ϕ ∈ H, the
subgroups ϕ(F ) and F are conjugate.

Fix a maximal finite subgroup F ≤ ΓG. We define a morphism ΨF : H → Out(F )
in the following way. If ϕ ∈ H, there exists some g ∈ ΓG such that ϕ(F ) = gFg−1.
Set ΨF (ϕ) =

[(
ι(g)−1ϕ

)
|F

]
where ι(g) denotes the inner automorphism associated to g.

Notice that, if h ∈ ΓG is another element such that ϕ(F ) = hFh−1, then h = gs for some
s ∈ ΓG normalising F . In fact, since F is self-normalising according to Corollary 3.19,
s must belong to F . Consequently, the automorphisms

(
ι(g)−1ϕ

)
|F and

(
ι(h)−1ϕ

)
|F of

F have the same image in Out(F ). The conclusion is that ΨF is well-defined as a map
H → Out(F ). It remains to show that it is a morphism. So let ϕ1, ϕ2 ∈ H be two
automorphisms, and fix two elements g1, g2 ∈ ΓG such that ϕi(F ) = giFg

−1
i for i = 1, 2.

Notice that ϕ1ϕ2(F ) = ϕ1(g2)g−1
1 Fg1ϕ1(g2)−1, so that we have:

ΨF (ϕ1ϕ2) =
[(
ι(ϕ1(g2)g−1

1 )−1ϕ1ϕ2
)
|F

]
;

consequently,

ΨF (ϕ1)ΨF (ϕ2) =
[(
ι(g1)−1ϕ1

)
|F

]
·
[(
ι(g2)−1ϕ2

)
|F

]
=
[(
ι(g1)−1ϕ1ι(g2)−1ϕ2

)
|F

]
=

[(
ι(g1)−1ι(ϕ1(g2))−1ϕ1ϕ2

)
|F

]
= ΨF (ϕ1ϕ2)

Moreover, it is clear that ΨF (Id) = Id. We conclude that ΨF defines a morphism
H → Out(F ). Now, we set

K =
⋂
{ker(ΨF ) | F ≤ ΓG maximal finite subgroup}.

Notice that K is a finite-index subgroup of Aut(ΓG) since it is the intersection of finitely
many finite-index subgroups. We want to show that K is a subgroup of ConjP(ΓG).
According to Theorem 3.4, it is sufficient to show that, for every ϕ ∈ K and every
u ∈ V (Γ), the subgroups ϕ(Gu) and Gu are conjugate.
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So fix a vertex u ∈ V (Γ) and an automorphism ϕ ∈ K. As a consequence of Lemma 3.18,
there exists a maximal finite subgroup F ≤ ΓG containing Gu. Since ϕ belongs to H,
there exists some g ∈ ΓG such that ϕ(F ) = gFg−1. And by definition of K, the
automorphism

(
ι(g)−1ϕ

)
|F must be an inner automorphism of F , so there exists some

h ∈ F such that ϕ(x) = ghxh−1g−1 for every x ∈ F . In particular, the subgroups ϕ(Gu)
and Gu are conjugate in ΓG.
Thus, we have proved that K is a subgroup of ConjP(ΓG). Because K has finite index
in Aut(ΓG), we conclude that ConjP(ΓG) is a finite-index subgroup of Aut(ΓG). As

ConjP(ΓG) = 〈partial conjugations〉o Loc(ΓG),

we conclude that the subgroup generated by partial conjugations has finite index in
Aut(ΓG) since Loc(ΓG) is clearly finite.

As an interesting application of Theorem 3.16, we are able to determine precisely when
the outer automorphism group of a graph product of finite groups is finite. Before
stating the criterion, we need the following definition:
Definition 3.20. A Separating Intersection of Links (or SIL for short) in Γ is the data
of two vertices u, v ∈ V (Γ) satisfying d(u, v) ≥ 2 such that Γ\(link(u) ∩ link(v)) has a
connected component which does not contain u nor v.
Now we are able to state our criterion, which generalises [GPR12, Theorem 1.4]:
Corollary 3.21. The outer automorphism group Out(ΓG) is finite if and only if Γ has
no SIL.
The following argument was communicated to us by Olga Varghese.

Proof of Corollary 3.21. Suppose that Γ has no SIL. If u, v ∈ V (Γ) are two distinct
vertices, a ∈ Gu and b ∈ Gv two elements, and Λ,Ξ two connected components of
Γ\star(u) and Γ\star(v) respectively, then we claim that the two corresponding partial
conjugations (u,Λ, a) and (v,Ξ, b) commute in Out(ΓG). For convenience, let Λ0 (resp.
Ξ0) denote the connected component of Γ\star(u) (resp. Γ\star(v)) which contains v
(resp. u). If Λ 6= Λ0 or Ξ 6= Ξ0, a direct computation shows that (u,Λ, a) and (v,Ξ, b)
commute in Aut(ΓG) (see [CRSV10, Lemma 3.4] for more details). So suppose that
Λ = Λ0 and Ξ = Ξ0. If Ξ1, . . . ,Ξk denote the connected components of Γ\star(v) distinct
from Ξ0, notice that the product (v,Ξ0, b)(v,Ξ1, b) · · · (v,Ξk, b) is trivial in Out(ΓG)
since the automorphism coincides with the conjugation by b. As we already know that
(u,Λ0, a) commutes with (v,Ξ1, b) · · · (v,Ξk, b) in Aut(ΓG), it follows that the following
equalities hold in Out(ΓG):

[(u,Λ0, a), (v,Ξ0, b)] =
[
(u,Λ0, a), (v,Ξk, b)−1 · · · (v,Ξ1, b)−1

]
= 1.

This concludes the proof of our claim. Consequently, if PC(u) denotes the subgroup
of Out(ΓG) generated by the (images of the) partial conjugations based at u for every
vertex u ∈ V (Γ), then the subgroup PC of Out(ΓG) generated by all the (images of the)
partial conjugations is naturally a quotient of

⊕
u∈V (Γ)

PC(u). But each PC(u) is finite;

indeed, it has cardinality at most c · |Gu| where c is the number of connected components
of Γ\star(u). Therefore, PC has to be finite. As PC has finite index in Out(ΓG) as a
consequence of Theorem 3.16, we conclude that Out(ΓG) must be finite.
Conversely, suppose that Γ has a SIL. Thus, there exist two vertices u, v ∈ V (Γ) sat-
isfying d(u, v) ≥ 2 such that Γ\(link(u) ∩ link(v)) has a connected component Λ which
contains neither u nor v. Fix two non-trivial elements a ∈ Gu and b ∈ Gv. A direct
computation shows that the product (u,Λ, a)(v,Λ, b) has infinite order in Out(ΓG). A
fortiori, Out(ΓG) must be infinite.
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Remark 3.22. It is worth noticing that, if ΓG is a graph product of finite groups, then
ConjP(ΓG) may be a proper subgroup of Aut(ΓG). For instance,{

a 7→ ab
b 7→ b

defines an automorphism of Z2 ∗ Z2 = 〈a〉 ∗ 〈b〉 which does not belong to ConjP(ΓG).
The inclusion ConjP(ΓG) ⊂ Aut(ΓG) may also be proper if Γ is connected. For instance,

a 7→ a
b 7→ ab
c 7→ c

defines an automorphism of Z2 ⊕ (Z2 ∗ Z2) = 〈a〉 ⊕ (〈b〉 ∗ 〈c〉) which does not belong to
ConjP(ΓG).

3.4 Application to graph products over graphs of large girth

In this section, we focus on automorphism groups of graph products without imposing
any restriction on their vertex groups. However, we need to impose more restrictive
conditions on the underlying graph than in the previous sections. More precisely, the
graphs which will interest us in the sequel are the following:

Definition 3.23. Amolecular graph is a finite connected simplicial graph without vertex
of valence < 2 and of girth at least 5.

Molecular graphs generalise atomic graphs introduced in [BKS08] (see Section 4 below
for a precise definition) by allowing separating stars. Typically, a molecular graph can be
constructed from cycles of length at least five by gluing them together and by connecting
them by trees. See Figure 2 for an example.

Figure 2: A molecular graph.

The main result of this section is the following statement, which widely extends [GM18,
Theorems A and D]. It will be a consequence of Theorem 3.4.
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Theorem 3.24. Let Γ be a molecular graph and G a collection of groups indexed by
V (Γ). Then Aut(ΓG) = ConjP(ΓG).

Before turning to the proof of the theorem, we need to introduce some vocabulary.

Given a simplicial graph Γ and a collection of groups G indexed by V (Γ), let M =
M(Γ,G) denote the collection of maximal subgroups of ΓG that decompose non trivially
as direct products, and let C = C(Γ,G) denote the collection of non trivial subgroups of
ΓG that can be obtained by intersecting two subgroups of M. A subgroup of ΓG that
belongs to C is

• C-minimal if it is minimal in C with respect to the inclusion;

• C-maximal if it is maximal in C with respect to the inclusion (or equivalently if it
belongs toM);

• C-medium otherwise.

It is worth noticing that these three classes of subgroups of ΓG are preserved by automor-
phisms. Now, we want to describe more explicitly the structure of theses subgroups. For
this purpose, the following general result, which is a consequence of [MO15, Corollary
6.15], will be helpful:

Lemma 3.25. Let Γ be a simplicial graph and G a collection of groups indexed by V (Γ).
If a subgroup H ≤ ΓG decomposes non-trivially as a product, then there exist an element
g ∈ ΓG and a join Λ ⊂ Γ such that H ⊂ g〈Λ〉g−1.

For the rest of Section 3.4, we fix a molecular graph Γ and a collection of
groups G indexed by V (Γ). The characterisation of the subgroups of C which we
deduce from the previous lemma and from the quasi-median geometry of X(Γ,G) is the
following:

Proposition 3.26. A subgroup H ≤ ΓG belongs to C if and only if:

• H is conjugate to 〈star(u)〉 for some vertex u ∈ V (Γ); if so, H is C-maximal.

• Or H is conjugate to 〈Gu, Gv〉 for some adjacent vertices u, v ∈ V (Γ); if so, H is
C-medium.

• Or H is conjugate to Gu for some vertex u ∈ V (Γ); if so, H is C-minimal.

Proof. Suppose that H ≤ ΓG belongs to M, ie., is a maximal product subgroup. It
follows from Lemma 3.25 that there exist an element g ∈ ΓG and a join Λ ⊂ Γ such
that H ⊂ g〈Λ〉g−1. Because Γ is triangle-free and square-free, Λ must be the star of a
vertex, say Λ = star(u) where u ∈ V (Γ). As g〈star(u)〉g−1 decomposes as a product,
namely g (Gu × 〈link(u)〉) g−1, it follows by maximality of H that H = g〈star(u)〉g−1.

Conversely, we want to prove that, if g ∈ ΓG is an element and u ∈ V (Γ) a vertex, then
g〈star(u)〉g−1 is a maximal product subgroup. So let P be a subgroup of ΓG splitting
non-trivially as a direct product and containing g〈star(u)〉g−1. It follows from Lemma
3.25 that there exist an element h ∈ ΓG and a join Ξ ⊂ Γ such that

g〈star(u)〉g−1 ⊂ P ⊂ h〈Ξ〉h−1.

By applying Lemma 3.17, we deduce that star(u) ⊂ Ξ and that h ∈ g〈star(u)〉 ·
〈link(star(u))〉·〈Ξ〉. As star(u) is a maximal join, necessarily star(u) = Ξ and link(star(u)) =
∅. As a consequence, h ∈ g〈star(u)〉, so that

g〈star(u)〉g−1 ⊂ P ⊂ h〈Ξ〉h−1 = h〈star(u)〉h−1 = g〈star(u)〉g−1.
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Therefore, g〈star(u)〉g−1 = P .

Thus, we have proved that

M = {g〈star(u)〉g−1 | g ∈ ΓG, u ∈ V (Γ)}

= {stab(J) | J hyperplane of X(Γ,G)}

where the last equality is justified by Theorem 2.10. As a consequence, the collection C
coincides with the non-trivial subgroups of ΓG obtained by intersecting two hyperplane-
stabilisers. Therefore, the implication of our lemma follows from the following observa-
tion:

Fact 3.27. Let J1 and J2 be two hyperplanes of X(Γ,G).

• If J1 and J2 are transverse, then stab(J1) ∩ stab(J2) is conjugate to 〈Gu, Gv〉 for
some adjacent vertices u, v ∈ V (Γ).

• If J1 and J2 are not transverse and if there exists a third hyperplane J transverse
to both J1 and J2, then stab(J1) ∩ stab(J2) is conjugate to Gu for some vertex
u ∈ V (Γ).

• If J1 and J2 are not transverse and if no hyperplane is transverse to both J1 and
J2, then stab(J1) ∩ stab(J2) is trivial.

Suppose that J1 and J2 are transverse. As the carriers N(J1) and N(J2) intersect, say
that g ∈ X(Γ,G) belongs to their intersection, it follows that there exist two adjacent
vertices u, v ∈ V (Γ) such that J1 = gJu and J2 = gJv. Therefore,

stab(J1) ∩ stab(J2) = g〈star(u)〉g−1 ∩ g〈star(v)〉g−1 = g〈Gu, Gv〉g−1,

proving the first point of our fact. Next, suppose that J1 and J2 are not transverse but
that there exists a third hyperplane J transverse to both J1 and J2. As a consequence
of Lemma 3.28 below, we know that the projection of N(J1) onto N(J2), which must be
stab(J1) ∩ stab(J2)-invariant, is reduced to a single clique C. So stab(J1) ∩ stab(J2) ⊂
stab(C). Notice that J is dual to C. Indeed, the hyperplane dual to C must be transverse
to both J1 and J2, but we also know from Lemma 3.28 below that there exists at most
one hyperplane transverse to J1 and J2. We conclude from Proposition 2.21 that

stab(C) = stab	(J) ⊂ stab(J1) ∩ stab(J2),

proving that stab(J1) ∩ stab(J2) = stab(C). Then, the second point of our fact follows
from Lemma 2.4. Finally, suppose that J1 and J2 are not transverse and that no
hyperplane is transverse to both J1 and J2. Then stab(J1) ∩ stab(J2) stabilises the
projection of N(J2) onto N(J1), which is reduced to a single vertex. As vertex-stabilisers
are trivial, the third point of our fact follows.

Conversely, if u, v ∈ V (Γ) are two adjacent vertices, then 〈Gu, Gv〉 is the intersection
of 〈star(u)〉 and 〈star(v)〉; and if w ∈ V (Γ) is a vertex, then Gw is the intersection of
〈star(x)〉 and 〈star(y)〉 where x, y ∈ V (Γ) are two distinct neighbors of w.

The following result is used in the proof of Proposition 3.26.

Lemma 3.28. Let J1, J2 two non-transverse hyperplanes of X(Γ,G). There exists at
most one hyperplane transverse to both J1 and J2. As a consequence, the projection of
N(J1) onto N(J2) is either a single vertex or a single clique.
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Proof. Because Γ is triangle-free, we know from Corollary 2.8 that the cubical dimension
of X(Γ) is two. Consequently, if there exist two hyperplanes transverse to both J1 and
J2, they cannot be transverse to one another. So, in order to conclude that at most one
hyperplane may be transverse to both J1 and J2, it is sufficient to prove the following
observation:

Claim 3.29. The transversality graph T (Γ,G) does not contain an induced cycle of
length four.

Suppose by contradiction that X(Γ,G) contains a cycle of four hyperplanes (J1, . . . , J4).
Suppose that the quantity d(N(J1), N(J3)) + d(N(J2), N(J4)) is minimal. If N(J1)
and N(J3) are disjoint, they must be separated by some hyperplane J . Replacing J1
with J produces a new cycle of four hyperplanes of lower complexity, contradicting
the choice of our initial cycle. Therefore, N(J1) and N(J3) must intersect. Similarly,
N(J2) ∩ N(J4) 6= ∅. Thus, N(J1), . . . , N(J4) pairwise intersect, so that there exists a
vertex x ∈ N(J1) ∩ · · · ∩ N(J4). For every 1 ≤ i ≤ 4, let ui denote the vertex of Γ
labelling the hyperplane Ji. Notice that, as a consequence of Lemma 2.13, u1 6= u3
(resp. u2 6= u4) because J1 and J3 (resp. J2 and J4) are tangent. So u1, . . . , u4 define a
cycle of length four in Γ, contradicting the fact that Γ is molecular.

This concludes the proof of the first assertion of our lemma. The second assertion then
follows from Corollary 2.17.

Now, Theorem 3.24 is clear since it follows from Proposition 3.26 that Theorem 3.4
applies, proving that Aut(ΓG) = ConjAut(ΓG) = ConjP(ΓG). In fact, we are able to
prove a stronger statement, namely:

Theorem 3.30. Let Γ,Φ be two molecular graphs and G,H two collections of groups
indexed by V (Γ), V (Φ) respectively. Suppose that there exists an isomorphism ϕ : ΓG →
ΦH. Then there exist an automorphism α ∈ ConjP(ΓG) and an isometry s : Γ → Φ
such that ϕα sends isomorphically Gu to Hs(u) for every u ∈ V (Γ).

Proof. It follows from Proposition 3.26 that conjugates of vertex groups may be defined
purely algebraically, so that the isomorphism ϕ : ΓG → ΦH must send vertex groups
of ΓG to conjugates of vertex groups of ΦH. Then Theorem 3.11 applies, providing the
desired conclusion.

4 Graph products of groups over atomic graphs
In this section, we focus on automorphism groups of graph products over a specific class
of simplicial graphs, namely atomic graphs. Recall from [BKS08] that a finite simplicial
graph is atomic if it is connected, without vertex of valence < 2, without separating
stars, and with girth ≥ 5. In other words, atomic graphs are molecular graphs without
separating stars. As a consequence of Theorem 3.24, the automorphism group of a graph
product over an atomic graph is given by Aut(ΓG) = 〈Inn(ΓG),Loc(ΓG)〉.

Lemma 4.1. Let Γ be a simplicial graph and G a collection of groups indexed by V (Γ).
If Γ is not the star of a vertex, then Inn(ΓG) ∩ Loc(ΓG) = {Id}.

Proof. Let g ∈ ΓG, let ϕ ∈ Loc(ΓG), let σ be the automorphism of Γ induced by
ϕ, and suppose that ι(g) = ϕ. Then in particular for every vertex v of Γ, we have
gGvg

−1 = ϕ(Gv) = Gσ(v). Since distinct local groups are not conjugated under ΓG,
it follows that σ(v) = v, and hence g normalises Gv. By standard results on graph
products, this implies that g ∈ 〈star(v)〉. As this holds for every vertex of Γ, we get
g ∈ ∩v〈star(v)〉. Since Γ is not the star of a vertex, it follows that ∩v〈star(v)〉 = {1},
hence ϕ = ι(g) = Id.
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Thus, the automorphism group of a graph product over an atomic graph is given by
Aut(ΓG) = Inn(ΓG) o Loc(ΓG). In particular, any automorphism of ΓG decomposes in
a unique way as a product of the form ι(g)ϕ with g ∈ ΓG, ϕ ∈ Loc(ΓG).
Recall that the Davis complex of a graph product is a CAT(0) cube complex that was
introduced in Definition 2.26. The fundamental observation is that in the case of atomic
graphs, the automorphism group of ΓG acts naturally on the associated Davis complex.

Lemma 4.2. Let Γ be an atomic graph and G a collection of groups indexed by V (Γ).
The action of ΓG on the Davis complex D(Γ,G) extends to an action Aut(ΓG) y
D(Γ,G), where ΓG is identified canonically with Inn(ΓG). More precisely, the action
is given by

ι(g)ϕ · hH := gϕ(h)ϕ(H),

for g, h ∈ ΓG, H a subgroup of ΓG of the form 〈Λ〉 for some complete subgraph Λ, and
ϕ ∈ Loc(ΓG).

Proof. By definition, elements of Loc(ΓG) preserve the family of subgroups of the form
〈Λ〉 for some complete subgraph Λ, so the action is well defined at the level of the
vertices of D(Γ,G). By definition of the edges and higher cubes of the Davis complex,
one sees that the action extends to an action on D(Γ,G) itself. One checks easily from
the definition that the restriction to Inn(ΓG) coincides with the natural action of ΓG on
D(Γ,G) by left multiplication.

As a first application of Proposition 4.2, we are able to show that the automorphism
group of a graph product over an atomic graph does not satisfy Kazhdan’s property (T).

Theorem 4.3. Let Γ be an atomic graph and G a collection of groups indexed by V (Γ).
Then the automorphism group Aut(ΓG) does not satisfy Kazhdan’s property (T).

Proof. The action of ΓG on D(Γ,G) is non-trivial by construction, hence has unbounded
orbits, so in particular the action of Aut(ΓG) on the CAT(0) cube complex D(Γ,G) has
unbounded orbits. The result then follows from a theorem of Niblo-Roller [NR98].

As a second application, we prove the following:

Theorem 4.4. Let Γ be an atomic graph and G a collection of finitely generated groups
indexed by V (Γ). Then the automorphism group Aut(ΓG) is acylindrically hyperbolic.

For the rest of Section 4, we fix an atomic graph Γ and a collection of groups
G indexed by V (Γ). To prove Theorem 4.4, we use a criterion introduced in [CM17] to
show the acylindrical hyperbolicity of a group via its action on a CAT(0) cube complex.
Following [CS11], we say that the action of a group G on a CAT(0) cube complex Y is
essential if no G-orbits stay in some neighborhood of a half-space. Following [CFI16], we
say that the action is non-elementary if G does not have a finite orbit in Y ∪ ∂∞Y . We
further say that Y is cocompact if its automorphism group acts cocompactly on it; that
it is irreducible if it does not split as the direct product of two non-trivial CAT(0) cube
complexes; and that it does not have a free face if every non-maximal cube is contained
in at least two maximal cubes.

Theorem 4.5 ([CM17, Theorem 1.5]). Let G be a group acting non-elementarily and
essentially on a finite-dimensional irreducible cocompact CAT(0) cube complex X with
no free face. If there exist two points x, y ∈ X such that stab(x)∩ stab(y) is finite, then
G is acylindrically hyperbolic.

We will use this criterion for the action of Aut(ΓG) on the Davis complex D(Γ,G). To
this end, we need to check a few things about the action.
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Lemma 4.6. The action of Aut(ΓG) on D(Γ,G) is essential and non-elementary.

Proof. It is enough to show that the action of ΓG (identified with the subgroup Inn(ΓG)
of Aut(ΓG)) acts essentially and non-elementarily on D(Γ,G).
Non-elementarity. The Davis complex is quasi-isometric to a building with underlying
Coxeter group the right-angled Coxeter group WΓ (see Section 2.4). As Γ has girth at
least 5, WΓ is hyperbolic, and thus so is D(Γ,G). Since the Davis complex is hyperbolic,
the non-elementarity of the action will follow from the fact that there exist two elements
g, h ∈ ΓG acting hyperbolically on D(Γ,G) and having disjoint limit sets in the Gromov
boundary of D(Γ,G), by elementary considerations of the dynamics of the action on the
boundary of a hyperbolic space. We now construct such hyperbolic elements, following
methods used in [CM17] and [CMW18].
Since Γ is leafless and has girth at least 5, we can find an induced geodesic of Γ of the
form v1, . . . , v4. For each 1 ≤ i ≤ 4, choose a non-trivial element si ∈ Gvi . For each
1 ≤ i ≤ 4, let also evi be the edge of D(Γ,G) between the coset 〈∅〉 and the coset 〈vi〉.
We define the following two elements: g = s3s1 and h = s4s2, as well as the following
combinatorial paths of D(Γ,G):

Λg =
⋃
k∈Z

gk(ev1 ∪ ev3 ∪ s3ev3 ∪ s3ev1), Λh =
⋃
k∈Z

hk(ev2 ∪ ev4 ∪ s4ev4 ∪ s4ev2).

We claim that Λg and Λh are combinatorial axes for g and h respectively. Indeed, by
construction Λg and Λh make an angle π at each vertex, hence are geodesic lines, and
each element acts by translation on its associated path by construction.
Now notice that no hyperplane of D(Γ,G) crosses both Λg and Λh, since edges in Λg
and Λh are disjoint and edges defining the same hyperplane of D(Γ,G) have the same
label. This implies that for every vertex u of Λg, the (unique) geodesic between u and
Λh is the sub-path of Λg between u and the intersection point Λg ∩ Λh. This in turn
implies that the limit sets of Λg, Λh are disjoint, and that the hyperplanes associated to
the edges ev2 , ev3 (which contain Λg, Λh respectively) are essential.
Essentiality. For every vertex v of Γ, we can use the fact that Γ is leafless and of girth
at least 5 to construct a geodesic path v1, . . . , v4 of Γ with v2 = v. The above reasoning
implies that the hyperplane associated to ev is essential. As every hyperplane of D(Γ,G)
is a translate of such a hyperplane, it follows that hyperplanes of D(Γ,G) are essential.
As the action of ΓG on D(Γ,G) is cocompact, the action of Aut(ΓG) on D(Γ,G) is also
essential.

Lemma 4.7. The Davis complex D(Γ,G) is irreducible.

Proof. The link of every vertex of D(Γ,G) corresponding to a coset of the trivial sub-
group has a link which is isomorphic to Γ. As Γ has girth at least 5, such a link does
not decompose non-trivially as a join, hence D(Γ,G) does not decompose non-trivially
as a direct product.

Lemma 4.8. The Davis complex D(Γ,G) has no free face.

Proof. Since Γ has girth at least 5, the Davis complex is 2-dimensional, and we have to
show that every edge is contained in at least two squares. Let e be an edge of D(Γ,G).
If e contains a vertex v that is a coset of the trivial subgroup, then the link of v is
isomorphic to Γ, and it follows from the leafless-ness assumption that e is contained in
at least two squares. Otherwise let C be a any square containing e. As StabΓG(C) is
trivial and StabΓG(e), which is conjugate to some Gv, contains at least two elements, it
follows that there are at least two squares containing e.
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Lemma 4.9. Let P be the fundamental domain of D(Γ,G) and let g ∈ ΓG. Then

StabAut(ΓG)(P ) ∩ StabAut(ΓG)(gP ) = {ϕ ∈ Loc(ΓG) | ϕ(g) = g}.

Proof. Since an element of Aut(ΓG) stabilises the fundamental domain of D(Γ,G) if and
only if it stabilises the vertex corresponding to the coset 〈∅〉, we have StabAut(ΓG)(P ) =
StabAut(ΓG)(〈∅〉) = Loc(ΓG). Therefore, if ϕ ∈ Aut(ΓG) belongs to StabAut(ΓG)(P ) ∩
StabAut(ΓG)(gP ) then ϕ ∈ Loc(ΓG) and there exists some ψ ∈ Loc(ΓG) such that ϕ =
ι(g) ◦ ψ ◦ ι(g)−1. Since ψ ◦ ι(g)−1 = ι(ψ(g))−1 ◦ ψ, we deduce that

ϕ ◦ ψ−1 = ι(g) ◦ ψ ◦ ι(g)−1 ◦ ψ−1 = ι(g) ◦ ι(ψ(g))−1 ∈ Inn(ΓG).

Thus, ϕ ◦ψ−1 ∈ Inn(ΓG)∩Loc(ΓG). On the other hand, we know from Lemma 4.1 that
Inn(ΓG) ∩ Loc(ΓG) = {Id}, whence ϕ = ψ and ι(g) = ι(ψ(g)). As a consequence of
[Gre90, Theorem 3.34], it follows from the fact that Γ has girth at least 5 that ΓG is
centerless, so that the equality ι(g) = ι(ψ(g)) implies that ϕ(g) = g, hence the inclusion
StabAut(ΓG)(P ) ∩ StabAut(ΓG)(gP ) ⊂ {ϕ ∈ Loc(ΓG) | ϕ(g) = g}. The reverse inclusion is
clear.

Proof of Theorem 4.4. For each vertex v of Γ, choose a finite generating set {sv,j | 1 ≤
j ≤ mv}. Up to allowing repetitions, we will assume that all the integers mv are equal,
and denote by m that integer. We now define a specific element g ∈ ΓG in the following
way.
Since Γ is leafless and has girth at least 5, we can find a sequence v1, . . . , vn exhausting
all the vertices of Γ, such that for each 1 ≤ i < n, vi and vi+1 are not adjacent, and also
vn and v1 are not adjacent. We now define:

gj := gv1,j · · · gvn,j for 1 ≤ j ≤ m,

g := g1 · · · gm.

Let ϕ be an element of StabAut(ΓG)(P )∩StabAut(ΓG)(gP ). By Lemma 4.9, it follows that
ϕ ∈ Loc(ΓG) and ϕ(g) = g. By construction, g can be written as a concatenation of the
form g = s1 · · · sp, where each sk is of the form sv,j , and such that no consecutive sk, sk+1
belong to groups of G that are joined by an edge of Γ. In particular, it follows from the
properties of normal forms recalled in Section 2.1 that the decomposition g = s1 · · · sp is
the unique reduced form of g. As g = ϕ(g) = ϕ(s1) · · ·ϕ(sp) is an another reduced form
of g, it follows that ϕ(sk) = sk for every 1 ≤ k ≤ p. As this holds for a generating set of
ΓG, it follows that ϕ is the identity. We thus have that StabAut(ΓG)(P )∩StabAut(ΓG)(gP )
is trivial. It now follows from Lemmas 4.6, 4.7, 4.8, and 4.9 that Theorem 4.5 applies,
hence Aut(ΓG) is acylindrically hyperbolic.

Remark 4.10. It is worth noticing that, in the statement of Theorem 4.4, we do not
have to require our vertex groups to be finitely generated. Indeed, during the proof, we
only used the following weaker assumption: every G ∈ G contains a finite set S ⊂ G
such that every automorphism of G fixing pointwise S must be the identity. Of course,
if G is finitely generated, we may take S to be a finite generating set. But if G = Q for
instance, then S = {1} works as well, even though Q is not finitely generated. However,
some condition is needed, as shown by the example below.

Let Z be the direct sum
⊕

p prime
Zp and let Gn be the graph product of n copies of Z over

the cycle Cn of length n ≥ 5. We claim that Aut(Gn) is not acylindrically hyperbolic.

As a consequence of Corollary C (stated in the introduction), the automorphism group
Aut(Gn) decomposes as (Inn(Gn) o Loc(Cn,G))oSym(Cn,G). As the property of being
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acylindrically hyperbolic is stable under taking infinite normal subgroups [Osi16, Lemma
7.2], it is sufficient to show that Inn(Gn) o Loc(Cn,G) is not acylindrically hyperbolic.
So let ι(g)ϕ be an automorphism of this subgroup, where g ∈ Gn and ϕ ∈ Loc(Cn,G).
For each copy Zi of Z, the reduced word representing g contains only finitely many
syllables in Zi; let Si ⊂ Zi denote this set of syllables. Clearly, there exists an infinite
collection of automorphisms of Zi fixing Si pointwise; furthermore, we may suppose
that this collection generates a subgroup of automorphisms Φi ≤ Aut(Zi) which is a free
abelian group of infinite rank. Notice that φ(g) = g for every φ ∈ Φi. Therefore, for
every ψ ∈ Φ1 × · · · × Φn ≤ Loc, we have

ψ · ι(g)ϕ = ι(ψ(g)) · ψϕ = g · ψϕ = g · ϕψ = gϕ · ψ,

since ϕ and ψ clearly commute: each Aut(Zi) is abelian so that Loc(Cn,G) is abelian as
well. Thus, we have proved that the centraliser of any element of Inn(Gn)o Loc(Cn,G)
contains a free abelian group of infinite rank. Therefore, Inn(Gn) o Loc(Cn,G) (and a
fortiori Aut(Gn)) cannot be acylindrically hyperbolic according to [Osi16, Corollary 6.9].

Remark 4.11. In this section, it was more convenient to work with a CAT(0) cube
complex rather than with a quasi-median graph because results already available in the
literature allowed us to shorten the arguments. However, we emphasize that a quasi-
median proof is possible. The main steps are the followings. First, as in Lemma 4.2,
the action ΓG y X(Γ,G) extends to an action Aut(ΓG) y X(Γ,G) via ι(g)ϕ ·x = gϕ(x)
where x ∈ X(Γ,G) is a vertex. So Theorem 4.3 also follows since Niblo and Roller’s
argument [NR98] can be reproduced almost word for word in the quasi-median set-
ting; or alternatively, the theorem follows from the combination of [NR98] with [Gen17,
Proposition 4.16] which shows that any quasi-median graph admits a “dual” CAT(0)
cube complex. Next, in order to prove Theorem 4.4, we need to notice that X(Γ,G) is
hyperbolic (as a consequence of [Gen17, Fact 8.33]) and that the element g constructed
in the proof above turns out to be a WPD element. For the latter observation, one can
easily prove the following criterion by following the arguments of [Gen16, Theorem 18]:
given a group G acting on a hyperbolic quasi-median graph X, if an element g ∈ G
skewers a pair of strongly separated hyperplanes J1, J2 such that stab(J1) ∩ stab(J2) is
finite, then g must be a WPD element.
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