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1.1 The Binomial Formula

This section is about expanding expressions like (a + b)8 and (1 + x)100 . First we need
some notation.

The number 5! ( read five factorial or factorial 5 ) means 5 × 4 × 3 × 2 × 1 . Note that
1! = 1 and that by convention 0! = 1 . The reader should check by calculation that 4! = 24
and use a calculator to check that 7! = 5040 and 9! = 362880 .

We also need the binomial coefficient
(

n
r

)
which is defined by(

n

r

)
=

n!

r! (n − r)!

Thus (
8

2

)
=

8!

2! 6!
=

8 × 7

2
= 28 and

(
6

3

)
=

6 × 5 × 4

6
= 20

You can also use a calculator to find the binomial coefficient; usually the nCr key. Note
that we always have that (

n

0

)
= 1 and

(
n

n

)
= 1

The binomial formula is

(a + b)n =

(
n

0

)
an +

(
n

1

)
an−1 b +

(
n

2

)
an−2 b2 + · · · +

(
n

n − 1

)
a bn−1 +

(
n

n

)
bn

Note that the first term could be written as an and the last term as bn . I have left the
(

n
0

)
and

(
n
n

)
terms in so the reader can see the pattern and hence make it easier to remember.

Example 1.1 Use the binomial formula to expand (2 + x)3.

Solution We use the binomial formula with a = 2 , b = x and n = 3 . Then

(2 + x)3 =

(
3

0

)
23 +

(
3

1

)
22 x +

(
3

2

)
2 x2 +

(
3

3

)
x3

= 8 + 12x + 6x2 + x3

Example 1.2 Use the binomial formula to expand (θ + 1
θ
)4.

Solution

(θ +
1

θ
)4 =

(
4

0

)
θ4 +

(
4

1

)
θ3

(
1

θ

)
+

(
4

2

)
θ2

(
1

θ2

)
+

(
4

3

)
θ

(
1

θ3

)
+

(
4

4

)(
1

θ4

)

= θ4 + 4θ3 1

θ
+ 6θ2 1

θ2
+ 4θ

1

θ3
+

1

θ4

= θ4 + 4θ2 + 6 + 4θ−2 + θ−4.
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The binomial formula for the special case (1 + x)n is worth remembering.

(1 + x)n = 1 +

(
n

1

)
x +

(
n

2

)
x2 + · · · +

(
n

n − 1

)
xn−1 + xn

Example 1.3 Use the binomial formula to expand (1 + x)4.

Solution Using the above formula with n = 4 ,

(1 + x)4 = 1 +

(
4

1

)
x +

(
4

2

)
x2 +

(
4

3

)
x3 + x4

= 1 + 4x + 6x2 + 4x3 + x4

Example 1.4 Expand (1 + x)100 up to the term in x2.

Solution

(1 + x)100 = 1 +

(
100

1

)
x +

(
100

2

)
x2 + terms in higher powers of x

= 1 + 100x + 4950x2 + terms in higher powers of x

Example 1.5 Expand (1 + x)7 up to the term in x2. Use your result to approximate
(0.98)7 .

Solution Using the same method as above we find that

(1 + x)7 = 1 + 7x + 21x2 + terms in higher powers of x

Substituting x = −0.02 and ignoring higher powers ,

(0.98)7 ≈ 1 − 7(0.02) + 21(0.02)2 = 0.8684

Example 1.6 When a uniform beam is simply supported at its ends, the deflection y at
the centre of the span is given by y = Cd4 ,where d is distance between the supports and
C is a constant.

Find the first two terms in the expansion of (1+x)4 and use this result to find the approx-
imate change in y when d decreases by 3% .

Solution Using the same method as above we find that (1 + x)4 = 1 + 4x+ terms in
higher powers of x. For small x , (1 + x)4 ≈ 1 + 4x . If d decreases by 3% then the new
value of d is d(1 − .03) . The new value of y is Cd4(1 − .03)4 .

Using (1 + x)4 ≈ 1 + 4x with x = −.03 , gives the approximate new value of y as
Cd4(1 − 0.12) = y(1 − 0.12) . Hence y decreases by 12% approximately.
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Exercises 1.1

1. State the binomial formula for (a + b)n.

2. State the binomial formula for (1 + x)n.

3. Use the binomial formula to expand (x + y)3.

4. Use the binomial formula to expand (3 + y)4.

5. Use the binomial formula to expand (x + 1
x
)3.

6. Use the binomial formula to expand (1 + x)5.

7. Expand (1 + x)20 up to the term in x2.

8. Expand (1 + p2)10 up to the term in p4.

9. Expand (1 − x)10 up to the term in x2.

10. Find the first two terms in the expansion of (1 + x)6 and use this result to find the
approximate change in y = p6 when p increases by 2% .

1.2 Geometric Sequences and Series

Situations in which things increase or decrease by some fixed ratio at each step are very
common, e.g. interest on loans. A geometric sequence is some set of numbers of the form
{a, ar, ar2, ar3, . . .} where a is the first term and r is the common ratio.

As an example, {3, 6, 12, 24, 48, . . .} is a geometric sequence with first term 3 and common
ratio r = 2.

Geometric sequences arise in many areas including financial calculations. Suppose that you
invest £500 at 10% interest compounded annually.

After 1 year the interest is 10% of 500, that is 500 × (0.1) = 50 so we now have £550.
A more consise way to do the calculation is to note that at the end of year 1 we have
£500 × (1.1).

At the end of the second year the interest is 550× (0.1) = 55 so we now have £605. Again,
the sum after two years is £500 × (1.1)2.

At the end of the third year the interest is 605 × (0.1) = 60.5 so we now have £665.5.
Again, the sum after three years is £500 × (1.1)3.

The values in successive years, 500 × (1.1) , 500 × (1.1)2 , 500 × (1.1)3 form a geometric
sequence with common ratio r = 1.1. The value at the end of year n is 500 × (1.1)n .

Example 1.7 £1000 is borrowed for 2 years at a monthly compounded rate of interest of
2% . Explain why the amounts owed at the end of each month form a geometric sequence.
Find the debt at the end of the period.
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Solution After 1 month 1000×(1.02) is owed, after 2 months 1000×(1.02)2 is owed and
1000 × (1.02)n after n months, this is a geometric sequence with common ratio r = 1.02.
After 24 months the debt is 1000 × (1.02)24 = 1604.44 (Calculations like (1.02)24 can be
done on a calculator using the xy button). Although the interest rate seems small, note
how quickly the debt builds up.

If we sum up the members of the sequence it becomes a geometric series. The sum Sn of
n terms of our geometric sequence {a, ar, ar2, ar3, . . .} is

Sn = a + ar + ar2 + ar3 + . . . + arn−1

As an example, for the geometric sequence {3, 6, 12, 24, 48, . . .} the sum of the first 6 terms
is S6 = 3 + 6 + 12 + 24 + 48 + 96 = 189.

The formula for getting the sum Sn of a geometric series is

Sn =
a(rn − 1)

r − 1
(1)

We show how to derive this formula at the end of the section. Examination questions about
geometric series will always include the formula; you have to know how to use it.

Example 1.8 Find the sum of 6 terms in the geometric sequence {2, 6, 18, . . .}

Solution I could work out the 6 terms and add them up, but we can use the formula
above with a = 2, r = 3, n = 6 to get

S6 =
2(36 − 1)

3 − 1
=

2(729 − 1)

2
= 728

Example 1.9 Mr Prudent saves £100 in a bank account at the beginning of each month.
The bank offers a return of 1% compounded monthly. Find the total amount saved after 12
months.

Solution Although a total of 12 payments of £100 are made, each payment is invested
for a different period of time. The first payment is invested for 12 months so it is worth
100 × (1.01)12 at the end of the year. The second payment is invested for 11 months so it
is worth 100× (1.01)11 at the end. The final payment is invested for 1 month so it is worth
100 × 1.01 at the end. The total value at the end is

100(1.01)12 + 100(1.01)11 + 100(1.01)10 + . . . + 100(1.01)

Writing this in reverse order the total is

100(1.01) + 100(1.01)2 + . . . + 100(1.01)11 + 100(1.01)12

Thus we can apply the above formula with a = 100(1.01) , r = 1.01 and n = 12 :

100(1.01) [(1.01)12 − 1]

1.01 − 1
= 1280.93
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Finally, we show the neat trick for getting the sum of a geometric series. Since

Sn = a + ar + ar2 + ar3 + . . . + arn−1

we see that
rSn = ar + ar2 + ar3 + ar4 + . . . + arn

Subtracting the two gets rid of all but the first and last terms

rSn − Sn = arn − a = a(rn − 1)

which means that

Sn =
a(rn − 1)

r − 1

Exercises 1.2

1. For each of the following geometric sequences, find the common ratio and the next
two terms: (a) {7, 21, 63, 189, . . .} , (b) {17, 1.7, 0.17, 0.017, . . .} .

2. A credit card company charges interest at 2% compounded monthly. Suppose that
you owe £P to the company.

(a) Explain briefly why the amounts owed at the end of each month form a geometric
sequence.

(b) Explain briefly why the interest rate charged by the company is not the same as an
annual rate of 24%. What is the annual percentage rate ?

3. Find the sum of the first 8 terms in the geometric sequence {1, 3, 9, . . .} (Don’t add
them up by hand!)

4. A mathematically gifted child negotiates a pocket money deal with her parents : she
receives 1p on the first day of the month, 2p on the second day, 4p on the third day , 8p
on the fourth day and so on until the end of the month.

Find how much she would get (to the nearest million pounds) in a month of 30 days.

5. A person saves £1000 in a bank account at the beginning of each year. The bank
offers a return of 8% compounded yearly. Find the total amount saved after 7 years.

6. A firm hires out computer equipment. In the first year the profit is £60000 but
this diminishes by 5% on successive years. Explain briefly why the annual profits form a
geometric sequence. Find the total of all profits during the first 6 years.

7. Find x if x + 1, x + 11, x + 41 are the first three terms in a geometric sequence.
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1.3 Partial Fractions

The expression
2

x − 1
+

5

x + 4
can be written as a single fraction by

introducing the common denominator (x − 1)(x + 4) :

2

x − 1
+

5

x + 4
=

2(x + 4) + 5(x − 1)

(x − 1)(x + 4)
=

7x + 3

(x − 1)(x + 4)
·

The method of partial fractions provides a means of performing the reverse operation.

We will study two basic types :

(i) The denominator of the fraction can be expressed as a product of linear factors and
the numerator is linear; for example

7x + 3

(x − 1)(x + 4)

(ii) The denominator of the fraction has a repeated factor and the numerator is linear;
for example

11 − 3x

(x − 2)2

Example 1.10 Express
7x + 3

(x − 1)(x + 4)
in terms of partial fractions.

Solution Let
7x + 3

(x − 1)(x + 4)
=

A

x − 1
+

B

x + 4

We have to find the values of A and B so the above is true for all x.

Multiplying by (x − 1)(x + 4) :

(7x + 3)(x − 1)(x + 4)

(x − 1)(x + 4)
=

A(x − 1)(x + 4)

x − 1
+

B(x − 1)(x + 4)

x + 4

Hence
7x + 3 = A(x + 4) + B(x − 1) .

We choose values of x to make the term involving A or the term involving B disappear.

Put x = 1 then 7 × 1 + 3 = A(1 + 4) + 0 .

Thus 10 = 5A so A = 2 .

Put x = −4 then 7 × (−4) + 3 = 0 + B(−4 − 1) .

Hence −25 = −5B so B = 5 .

7x + 3

(x − 1)(x + 4)
=

2

x − 1
+

5

x + 4
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Example 1.11 Express
11 − 3x

(x − 2)2
in terms of partial fractions.

Solution Let
11 − 3x

(x − 2)2
=

A

x − 2
+

B

(x − 2)2

Note carefully the form that the partial fraction takes in this case.

Multiplying by (x − 2)2 :
11 − 3x = A(x − 2) + B .

Put x = 2 then 11 − 6 = 0 + B so that B = 5 .

To find A we equate the coefficents of x in the expression

11 − 3x = A(x − 2) + B = Ax − 2A + B .

Hence A = −3 and
11 − 3x

(x − 2)2
=

5

(x − 2)2
− 3

x − 2

It is important to start with the correct form of partial fractions. To express
2x − 1

(2x + 1)(x − 3)
in terms of partial fractions you start with letting

2x − 1

(2x + 1)(x − 3)
=

A

2x + 1
+

B

x − 3

followed by multiplying by (2x + 1)(x − 3) .

To express
x + 3

(x + 5)2
in terms of partial fractions you would let

x + 3

(x + 5)2
=

A

x + 5
+

B

(x + 5)2

followed by multiplying by (x + 5)2 .

Exercises 1.3

1. Express
2

(x + 7)(x + 9)
in terms of partial fractions.

2. Express
2x + 8

(2x + 5)(x + 3)
in terms of partial fractions.

3. Express
5x + 6

(x − 1)2
in terms of partial fractions.

4. Express
2x − 1

(2x + 1)(x − 3)
in terms of partial fractions.

5. Express
10x + 7

(2x + 3)2
in terms of partial fractions.
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1.4 Definition of Logarithm

If a and b are positive numbers we can always find x such that ax = b . For example, if
a = 10 and b = 100 then x = 2 since 102 = 100 . The number x is called the logarithm
of b to base a , and we write x = loga(b) .

If b = ax then x = loga(b)

As an example 1000 = 103 so log10(1000) = 3 .

If the base of the logarithm of b is 10 then we write log b . On a calculator , logarithms
to base 10 are usually denoted by log . The reader should use a calculator to check that

log(2) = 0.301 log(45) = 1.653 log(0.4) = −0.398

Most calculators have two different logarithm functions: base 10 logarithms and logarithms
to base e The letter e stands for the number 2.718281 · · · . On a calculator , logarithms
to base e are usually denoted by ln .

The reader should use the ln button on a calculator to check that

ln(2) = 0.693 ln(10) = 2.303 ln(0.3) = −1.204

Note that ln A (and log A ) only make sense if A > 0 . Hence, an expression such as
ln(3x − 15) will only make sense if 3x − 15 > 0 , that is if if x > 5 .

Example 1.12 Show that loga 1 = 0 .

Solution If x = loga 1 then ax = 1 . Since a0 = 1 we have that x = 0 .

Exercises 1.4

1. Without using a calculator find : (a) log(10) (b) log(100) (c) log(0.001) .

2. Evaluate t = − ln(x/y)

10
when x = 12 and y = 2 .

3. For what values of x does ln(7 − x) make sense.

4. For what values of x does ln(2x − 6) make sense. Find the value of x for which
ln(2x − 6) = 0 .

5. The speed v of a signal in a submarine cable is related to the radius r of the cable’s
covering by the equation

v =
25

r2
ln

(r

5

)
Find v when r = 10 .
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1.5 Laws of Logarithms

Below we give the various laws of logarithms and show how to apply them.

Let B and C be positive numbers. Then for any base a :

1. loga(BC) = loga(B) + loga(C)

2. loga

(
B
C

)
= loga(B) − loga(C)

3. loga(B
n) = n loga(B)

4. loga(1) = 0

Example 1.13 Reduce to a single log term :
(a) log(x)+ log(x−3) (b) 4 log(2)+2 log(3)− log(12) (c) ln(x2y)− ln(y)+3 ln(x) .

Solution (a) Using rule 1, log(x) + log(x − 3) = log(x (x − 3)) = log(x2 − 3x) .

(b) By rule 3, 4 log(2) = log(24) = log(16) and 2 log(3) = log(9) . Using rules 1 and 2,

4 log(2) + 2 log(3) − log(12) = log(16) + log(9) − log(12) = log

(
16 × 9

12

)
= log(12) .

(c) ln(x2y) − ln(y) + 3 ln(x) = ln(x2) + ln(y) − ln(y) + ln(x3) = ln(x5) .

Example 1.14 Find the value of x which satisfies (1.06)x = 2002 .

Solution Taking logarithms to base 10 of each side of (1.76)x = 2002 gives

log((1.76)x) = log(2002) .

Using rule 3, x log(1.76) = log(2002) , so that

x =
log(2002)

log(1.76)
=

3.301

0.2455
= 13.45

Note that we could have taken logarithms to base e to obtain

x =
ln(2002)

ln(1.76)
=

7.602

0.5653
= 13.45

Exercises 1.5

1. If log 5 ∼ 0.6989 . . ., what is log 25 (without taking a log on your calculator!!).

2. Reduce to a single log term :
(a) ln(xy2) − 3 ln(y) + ln(x) (b) ln x − 2 ln(3x + 5) .

3. Solve for x : (1.1)x = 1999

4. The following equations occur in a problem on heat transfer:

−Q ln r = mx and − Q ln s = my

Show that

Q =
m(x − y)

ln
(

s
r

)
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1.6 The Exponential Function

We begin by looking at the graph of y = ex

x -2 -1 0 1 2 3 4
ex 0.14 0.37 1 2.72 7.39 20.1 54.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

x

ex

Graph of ex

The function y = ex is called the exponential function. On a calculator , the exponential
function is usually written as ex . The reader should use the ex button on a calculator
to check that the above table. We can also write ex as exp(x) . The alternative notation
exp(x) is is useful for complicated expressions like exp(−5x2 + 3x) .

The laws of indices apply to ex so that

e0 = 1 , (ex)2 = e2x , ex ey = ex+y

If y = ex then taking taken logarithms to base e of each side gives

ln(y) = ln(ex) = x ln(e) = x since ln(e) = 1 .

This result below is worth remembering:

if y = ex then x = ln y

Example 1.15 Let f(t) = 3 exp(−5t2) . Find f(0) and f(0.4) .

Solution f(0) = 3e0 = 3 .

When t = 0.4 , 5t2 = 0.8 . Using a calculator f(0.4) = 3e−0.8 = 1.35 .

Example 1.16 Simplify (e4x − e−4x)2 .

Solution (e4x − e−4x)2 = (e4x)2 − 2 e4xe−4x + (e−4x)2 = e8x − 2 + e−8x .
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Example 1.17 Solve for x : 100e−2x = 26.2 .

Solution e−2x = 0.262 so −2x = ln(0.262) = −1.34 . Hence x = 0.67 .

Example 1.18 Sketch the graph of y = 6e−2t for t ≥ 0 .

Solution The main points are (a) y = 6 when t = 0 , (b) y ≈ 0 for large t , (c) y is
rapidly decreasing. The graph is shown below.

0

6

t

y

y = 6e−2t

Example 1.19 Sketch the graph of y = 7 − 4e−2t for t ≥ 0 . Express t in terms of y .

Solution The main points are (a) y = 7 − 4 = 3 when t = 0 , (b) y ≈ 7 for large t ,
(c) y is increasing. The graph is shown below.

y = 7 − 4e−2t so 4e−2t = 7 − y . Hence

e−2t =
7 − y

4
and − 2t = ln

(
7 − y

4

)
Hence

t = −1

2
ln

(
7 − y

4

)

3

7

t

y

y = 7 − 4e−2t
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Example 1.20 A radioactive material decays according to m(t) = m0e
−kt where t is the

time (in years), m0 is the initial mass (in grammes), and m(t) is the mass at time t .

A block of material with a mass of 500g is reduced to 50g after 40 years. Find the time
taken for half of its mass to decay.

Solution We first find k . Since m(40) = 50 we have that 500e−40k = 50 .

Then e−40k = 0.1 so that −40k = ln(0.1) = −2.3025 and k = 0.0576 .

To find the time taken for half of its mass to decay we have to find t such that

500e−kt = 250

with k = 0.0576 . Then e−kt = 0.5 so −kt = ln(0.5) = −0.693 and t = 12 years.

Exercises 1.6

1. Let f(t) = 2 exp(−t2) . Find f(0) and f(0.5) .

2. Solve for x : ex = 666

3. Simplify (ex − e−x)2 .

4. On average the speed of computer processing hardware doubles every 18 months.
This corresponds to an exponential growth for the speed, s, with s = Aekt where A and k
are constants. If t is measured in years, show that k ≈ 0.46.

5. Sketch the graph of y = 2e−4t for t ≥ 0 .

6. Sketch the graph of y = 3 − 2e−4t for t ≥ 0 . Express t in terms of y .

7. Let y = e3t. Express y in terms of x when

(a) t = ln x + ln 2 , (b) t = − ln x + 2

8. Let z = ln(x/y) . If x = me−at and y = me−bt , show that z = (b − a)t .

9. The intensity I0 of a light source is reduced to I after passing through x meters of
a fog where I is given by

I = I0 e−kx

where k is a constant. Find k if I = I0 is reduced to 0.01 of its original value when
when x = 33 .

10. BNFL at Sellafield have accidentally released some radioactive isotopes into the
Irish sea. There are worries about whether the fish supper will be safe to eat in Dublin
on Friday. The amount of radioactive substance N in a fish decays as N = N0 e−kt where
N0 is the initial amount the fish is exposed to, t is measured in days after exposure and
k = 1/3. If N0 is 100 units and consuming more than 20 units is dangerous, is it safe to
eat the fish 6 days after exposure.
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11. The atmospheric pressure p (mm of mercury) at height h (km) is given by

p = 760 e−kh

where k is a constant. The pressure at 1 kilometers is 670. Find k and hence find the
pressure at height 2 km.

1.7 Hyperbolic Functions

We’ve seen in the last section how the exponential function ex behaves. In this section we
look at two close relatives of the exponential function, sinhx and cosh x. Note the h’s! We
write sinh x and cosh x as shorthand for the combination of exponentials defined below:

sinh x = 1
2
(ex − e−x)

cosh x = 1
2
(ex + e−x)

What do these look like?

sinh(x)

–60

–40

–20

0

20

40

60

–4 –2 2 4

x

Graph of sinh x

cosh(x)

10

20

30

40

50

60

70

–4 –2 2 4

x

Graph of cosh x
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Just as for the trigonometric functions we can define tanhx = sinh x/ cosh x, which looks
like a smooth step:

tanh(x)

–1

–0.5

0.5

1

–4 –2 2 4
x

Graph of tanh x

How do these functions crop up? They appear, like sin and cos, as the solutions to many
physical problems. For instance, although it was long thought that a hanging heavy chain
or rope hung in the form of a parabola, it was eventually shown that it is in fact a section
of the cosh curve.
As for the trigonometric functions the hyperbolic functions satisfy various identities, but
these are easy to derive if we hark back to the definition above in terms of exponentials.

Example 1.21 Express sinh 8x in terms of e8x and e−8x .

Solution From the definition of sinh 8x ,

sinh 8x =
1

2
(e8x − e−8x)

Example 1.22 Express 5e4x − 7e−4x in terms of cosh 4x and sinh 4x.

Solution From the definitions of cosh 4x and sinh 4x,

cosh 4x =
1

2
(e4x + e−4x) and sinh 4x =

1

2
(e4x − e−4x)

Hence,

cosh 4x + sinh 4x =
1

2
(e4x + e−4x) +

1

2
(e4x − e−4x) = e4x

and

cosh 4x − sinh 4x =
1

2
(e4x + e−4x) − 1

2
(e4x − e−4x) = e−4x

Then

5e4x − 7e−4x = 5(cosh 4x + sinh 4x) − 7(cosh 4x − sinh 4x) = −2 cosh 4x + 12 sinh 4x
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Example 1.23 Show that cosh2 x − sinh2 x = 1

Solution Since

cosh x =
1

2
(ex + e−x) sinh x =

1

2
(ex − e−x)

we can multiply these out, (remembering that (ex)2 = e2x ) :

cosh2 x =
1

4
(ex + e−x)2 =

1

4
(e2x + 2 + e−2x)

sinh2 x =
1

4
(ex − e−x)2 =

1

4
(e2x − 2 + e−2x)

so subtracting the two just gives one, as required.

Example 1.24 Show that 1 + 2 sinh2 x = cosh 2x

Solution Again we go back to the definition in terms of exponentials:

sinh2 x =
1

4
(e2x − 2 + e−2x)

so

1 + 2 sinh2 x = 1 +
1

2
(e2x − 2 + e−2x) =

1

2
(e2x + e−2x)

This is just the definition of cosh 2x, which is what we wanted to show.

Example 1.25 If y = tanh x show that 2x = ln

(
1 + y

1 − y

)

Solution

y = tanh x =
sinh x

cosh x
=

ex − e−x

ex + e−x

Then
y(ex + e−x) = ex − e−x

and multiplying by ex gives
y(e2x + 1) = e2x − 1

Hence
y + 1 = e2x(1 − y)

so that

e2x =
1 + y

1 − y

Finally,

2x = ln

(
1 + y

1 − y

)
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Exercises 1.7

1. Express cosh 7x in terms of e7x and e−7x .

2. Express sinh 6x in terms of e6x and e−6x .

3. Express 9ex + 2e−x in terms of cosh x and sinh x .

4. Express 8e3x − 5e−3x in terms of cosh 3x and sinh 3x .

5. Show that 2 cosh2 x − 1 = cosh 2x .

6. In a semiconductor, the force F on an electron is given by

F =
e−kx

(1 + e−kx)2

where k is a constant and x is the distance into the semiconductor. Show that

F =
1

2 + 2 cosh kx

1.8 Obtaining Formulae from Experimental Data

If two variables are believed to be connected , then this idea could be tested by collecting
experimental data. As an example, we might want to investigate how the resistance R of
a wire is related to the temperature of the wire. If we suppose that R and t are related by

R = at + b (2)

we could test if (2) was true (allowing for experimental error). If (2) was true we could
then attempt to find a and b .

Suppose that as a result of an experiment we collected the following data.

t ◦C 10 30 50 70 90
R Ω 4.9 5.2 5.8 6.2 6.8

0 10 20 30 40 50 60 70 80 90
4

4.5

5

5.5

6

6.5

7

t

R

Figure 1
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We plotted this data in Figure 1. From this we see that the points lie approximately on a
straight line. Choosing the ‘best’ line to fit through will not be considered here. For the
rest of the calculation we use points taken from the line (i.e. not from the data). To find
a and b we first note that a is the gradient of the line. Taking for example, the points
(30, 5.25) and (70, 6.25) which lie on the graph, we get that

a =
6.25 − 5.25

70 − 30
=

1

40
= 0.025

To obtain b we choose any point on the line, say (10, 4.75) , and substitute it into (2) with
a = 0.025 to get 4.75 = 0.25 + b so that b = 4.5 .

Suppose we want to test if t and y are related by

y = at2 + b (3)

and we have the following data:

t 0 1 2 3 4
y 3.1 4.9 11.2 20.8 34.9

It would be difficult to see from a plot of this data if (3) holds. Also it is not clear how to
find a and b . If we let x = t2 in (3) then

y = ax + b (4)

which is the equation of a straight line. To test (4) we need a new data table.

x = t2 0 1 4 9 16
y 3.1 4.9 11.2 20.8 34.9

From the data plot (see Figure 2) we see that to experimental error, (4) holds. The number
a is the gradient of the line, so using two points on the line we get

a =
23 − 3

10 − 0
= 2

and since y = 3 when x = 0 we have that b = 3 . Thus y = 2t2 + 3.

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

x=t2

y

Figure 2
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Example 1.26 In each of the following cases explain how you would reduce each proposed
law connecting x and y to straight line form.

(i) y = ax4 + b (ii) y = ax2 + bx (iii) y = ax +
b

x2

Solution (i) If we let t = x4 then y = at + b .

Hence if we plot y against x4 we get a straight line.

(ii) Let w =
y

x
. Then w = ax + b .

If we plot w =
y

x
against x we get a straight line.

(iii) From y = ax + b
x2 we get x2y = ax3 + b .

Then if w = x2y and t = x3 we get w = at + b .

If we plot w = x2y against x3 we get a straight line.

Example 1.27 Explain how you would reduce the formula y = axb to straight line form.

Solution If y = axb then

ln y = ln(axb) = ln(a) + ln(xb) = ln a + b ln x

Let w = ln y and t = ln x . Then w = ln a + bt and if we plot ln y against ln x we get a
straight line.

Example 1.28 As shown in the figure below, a set of experimental results gives a straight
line graph when y is plotted against x3. The straight line passes through (0, 3) and has a
gradient of 1/2 . Express y in terms of x .

- x3

6

y

0

3

Solution Put t = x3 so that y = at + b . Then b = 3 and a = 0.5 . Hence

y = (0.5)x3 + 3
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Example 1.29 As shown below, a set of experimental results gives a straight line graph
when ln y is plotted against ln x. The straight line passes through (0, 2) and has a gradient
of 1/3 . Express y in terms of x .

- ln x

6

ln y

0

2

Solution Let w = ln y and t = ln x . Then

w = at + b =
t

3
+ 2 =

ln x

3
+ 2 = ln x

1
3 + 2

Hence
y = exp(ln x

1
3 + 2) = e2 x

1
3 = (7.4) x

1
3

Exercises 1.8

1. The period T of oscillation of a pendulum is given by

T = 2π

√
L

g

where L is the length of the pendulum and g is gravity. Which (if any) of the following
graphs would be a straight line ?

(a) T plotted against L (b)
√

T plotted against L (c)
√

L plotted against T

(d) T 2 plotted against L (e) L2 plotted against T (f) T−2 plotted against L−1

2. In each of the following cases explain how you would reduce each proposed law
connecting x and y to straight line form.

(i) y = ax2 + b (ii) y =
a

x
+ b

3. In each of the following cases explain how you would reduce each proposed law
connecting x and y to straight line form.

(i) y = ax3 + b (ii) y =
1

ax + b
(iii) y = ax2 +

b

x
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4. As shown in the figure below, a set of experimental results gives a straight line graph
when y is plotted against

√
x. The straight line passes through (0, 4) and has a gradient

of 2 . Express y in terms of x .

- √
x

6

y

0

4

5. As shown below, a set of experimental results gives a straight line graph when y is
plotted against x

3
2 . The straight line passes through (0, 2) and (1, 0). Express y in terms

of x .

- x
3
2

6

y

0

2

1

6. As shown below, a set of experimental results gives a straight line graph when ln y
is plotted against lnx. The straight line has a gradient 2 and passes through (0, 1.6) .
Express y in terms of x .

- ln x

6

ln y

0

1.6
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1.9 Answers to Exercises

Full solutions to the exercises are on the module website

Exercises 1.1

3. x3 + 3x2y + 3xy2 + y3 4. 81 + 108y + 54y2 + 12y3 + y4 5. x3 + 3x + 3
x

+ 1
x3

6. 1 + 5x + 10x2 + 10x3 + 5x4 + x5 7. 1 + 20x + 190x2 8. 1 + 10p2 + 45p4

9. 1 − 10x + 45x2 10. 1 + 6x , increase of 12%

Exercises 1.2

1(a) r = 3 , next terms 567 and 1701 1(b) r = 0.1 , next terms 0.0017 and 0.00017

2(a) Owe (1.02)P , (1.02)2P , (1.02)3P , . . . at the end of each month, a GS with r = 1.02

2(b) Because interest is paid on the interest. Annual rate is 26.8%

3. 3280 4. Eleven million pounds 5. 9637

6. Profits are 60000 , (.95) × 60000 , (.95)2 × 60000 , . . . Total 317900 7. x = 4

Exercises 1.3

1.
1

x + 7
− 1

x + 9
2.

6

2x + 5
− 2

x + 3
3.

5

x − 1
+

11

(x − 1)2

4.
4

7(2x + 1)
+

5

7(x − 3)
5.

5

2x + 3
− 8

(2x + 3)2

Exercises 1.4

1(a) 1 1(b) 2 1(c) −3 2. −0.179 3. x < 7

4. x > 3 , x =
7

2
5. v = 0.173

Exercises 1.5

1. 1.3979 2(a) ln

(
x2

y

)
2(b) ln

(
x

(3x + 5)2

)
3. x = 79.743

Exercises 1.6

1. f(0) = 2 , f(0.5) = 1.5576 2. 6.501 3. e2x + e−2x − 2
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Exercises 1.6

5. See Figure 3 6. t = −1

4
ln

(
3−y
2

)
see Figure 4 for graph

7(a) y = 8x3 7(b) y = e6x−3 9. k = 0.14

10. When t = 6 , N = 13.53 so he’s (fairly!) safe. 11. k = 0.126 and p = 590.7

0

2

t

y

Figure 3

1

3

t

y

Figure 4

Exercises 1.7

1.
1

2
(e7x + e−7x) 2.

1

2
(e6x − e−6x)

3. 11 cosh x + 7 sinh x 4. 3 cosh 3x + 13 sinh 3x

Exercises 1.8

1. (a) , (c) and (f) gives straight line graphs, the rest do not.

2(i) Plot x2 against y 2(ii) Plot
1

x
against y

3(i) Plot x3 against y 3(ii) Plot x against
1

y
3(iii) Plot x3 against xy

4. y = 2
√

x + 4 5. y = −2x
3
2 + 2 6. y = (4.95) x2


