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3.1 Tangent Lines

We have already seen that differentiating a function f(x) at some point x0 can be thought
of as getting the slope of the tangent to f(x) at x0. In the diagram below the tangent AB
touches the curve at the point ( x0, f(x0) ).
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Figure 1

We can use what we already know, namely, the slope of AB and the fact that AB goes
through the point of contact (x0, f(x0) ) to determine the equation of both the tangent to
the curve and the normal, which is shown as CD in the diagram.

The general formula for a straight line is y = mx + c, where m is the gradient. To find the
equation of the tangent line to a curve f(x) at x0 we need to calculate m and c . The
gradient to the curve f(x) at x0 is f ′(x0) so m = f ′(x0) . We can find c by using the
fact that the tangent line passes through the point (x0, f(x0)) .

The equation of the normal can be found in a similar way using the fact that the gradient

of the normal is equal to − 1

m
where m is the gradient of the tangent. We will not find (or

examine) equations of the normal in this module.

Example 3.1 Find the equation of the tangent line to the curve f(x) = x2 − 3x + 7 at
x = 4 .

Solution Equation of the tangent line is y = mx + c. We first find m.

f ′(x) = 2x− 3 and f ′(4) = 2(4)− 3 = 5 . Hence m = 5 and y = 5x + c .

f(4) = 42 − 3(4) + 7 = 11 . Putting this in y = 5x + c gives 11 = 5(4) + c = 20 + c so
c = −9 and the equation of the tangent is

y = 5x− 9
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Finally, we note that the tangent line at a point x0 gives a good approximation to f(x)
for x close to x0 . For example, a calculation shows that the equation of the tangent line
to the curve f(x) = sin x at the point x = 0 is given by y = x . Thus for small x ,
sin x ≈ x . For x = 0.1 ( note: x is in radians) , sin(0.1) = 0.998334 ≈ 0.1 .

Exercises 3.1

1. Find the equation of the tangent line to the curve f(x) = x2 − 9x + 8 at the point
x = 2 .

2. Find the equation of the tangent line to the curve f(x) = x3 + 4x2 − 2x − 1 at the
point x = 1 .

3. Find the equation of the tangent line to the curve f(x) = ex at the point x = 0 .

4. Find the equation of the tangent line to the curve f(x) = ln x at the point x = 1 .

5. Show that the equation of the tangent line to the curve f(x) =
1

x
at the point

x = a > 0 is given by
a2y = 2a− x

The tangent line cuts the x-axes at A and the y-axes at B. Find the area of the triangle
ABO where O is the origin . The interesting point is that the area does not depend on a .

3.2 Maclaurin Series

A calculation shows that the equation of the tangent line to the curve f(x) = ex at the
point x = 0 is given by y = x+1 (see the exercises in the previous section). This tangent
line is a good approximation to f(x) = ex for x close to 0 . However, at x = 1 the
tangent line is equal to 2 while the curve ex = e1 = e = 2.718 . . . . We could improve the
approximation 1 + x by adding terms in x2, x3 etc. This section is about doing this for a
general function f(x).

Suppose
f(x) = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . . (1)

we want to find the numbers a0. a1 etc. Putting x = 0 in (1) gives

f(0) = a0 + a1.0 + a2.0
2 + . . .

so we find a0 = f(0). Differentiating (1) gives

f ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + . . . (2)

Putting x = 0 in (2) gives

f ′(0) = a1 + 2a2.0 + 2a3.0
2 + . . .

so we find a1 = f ′(0). Differentiating (2) gives

f ′′(x) = 2a2 + (3× 2)a3x + (4× 3)a4x
2 + (5× 4)a5x

3 + . . . (3)
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Putting x = 0 in (3) gives 2a2 = f ′′(0). Continuing this process we obtain

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 + . . . (4)

which is called the Maclaurin series for f(x) . Recall the notation 4! = 4× 3× 2× 1 = 24
(see the section on the binomial formula).

Example 3.2 Find the Maclaurin series for ex up to and including the x3 term.

Solution f(x) = f(0) + f ′(0)x + f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 + . . .

f(x) = ex so f(0) = e0 = 1 . Also, f ′(x) = ex , f ′′(x) = ex and f ′′′(x) = ex .

Hence f ′(0) = f ′′(0) = f ′′′(0) = 1 and the Maclaurin series for ex is

ex = 1 + x +
x2

2
+

x3

3!
+ . . . = 1 + x +

x2

2
+

x3

6
+ . . .

In the figure below we have plotted the graph of ex and the the first four terms of the
Maclaurin series

1 + x +
x2

2
+

x3

6

Taking more terms in the Maclaurin series would give a better approximation.

0 1 2
0

2

4

6
ex

1+x+x2/2!+x3/3!
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Example 3.3 Find the Maclaurin series for sin x up to the x5 term.

Solution f(x) = f(0) + f ′(0)x + f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 + f (4)(0)
4!

x4 + f (5)(0)
5!

x5 + . . .

f(x) = sin x so

f ′(x) = cos x f ′′(x) = − sin x f ′′′(x) = − cos x f (4)(x) = sin x f (5)(x) = cos x

Substituting x = 0 and using sin 0 = 0 , cos 0 = 1 we have

f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f ′′′(0) = −1 f (4)(0) = 0 f (5)(0) = 1

The Maclaurin series for sin x is

sin x = x− x3

6
+

x5

120
+ . . .

Exercises 3.2

1. Find the Maclaurin series for
√

1 + x up to the x2 term.

2. Find the Maclaurin series for ln(1 + x) up to the x3 term.

3. Find the Maclaurin series for cos x up to the x4 term.

4. Find the Maclaurin series for ln(1 + ex) up to the x2 term.

3.3 Approximate Solutions of Equations

In general it is impossible to find an exact solution to the equation f(x) = 0 . In this section
we study the Newton-Raphson method for finding approximate solutions. The method is
based on the following idea:

If x = a is an estimate of a solution to f(x) = 0 then x = b is a closer estimate when :

b = a− f(a)

f ′(a)
(5)

The rational behind this will be explained in the lectures.

Starting with the approximation x = a of a solution to f(x) = 0 we get a better estimate b
calculated from (5). Replacing b by c , and a by b in (5), we get an even better approximation
x = c of a solution to f(x) = 0 :

c = b− f(b)

f ′(b)

In general, starting with the estimate x0 for the solution to f(x) = 0 we generate a
sequence of better estimates x1, x2, x3 . . . where

xn+1 = xn − f(xn)

f ′(xn)
(6)

which is called the Newton-Raphson method.
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Example 3.4 Let f(x) = x2 − 3 . Find the Newton-Raphson recurrence relation for the
solution of f(x) = 0 . Do three iterations starting with x0 = 1 to find an approximation
to
√

3.

Solution f(x) = x2 − 3 so f ′(x) = 2x and

x− f(x)

f ′(x)
= x− x2 − 3

2x
=

2x2 − x2 + 3

2x
=

x2 + 3

2x

Hence, using (6), the Newton-Raphson recurrence relation is

xn+1 =
x2

n + 3

2xn

Taking x0 = 1 ,

x1 =
1 + 3

2
= 2 , x2 =

4 + 3

4
= 1.75 , x3 =

(1.75)2 + 3

2(1.75)
= 1.73

Exercises 3.3

1. Let f(x) = 1 − 10x−2 . Use the Newton-Raphson method to obtain the recurrence
relation

xn+1 = (1.5)xn − (0.05)x3
n

for the solution of f(x) = 0 .

2. By considering

f(x) = 1− 1

cx
= 0

use the Newton-Raphson method to obtain the recurrence relation

xn+1 = 2xn − cx2
n

for finding the value of 1/c. Use this to approximate the reciprocal of 7 by doing two
iterations starting with x0 = 0.1.

3. By considering the equation f(x) = x3 − c = 0, use the Newton-Raphson method to
obtain the recurrence relation

xn+1 =
1

3
(2xn +

c

x2
n

)

for finding the cube root of c. Find an approximation to the cube root of 10 starting with
x0 = 2 and doing three iterations.

4. f(x) = ex − 4x . Show that the equation f(x) = 0 has a solution in the interval
[2, 3] . Use the Newton-Raphson method to estimate the solution of f(x) = 0 by doing
two iterations starting with x0 = 2.
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3.4 Stationary Points

The derivative f ′(x) measures the rate at which f(x) increases with respect to x .

If f ′(x) > 0 on an interval then f(x) is an increasing function on that interval.

If f ′(x) < 0 on an interval then f(x) is a decreasing function on that interval.

Example 3.5 If a fixed resistor of r ohms is connected in parallel with a variable resistor
of x ohms, the resistance R(x) of the combination is given by

R(x) =
rx

x + r

Show that R(x) is an increasing function of x .

Solution We have to show that R′(x) > 0 (note that x > 0 ). Using the quotient rule

R′(x) =
r(x + r)− rx

(x + r)2
=

r2

(x + r)2
> 0

Hence R(x) is an increasing function of x .

In Figure 2, f is increasing if x < a and x > b , while for a < x < b , it is decreasing. At
the points x = a and x = b the gradient is zero, that is f ′(x) = 0 .

x

b

a

Figure 2: Graph of f(x)

In general, if f ′(c) = 0 then c is a stationary point.
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Example 3.6 Find the stationary points of f(x) = x3 − 3x2 .

Solution At stationary points f ′(x) = 0 . Since f ′(x) = 3x2 − 6x , we solve

3x2 − 6x = 3x(x− 2) = 0

Thus x = 0 and x = 2 are the stationary points.

The value of f(x) at a stationary point is called the stationary value. A stationary value
may be a local maximum, a local minimum or a point of inflexion. In Figure 2, the
stationary point at x = a is a local maximum while x = b is a local minimum.

There are two methods for finding the nature of a stationary point at x = c .

The first method compares the sign of f ′(x) for x < c and x > c (with x close to c ).
For a maximum, f ′(x) is positive for x < c and negative for x > c . For a minimum,
f ′(x) is negative for x < c and positive for x > c .

In this module, we focus on the method called the second derivative test. Since f ′′(x)
measures the rate at which f ′(x) increases, if f ′′(c) < 0 then f ′(x) is decreasing at c . If
f ′′(c) > 0 then f ′(x) is increasing at c . Hence

• if f ′(c) = 0 and f ′′(c) < 0 then x = c is a local maximum.

• if f ′(c) = 0 and f ′′(c) > 0 then x = c is a local minimum.

Example 3.7 For f(x) = 6x−2x3 , find the stationary points of f and the nature of each
stationary point.

Solution f ′(x) = 6− 6x2 and f ′′(x) = −12x .

If x is a stationary point then f ′(x) = 0 , that is x2 = 1 so x = ±1.

f ′′(−1) = −12(−1) = 12 > 0 and f ′′(1) = −12 < 0 . Hence x = −1 is a local minimum
and x = 1 is a local maximum.

Example 3.8 Find f ′(x) and f ′′(x) when f(x) = xe−x . Show that x = 1 is a stationary
point and determine its nature.

Solution Using the product rule,

f ′(x) = e−x − xe−x , f ′′(x) = −e−x − e−x + xe−x = −2e−x + xe−x

Then f ′(1) = e−1 − e−1 = 0 so x = 1 is a stationary point.

f ′′(1) = −2e−1 + e−1 = −e−1 < 0 so x = 1 is a local maximum.

Exercises 3.4

1. Find the stationary point of f(x) = x +
9

x
, x > 0 and determine its nature.
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2. For f(x) = x3−12x , find the stationary points of f and the nature of each stationary
point.

3. For f(x) = x3 + 3x2 − 45x , find the stationary points of f and the nature of each
stationary point.

4. Find f ′(x) and f ′′(x) when f(x) = e3x − 3ex . Show that x = 0 is a stationary
point and determine its nature.

5. Find f ′(x) and f ′′(x) when f(x) = ln x− x . Show that x = 1 is a stationary point
and determine its nature.

6. Find f ′(x) and f ′′(x) when f(x) = 3x2 + cos 4x . Show that x = 0 is a stationary
point and determine its nature.

7. Show that f(x) = x2 +
54

x
is increasing for x > 3 .

8. Express f(x) =
3x + 2

(x + 1)(x + 2)
in terms of partial fractions. Hence find f ′(x) and

f ′′(x) . Show that x = 0 is a stationary point and determine its nature.

3.5 Optimization Problems

In many real world problems we want to make something as large or as small as possible
by changing some of the parameters in the problem (“optimization”).

Example 3.9 A variable rectangle has a constant perimeter of 16. Find the lengths of the
sides when the area is a maximum.

Solution There are many rectangles with a perimeter 16, for example sides 7 and 1 (area
7 ) or 5 and 3 (area 15 ). To do problems like this we have to express the given information
about the area as a function of one variable.

If the sides are x and y then the area is A = xy .

Since 2x + 2y = 16 we have that A(x) = x(8− x) = 8x− x2 .

At stationary points A′(x) = 0 . Then 8− 2x = 0 and x = 4 is the stationary point.

Since A′′(x) = −2 , A′′(4) < 0 so x = 4 is a maximum. Hence the area is a maximum
when it is a square of side 4.

Example 3.10 An open rectangular tank with a square base is to be constructed so that it
has a volume of 500 cubic metres. Find the dimensions of the tank if the total surface area
is a minimum.

Solution Let h be the height and x the length of the side of the base. The surface area
S is the area of the four walls and base, that is S = x2 + 4xh . To proceed we need to use
the information about the volume to get S as a function of one variable.
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Since the volume is 500 we have x2h = 500 so

h =
500

x2

and

S(x) = x2 + 4x

(
500

x2

)
= x2 +

2000

x

Then

S ′(x) = 2x− 2000

x2
= 0

if x = 10 . Hence x = 10 is the stationary point.

Since S ′′(x) = 2 + 4000x−3 , S ′′(10) > 0 and x = 10 is a minimum.

Using x2h = 500 , h = 5 and the required dimensions are 10 by 10 by 5.

Exercises 3.5

1. A variable rectangle has a constant area of 49. Find the lengths of the sides when
the perimeter is a minimum.

2. A rectangular block has a square base. Its total surface area is 150.

(a) If the base length is x , show that the volume V of the block is

V =
75x− x3

2

(b) Find the dimensions of the block if the volume is a maximum.

3. An open box is to be made with a square base. The volume of the box is 32 cm3.
Find the dimensions of the box if the surface area of the box is a minimum.

4. A rectangular box-shaped house is to have a square floor. Four times as much heat
per square metre is lost through the roof as through the walls: no heat is lost through the
floor. The house has to enclose 2000 cubic metres. Find the dimensions of the house so as
to minimise heat loss.

5. A rectangular field is to be fenced off along a road. The fence along the road costs
3 pounds per metre while on the other sides it costs 2 pounds per metre. Calculate the
maximum area that can be fenced off for 400 pounds.

3.6 Velocity and Acceleration

Suppose that a car is travelling in a straight line and that after t it is at a distance s(t)
from its starting point. If the velocity v(t) is constant then the graph of s(t) against t is
a straight line and the acceleration of the car is zero.
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If the velocity v(t) is not constant then the graph of s(t) against t will not be a straight
line. The average velocity of the car in the time interval t to t + h is given by

change in distance

change in time
=

s(t + h)− s(t)

h

The velocity of the car at the exact time t can be approximated by making h small so
that the average velocity is calculated over a small time interval. Taking the limit, the
velocity at time t is given by v(t) = s′(t) .

Similarly, the acceleration at time t is given by a(t) = v′(t) .

Example 3.11 A particle moves along a straight line such that its distance s(t) metres
from a fixed point P after t seconds is given by s(t) = t3 − 3t2 + 9t.

(a) Find the distance of the particle from P after 2 seconds.

(b) Find the velocity and acceleration after t seconds.

(c) Find the velocity when the acceleration of the particle is zero.

Solution (a) s(t) is the distance after t seconds so s(2) = 7 metres is the distance
from P after 2 second.

(b) v(t) = s′(t) = 3t2 − 6t + 9 and a(t) = v′(t) = 6t− 6 .

(c) If the acceleration of the particle is zero then a(t) = 0 .

6t− 6 = 0 so t = 1 . The velocity at this time is v(1) = 3− 6 + 9 = 6 m/s .

Exercises 3.6

1. A particle moves along a straight line such that its distance s(t) from a fixed point
P after t seconds is given by s(t) = t3 − 6t2 + 12 . Find

(a) its distance from P after 1 second,

(b) its acceleration at the time t > 0 when its velocity is zero.

2. A ball is thrown vertically upwards and after t seconds its height s(t) above the
ground is given by s(t) = 8 + 10t− 5t2. Find

(a) the height from which the ball is thrown

(b) the initial velocity of the ball

(c) the maximum height reached by the ball.

3. A particle moves along a straight line such that its distance s(t) metres from a fixed
point at time t is given by s(t) = te−2t. Find the velocity and acceleration.
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3.7 First Order Differential Equations

Many scientific laws are formulated in terms of differential equations. In later courses you
will learn how to solve such equations. In this module we will be studying their formulation
and checking that given expressions satisfy particular differential equations. First order
differential equations involve one derivative y′ .
Consider the differential equation

dy

dx
= 3

Since the gradient is constant (equal to 3 ) the solution is the straight line y = 3x + C
where C is a constant. If we have extra information such as y = 7 when x = 1 we can
determine the value of C . In general, solutions of first order differential equations involve
one arbitary constant.

Example 3.12 The velocity y(t) of a particle moving in a resisting medium is decreasing
at a rate proportional to y2(t) . If k > 0 is the constant of proportionality, obtain the
differential equation satisfied by y(t) .

Solution The rate of decrease of y(t) is −dy

dt
so −dy

dt
= ky2 . Hence

dy

dt
= −ky2 .

Example 3.13 In a model to estimate the depreciation of the value of a computer, the
value y(t) at age t months, decreases at a rate proportional to y(t) .

(a) If k > 0 is the constant of proportionality, obtain the differential equation satisfied
by y(t) .

(b) The initial value of the computer is £1000 . Verify that the solution is
y(t) = 1000e−kt.

Solution (a) The rate of decrease of y(t) is −dy

dt
so −dy

dt
= ky . Hence

dy

dt
= −ky .

(b) We have to

• Show that y(t) = 1000e−kt satisfies
dy

dt
= −ky .

• Check that for y(t) = 1000e−kt, y(0) = 1000 .

For y(t) = 1000e−kt ,
dy

dt
= −1000ke−kt and −ky(t) = −1000ke−kt . Hence

dy

dt
= −ky .

Putting t = 0 in y(t) = 1000e−kt gives y(0) = 1000e0 = 1000 as required.

Example 3.14 Verify that y = 1 + Ce3t is a solution of

dy

dt
= 3(y − 1)

where C is a constant. Hence find the solution with y = 5 when t = 0 .
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Solution
dy

dt
= 3Ce3t . Also, 3(y − 1) = 3(1 + Ce3t − 1) = 3Ce3t . Hence

dy

dt
= 3(y − 1)

as required.

Putting t = 0 in y = 1 + Ce3t gives

5 = 1 + Ce0 = 1 + C

so C = 4 and y = 1 + 4e3t .

Example 3.15 In a certain chemical reaction, the concentration y(t) of a substance is
decreasing at a rate proportional to the cube of its value at that instant. If k > 0 is the
constant of proportionality, obtain the differential equation satisfied by y(t) . If the initial
concentration is y(0) = 1 , verify that the solution is

y(t) = (2kt + 1)−1/2

Find T such that y(T ) = 1/2 .

Solution The rate of decrease of y(t) is −dy

dt
so −dy

dt
= ky3 . Hence

dy

dt
= −ky3 .

For y(t) = (2kt + 1)−1/2

dy

dt
= (2k)(−1/2)(2kt + 1)−3/2 = −k(2kt + 1)−3/2

and −ky3 = −k(2kt + 1)−3/2 so
dy

dt
= −ky3 .

Putting t = 0 in y(t) = (2kt + 1)−1/2 gives y(0) = (1)−1/2 = 1 as required.

If y(T ) = 1/2
1

(2kT + 1)1/2
=

1

2

Then (2kT + 1)1/2 = 2 and 2kT + 1 = 4 so that T =
3

2k
·

Exercises 3.7

1. Let y(t) be the population of a certain species at time t. The rate of increase of
y(t) is proportional to the size of the population at any time. If k > 0 is the constant of
proportionality, obtain the differential equation satisfied by y(t) .

2. In a certain chemical reaction, the concentration y(t) of a substance is deceasing at
a rate proportional to the square of its value at that instant. If k > 0 is the constant of
proportionality, obtain the differential equation satisfied by y(t).
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3. Verify that y = 2 +
C

t
is a solution of t

dy

dt
+ y = 2 where C is a constant.

Hence find the solution with y = 7 when t = 3 .

4. The velocity y(t) of a particle moving in a resisting medium satisfies the differential
equation

dy

dt
= −t− y

Verify that the solution with y(0) = 5 is y(t) = 1− t + 4e−t .

5. The height y(t) of a tank of water which is being drained satisfies the differential
equation y′(t) = −16

√
y(t) . Verify that the solution with y(0) = 1 is y(t) = (1− 8t)2 .

6. In an electric circuit, the current y(t) satisfies the differential equation

dy

dt
= E − y

where the applied voltage E is a constant. Verify that the solution with y(0) = 0 is
y(t) = E(1− e−t) . What is the value of the current for large t ?

7. In a model to estimate the spread of a disease , the proportion y(t) of the population
infected at time t satisfies the differential equation y′(t) = y (1− y) . Verify that the
solution with y(0) = 1/2 is

y(t) =
1

1 + e−t

What proportion of the population is infected in the long term ?

8. A hard-boiled egg is put in a basin of water whose temperature is 18◦C . The
temperature of the egg at time t is y(t) , and y(t) is decreasing at a rate proportional to
y(t)− 18 .

If k > 0 is the constant of proportionality, obtain the differential equation satisfied by
y(t) . Verify that y(t) = 18 + Ce−kt is a solution where C is a constant. Hence find y(t)
if the initial temperature of the egg is 98◦C .

9. Verify that y = 2 + Ce4t is a solution of

dy

dt
= 4(y − 2)

where C is a constant. Hence find the solution with y = 9 when t = 0 .

10. Verify that y = t ln t + Ct is a solution of

t
dy

dt
= t + y

where C is a constant. Hence find the solution with y = 5 when t = 1 .

11. Verify that y = (2t + C)−1/2 is a solution of y′ = −y3 where C is a constant.
Hence find the solution with y = 3 when t = 0 .
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3.8 Second Order Differential Equations

Second order differential equations are equations involving the derivatives y′′ and y′ . Such
equations occur in many areas of science and engineering. The equation

d2y

dt2
+ k2y = 0

where k is a constant arises in vibrational problems. Equations such as

y′′ + ay′ + by = 0

where a and b are constants arise in the analysis of electric circuits and in mechanics
problems.

The differential equation y′′ = 0 has the solution y(t) = A+Bt where A and B are con-
stants. In general, for second order differential equations we need two pieces of information
to find the two arbitary constants in a solution.

Example 3.16 Show that y(t) = A sin 3t + B cos 3t satisfies the differential equation

d2y

dt2
+ 9y = 0

where A and B are constants. Hence find the solution with y(0) = −5 and y′(0) = 6 .

Solution y′ = 3A cos 3t− 3B sin 3t and y′′ = −9A sin 3t− 9B cos 3t . Then

d2y

dt2
+ 9y = −9A sin 3t− 9B cos 3t + 9A sin 3t + 9B cos 3t = 0

as required.

Putting t = 0 in y(t) = A sin 3t+B cos 3t gives −5 = A sin 0+B cos 0 = B so B = −5 .

Putting t = 0 in y′(t) = 3A cos 3t− 3B sin 3t gives 6 = 3A so A = 2 .

Hence y(t) = 2 sin 3t− 5 cos 3t .

Example 3.17 Show that y(t) = (A + Bt)et satisfies the differential equation

y′′ − 2y′ + y = 0

where A and B are constants. Hence find the solution with y(0) = 3 and y′(0) = 1 .

Solution Using the product rule, y′ = Bet + (A + Bt)et = (A + B + Bt)et

y′′ = Bet + (A + B + Bt)et = (A + 2B + Bt)et

y′′ − 2y′ + y = (A + 2B + Bt)et − 2(A + B + Bt)et + (A + Bt)et = 0

as required.

Putting t = 0 in y(t) = (A + Bt)et gives A = 3 .

Putting t = 0 in y′ = (A + B + Bt)et gives 1 = A + B = 3 + B .

Hence B = −2 and y(t) = 3et − 2tet .
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Example 3.18 Find the value of A if y(t) = Ae−2t is a solution of y′′+5y′+4y = 6e−2t .

Solution y′ = −2Ae−2t and y′′ = 4Ae−2t . Then

y′′ + 5y′ + 4y = 4Ae−2t − 10Ae−2t + 4Ae−2t = −2Ae−2t = 6e−2t

if A = −3 .

Example 3.19 Verify that y(t) = emt is a solution of

y′′ + 6y′ + 5y = 0

if m2 + 6m + 5 = 0 . Hence obtain two solutions of the above differential equation.

Solution y(t) = emt so y′ = memt and y′′ = m2emt . Then

y′′ + 6y′ + 5y = m2emt + 6memt + 5emt = (m2 + 6m + 5)emt = 0

if m2 + 6m + 5 = 0 . To find two solutions we solve

m2 + 6m + 5 = (m + 5)(m + 1) = 0

to get m = −5 and m = −1 . The solutions of the differential equation are y(t) = e−5t

and y(t) = e−t .

Exercises 3.8

1. Find the value of A if y(t) = Ae3t is a solution of y′′ − 6y′ + 3y = 12e3t .

2. Show that y(t) = Ae4t + Be−4t satisfies the differential equation

d2y

dt2
− 16y = 0

where A and B are constants. Hence find the solution with y(0) = 0 and y′(0) = 24 .

3. Show that y(t) = A sin 2t + B cos 2t− sin 4t satisfies the differential equation

d2y

dt2
+ 4y = 12 sin 4t

where A and B are constants. Hence find the solution with y(0) = 5 and y′(0) = 8 .

4. Verify that y(t) = emt is a solution of

y′′ − 36y = 0

if m2 − 36 = 0 . Hence obtain two solutions of the above differential equation.

5. Verify that y(t) = emt is a solution of

y′′ + y′ − 6y = 0

if m2 + m− 6 = 0 . Hence obtain two solutions of the above differential equation.

6. Find the value of A if y(t) = A sin 2t is a solution of

y′′ + y = 21 sin 2t
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3.9 Answers to Exercises

Exercises 3.1

1. y = −5x + 4 2. y = 9x− 7 3. y = x + 1

4. y = x− 1 5. Area = 2

Exercises 3.2

1. 1 +
x

2
− x2

8
2. x− x2

2
+

x3

3

3. 1− x2

2
+

x4

24
4. ln 2 +

x

2
+

x2

8

Exercises 3.3

2. x1 = 0.13 , x2 = 0.142

3. x1 = 2.16667 , x2 = 2.15450 , x3 = 2.15443

4. x1 = 2.18 , x2 = 2.15

Exercises 3.4

1. x = 3 a local minimum.

2. x = −2 a local maximum. x = 2 a local minimum.

3. x = −5 a local maximum. x = 3 a local minimum.

4. x = 0 is a local minimum.

5. x = 1 a local maximum. 6. x = 0 a local maximum.

8. f(x) =
4

x + 2
− 1

x + 1
f ′(x) = (x + 1)−2 − 4(x + 2)−2

8. f ′′(x) = 8(x + 2)−3 − 2(x + 1)−3 x = 0 a local maximum.

Exercises 3.5

1. 7 by 7 2. 5 by 5 by 5

3. 4 by 4 by 2

4. 10 by 10 by 20 5. 2000
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Exercises 3.6

1(a) 7 1(b) 12

2(a) 8 2(b) 10 2(c) 13

3. v(t) = e−2t − 2te−2t , a(t) = 4te−2t − 4e−2t

Exercises 3.7

1. y′ = ky 2. y′ = −ky2

3. y = 2 +
15

t
6. E 7. All

8.
dy

dt
= −k(y − 18) . 18 + 80e−kt

9. 2 + 7e4t 10. t ln t + 5t 11.
(
2t + 1

9

)− 1
2

Exercises 3.8

1. A = −2 2. 3e4t − 3e−4t

3. y(t) = 6 sin 2t + 5 cos 2t− sin 4t

4. e6t and e−6t 5. e−3t and e2t 6. A = −7


