Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 3 Solutions

1. (a) $\ddot{a}_{70 \mid 70}=\ddot{a}_{70}^{f}-\ddot{a}_{70: 70}=3.168$.
(b) $\ddot{a}_{65 \mid 64}=\ddot{a}_{64}^{f}-\ddot{a}_{65: 64}=3.116$
(c) $\ddot{a}_{65 \mid 64}^{(12)} \approx \ddot{a}_{64}^{(12) f}-\ddot{a}_{65: 64}^{(12)}=\left(\ddot{a}_{64}^{f}-0.458\right)-\left(\ddot{a}_{65: 64}-0.458\right)=3.116$
2. We note that after the first five years for which the annuity is guaranteed, we need to consider what happens in each of the three possible cases:
(a) both husband and wife are alive, which has a probability ${ }_{5} p_{65} \cdot{ }_{5} p_{61}$,
(b) only the husband is alive, which has probability ${ }_{5} p_{65}\left(1-{ }_{5} p_{61}\right)$, and
(c) only the wife is alive which has probability $\left(1-{ }_{5} p_{65}\right)_{5} p_{61}$.

The equation of value is

$$
P=100+10060 \ddot{a}_{5 \mid}^{(12)}+v^{5}\left[\begin{array}{l}
{ }_{5} p_{65} \cdot{ }_{5} p_{61}\left(10060 \ddot{a}_{70}^{(12)}+5060 \ddot{a}_{70 \mid 66}^{(12)}\right) \\
+{ }_{5} p_{65} \cdot\left(1-{ }_{5} p_{61}\right) \cdot 10060 \ddot{a}_{70}^{(12)} \\
+\left(1-{ }_{5} p_{65}\right) \cdot{ }_{5} p_{61} \cdot 5060 \ddot{a}_{66}^{(12)}
\end{array}\right]
$$

Now, substituting
$\ddot{a}_{5}^{(12)}=4.5477, \quad v^{5}=0.82193, \quad{ }_{5} p_{65}=\frac{9238134}{9647797}=0.95754, \quad{ }_{5} p_{61}=\frac{9658285}{9828163}=0.98272$,

$$
\ddot{a}_{70}^{(12)}=11.562-\frac{11}{24}=11.104, \quad \ddot{a}_{66}^{(12)}=14.494-\frac{11}{24}=14.036,
$$

and $\ddot{a}_{70 \mid 66}^{(12)} \approx 14.494-10.368=4.126$. gives $P=152,350$
3. (a) ${ }_{n} q_{x y}^{2}={ }_{n} q_{x}-{ }_{n} q_{x y}^{1}$.
(b) First find ${ }_{n} p_{x}$:

$$
\begin{aligned}
{ }_{n} p_{x} & =\exp \left[-\int_{0}^{n} \mu_{x+t} d t\right] \\
& =\exp \left[-\int_{0}^{n} \frac{1}{90-x-t} d t\right] \\
& =\exp \left[[\log (90-x-t)]_{t=0}^{t=n}\right] \\
& =(90-x-n) /(90-x)
\end{aligned}
$$

So ${ }_{n} q_{x}=n /(90-x)$. Next:

$$
\begin{aligned}
{ }_{n} q_{x y}^{1} & =\int_{0}^{n}{ }_{t} p_{x y} \mu_{x+t} d t \\
& =\int_{0}^{n} \frac{90-x-t}{90-x} \frac{90=y-t}{90-y} \frac{1}{90-x} d t \\
& =\frac{1}{(90-x)(90-y)} \int_{0}^{n}(90-y-t) d t \\
& =\frac{(90-y) n-n^{2} / 2}{(90-x)(90-y)}
\end{aligned}
$$

Hence ${ }_{10} q_{30: 40}^{2}=\frac{1}{60}$.
4. (a) $\bar{A}_{40: 40}^{1}=\frac{1}{2} \bar{A}_{40: 40}$ (by symmetry) $=\frac{1}{2}\left(1-\delta \bar{a}_{40: 40}\right)=0.1754$.
(b) $A_{\overline{40: 40}}=\left(1-d \ddot{a}_{\overline{40: 40}}\right)=1-d\left(2 \ddot{a}_{40}-\ddot{a}_{40: 40}\right)=0.2024$
(c) $A_{40: 40}^{2}=\frac{1}{2} A_{\overline{40: 40}}$ (by symmetry) $=0.1012$.
(d) $\bar{A} \overline{40: 40: 10}=\bar{A} \frac{1}{40: 40: 10]}+A_{\overline{40: 40: 10 \mid}}$ where the first term is a temporary assurance payable on second death, and the second term is a pure endowment. (Note that the ' 1 ' is not over either life but over the whole 'status' $\overline{40: 40}$; the sum assured is payable when the status fails. The next line shows a similar symbol with a first-death status $40: 40$.) We have:

$$
\begin{aligned}
\bar{A} \frac{1}{40: 40: 10 \mid} & =2 \bar{A}_{40: \overline{10}}^{1}-\bar{A}_{40: 40: \overline{10}}^{1} \\
& =(1+i)^{1 / 2}\left(2 A_{40: \overline{10 \mid}}^{1}-A_{40: 40: \overline{10}}^{1}\right) \\
& =(1+i)^{1 / 2}\left(2\left(A_{40}-\frac{D_{50}}{D_{40}} A_{50}\right)-\left(A_{40: 40}-v^{10}{ }_{10} p_{40: 40} A_{50: 50}\right)\right) \\
& =0.000477
\end{aligned}
$$

(using $A_{x x}=1-d \ddot{a}_{x x}$). Then, the pure endowment benefit will be payable as long as both are not dead:

$$
A_{\overline{40: 40}: 101}=v^{10}\left(1-{ }_{10} q_{4010} q_{40}\right)=0.675107
$$

so $\bar{A}_{\overline{40: 40: 10}}=0.67558$.
5. (a) $\infty q_{x y}^{1}$ is the probability that (x) will die before (y).

$$
{ }_{\infty} q_{x y}^{1}=\int_{0}^{\infty}{ }_{t} p_{x y} \mu_{x+t} d t
$$

(b) $\bar{A}_{x y}^{2}$ is the EPV of an assurance of 1 payable immediately on the death of (x), provided (y) is then dead.

$$
\bar{A}_{x y}^{2}=\int_{0}^{\infty} v^{t}{ }_{t} p_{x}\left(1-{ }_{t} p_{y}\right) \mu_{x+t} d t .
$$

(c) $\bar{A}_{x y: n}^{1}$ is the EPV of an assurance payable immediately on the death of (x) within n years, provided (y) is then alive.

$$
\bar{A}_{x y: \bar{n}}^{1}=\int_{0}^{n} v^{t}{ }_{t} p_{x y} \mu_{x+t} d t .
$$

6. Let P be the annual premium. Then the equation of value is

$$
\begin{aligned}
P \ddot{a}_{70: 65} & =5,000 \bar{A}_{70: 65}+10,000\left[\ddot{a}_{70: 65}-\ddot{a}_{70: 65}\right] \\
& =5,000\left[1-\delta \bar{a}_{70: 65}\right]+10,000\left[\ddot{a}_{70}+\ddot{a}_{65}-2 \ddot{a}_{70: 65}\right]
\end{aligned}
$$

(Note that equivalently $P \ddot{a}_{70: 65}=5,000 \bar{A}_{70: 65}+10,000\left[\ddot{a}_{70 \mid 65}+\ddot{a}_{65 \mid 70}\right]$.)

$$
\ddot{a}_{70: 65}=10.494, \quad \bar{a} \overline{70: 65} \approx a_{\overline{70: 65}}+0.5=10.562+13.871-9.494+0.5=15.439
$$

and

$$
\ddot{a}_{70}+\ddot{a}_{65}-2 \ddot{a}_{70: 65}=11.562+14.871-2(10.494)=5.445 .
$$

Substitution gives us

$$
10.494 P=10,000(5.445)+5,000(1-0.003922(15.439))
$$

Therefore $P=5376.64$
7. Let P be the value of the single premium. The equation of value is

$$
0.94 P=50,000 \int_{0}^{15} v^{t} \cdot{ }_{t} p_{60} \mu_{60+t} \cdot{ }_{t} p_{50} d t
$$

To use the three-eighths rule we need to evaluate the integrand at points $t=0$, $t=5, t=10$ and $t=15$. We set these out in the following table.

t	v^{t}	${ }_{t} p_{60}$	μ_{60+t}	${ }_{t} p_{50}$	Product
0	1	1	0.001918	1	0.001918
5	0.69655	0.9853	0.004332	0.9841	0.002926
10	0.48519	0.9537	0.009240	0.95630	0.004089
15	0.33797	0.8920	0.018414	0.9083	0.005042

Therefore we have
$0.94 P=50,000 \frac{15}{8}[0.001918+3(0.002926)+3(0.004089)+0.005042]=50,000(0.0525)$
such that $P=2,792.90$.

