Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 5 Solutions

1. (a) Let $(D A)_{x+r: \overline{n-r}}^{1}$ denote a decreasing term assurance with initial sum assured of $n-r$. Define ${ }_{t} V\left((D A)_{x: n}^{1}\right)$ as the policy value just before the payment of the $t^{t h}$ premium and $P\left((D A)_{x: \bar{n}}^{1}\right)$ as the net premium.
The policy value at time $t+1,{ }_{t} V\left((D A)_{x: n 1}^{1}\right)$, together with the net premium paid at time $t+1, P\left((D A)_{x: \bar{n}}^{1}\right)$, when accumulated at the rate of interest i should produce a value sufficient to provide a sum assured of $n-t$ at the end of year to the proportion q_{x+t} expected to die during the year and also set up a reserve of ${ }_{t+1} V\left((D A)_{x: \bar{n}}^{1}\right)$ for the proportion p_{x+t} expected to survive. Therefore

$$
\left[{ }_{t} V\left((D A)_{x: \bar{n}}^{1}\right)+P\left((D A)_{x: \bar{n}}^{1}\right)\right](1+i)=q_{x+t} \cdot(n-t)+p_{x+t} \cdot{ }_{t+1} V\left((D A)_{x: \bar{n}}^{1}\right)
$$

Proof:

$$
\begin{align*}
{ }_{t} V\left((D A)_{x: \bar{n}}^{1}\right)+P\left((D A)_{x: \bar{n}}^{1}\right) & =(D A)_{x+t: \overline{n-t} \mid}^{1}-P\left((D A)_{x: \bar{n}}^{1}\right) \cdot \ddot{a}_{x+t: \overline{n-t}}+P\left((D A)_{x: \bar{n}}^{1}\right) \\
& =(D A)_{x+t: \overline{n-t}}^{1}-P\left((D A)_{x: \bar{n}}^{1}\right)\left(\ddot{a}_{x+t: \overline{n-t}}-1\right) \tag{1}
\end{align*}
$$

We note that

$$
(D A)_{x+t: \overline{n-t} \mid}^{1}=q_{x+t} \cdot v \cdot(n-t)+p_{x+t} \cdot v \cdot(D A)_{x+t+1: \overline{n-t-1}}^{1},
$$

and

$$
\ddot{a}_{x+t: \overline{n-t}}-1=a_{x+t: \overline{n-t-1}}=v \cdot p_{x+t} \cdot \ddot{a}_{x+t+1: \overline{n-t-1}} .
$$

Substituting these expressions for $(D A)_{x+t: \overline{n-t}}^{1}$ and $\ddot{a}_{x+t: \overline{n-t}}-1$ into equation (1), we can write

$$
\begin{aligned}
{\left[{ }_{t} V\left((D A)_{x: \bar{n}}^{1}\right)+P\left((D A)_{x: \bar{n})}^{1}\right)\right](1+i)=} & q_{x+t} \cdot(n-t)+ \\
& p_{x+t} \cdot\left((D A)_{x+t+1: \overline{n-t-1}}^{1}-P\left((D A)_{x: \bar{n}}^{1}\right) \cdot \ddot{a}_{x+t+1: \overline{n-t-1}}\right) \\
= & q_{x+t} \cdot(n-t)+p_{x+t} \cdot t+1 V\left((D A)_{x: \bar{n}}^{1}\right)
\end{aligned}
$$

as required.
(b) The reserve can be found directly, or by using the relationship in (a) twice from the boundary condition ${ }_{n} V\left((D A)_{x: n}^{1}\right)=0$. Either way we need to find the net premium,

$$
P\left((D A)_{x: \bar{n} \mid}^{1}\right)=\frac{(D A)_{x: \bar{n}]}^{1} .}{\ddot{a}_{x: \bar{n}}}
$$

We have $x=30, n=30$, mortality is according to the A1967-70 ultimate table and interest is 4% p.a.

$$
\begin{aligned}
\frac{(D A)_{30: \overline{30}}^{1}}{\ddot{a}_{30: \overline{30}}} & =\frac{31 A_{30: \overline{30}}^{1}-(I A)_{30: \overline{30}}^{1}}{\ddot{a}_{30: \overline{30}}}=\frac{31\left(M_{30}-M_{60}\right)-\left(R_{30}-R_{60}-30 M_{60}\right)}{N_{30}-N_{60}} \\
& =\frac{30 M_{30}-R_{31}+R_{61}}{N_{30}-N_{60}}=\frac{30(1981.9552)+21167.520-75245.722}{219735.21-35841.261} \\
& =0.029258 .
\end{aligned}
$$

Using the recursive relationship for the first time with $q_{59}=0.01299373$, we have

$$
\left({ }_{29} V\left((D A)_{30: 30}^{1}\right)+0.029258\right)(1.04)=1 \times 0.01299373+0
$$

such that ${ }_{29} V\left((D A)_{30: \overline{301}}^{1}\right)=-0.016764$. Using the recursive relation for the second time with $q_{58}=0.01168566$, we have
$\left({ }_{28} V\left((D A)_{30: \overline{30}}^{1}\right)+0.029258\right)(1.04)=2 \times 0.01168566+(1-0.01168566)(-0.016764)$
such that ${ }_{28} V\left((D A)_{30: 30}^{1}\right)=-0.022716$.
(c) The problem is that the reserve is negative. A level premium has been used to pay for a decreasing risk. This could cause problems if the policyholder lapses the policy since it will leave the insurer with a loss. One way to deal with this problem is to charge a higher level premium payable for a term shorter than the term of the policy so that negative reserves do not arise.
2. (a)

$$
\begin{gathered}
{ }_{6.5} V_{35: 25 \mid} \cdot(1+i)^{0.5}={ }_{0.5} q_{41.5}+{ }_{0.5} p_{41.5} \cdot{ }_{7} V_{35: \overline{25}} . \\
\text { But }{ }_{7} V_{35: 25 \mid}=A_{42: 18 \mid}-P_{35: 25} \cdot \ddot{a}_{42: 18 \mid}=0.50121-0.02393(12.969)=0.19081 .
\end{gathered}
$$

Assuming a constant force of mortality between exact ages 41 and 42, then $\left({ }_{0.5} p_{41.5}\right)^{2}=p_{41}$ giving ${ }_{0.5} p_{41.5}=0.99949$. Therefore

$$
{ }_{6.5} V_{35: 25}=\frac{(1-0.99949)+0.99949(0.19081)}{(1.04)^{0.5}}=0.18751 .
$$

(b)

$$
\begin{aligned}
& \left({ }_{16} V_{35: \frac{1}{25}}+P_{35: \frac{1}{251}}\right)(1+i)^{0.25}={ }_{0.25} q_{51} \times 0+{ }_{0.25} p_{51} \cdot{ }_{16.25} V_{35: \frac{1}{251}} \quad \text { and } \\
& { }_{16} V_{35:: \frac{1}{251}}=A_{51: 91}-P_{35:: \frac{1}{251}} \cdot \ddot{a}_{51: 91}=A_{51: 91}-\frac{A_{35: 251}}{\ddot{a}_{35: 51}^{251}} \cdot \ddot{a}_{51: 91} \\
& =\frac{D_{60}}{D_{51}}-\frac{\frac{D_{60}}{D_{35}}}{16.027}(7.625)=0.50604 .
\end{aligned}
$$

Assuming a constant force of mortality between exact ages 51 and 52, $\left({ }_{0.25} p_{51}\right)^{4}=p_{51}$ giving ${ }_{0.25} p_{51}=0.9993$. Therefore

$$
{ }_{16.25} V_{35: 25 \mid} \frac{1}{}=\frac{(0.50604+0.02197)(1.04)^{0.25}}{0.9993}=0.53358
$$

(c) We note that the premiums are paid quarterly and the sum assured is paid at the end of year of death or on survival to maturity.

$$
\left({ }_{16.75} V_{35: \overline{25}}^{(4)}+0.25 \times P_{35: 25}^{(4)}\right)(1+i)^{0.25}={ }_{0.25} q_{51.75}+{ }_{0.25} p_{51.75} \cdot{ }_{17} V_{35: 25 \mid}^{(4)}
$$

But

$$
\begin{gathered}
P_{35: 251}^{(4)}=\frac{A_{35: 25}}{\ddot{a}(4)}=\frac{0.38359}{16.027-\frac{3}{8}\left(1-\frac{D_{60}}{D_{35}}\right)}=0.0244 . \\
{ }_{17} V_{35: 251}^{(4)}=A_{52: 81}-(0.0244) \ddot{a}_{52: 81}^{(4)} \\
=0.73424-(0.0244)\left(6.91-\frac{3}{8}\left(1-\frac{D_{60}}{D_{52}}\right)\right)=0.56836
\end{gathered}
$$

Assuming a constant force of mortality between exact ages 51 and 52 , then ${ }_{0.25} p_{51.75}=0.9993$, giving

$$
{ }_{16.75} V_{35: 251}^{(4)}=\frac{(1-0.9993)+0.9993(0.56836)}{(1.04)^{0.25}}-0.25(0.0244)=0.55701
$$

Also

$$
\left({ }_{16.5} V_{35: \overline{25}}^{(4)}+0.25 \times P_{35: \overline{25}}^{(4)}\right)(1+i)^{0.25}={ }_{0.25} q_{51.5} \cdot v^{0.25}+{ }_{0.25} p_{51.5} \cdot{ }_{16.75} V_{35: \overline{25}}^{(4)}
$$

such that
${ }_{16.5} V_{35: \overline{25 \mid}}^{(4)}=\frac{(1-0.9993)(1.04)^{0.25}+0.9993(0.55701)}{(1.04)^{0.25}}-0.25(0.0244)=0.54579$.
3. (a) Thiele's equations are:

$$
\begin{aligned}
\frac{d}{d t} t \bar{V}_{x}^{(0)} & ={ }_{t} \bar{V}_{x}^{(0)} \cdot \delta+\bar{P}-\mu_{x+t}^{01}\left({ }_{t} \bar{V}_{x}^{(1)}-{ }_{t} \bar{V}_{x}^{(0)}\right)-\mu_{x+t}^{02}\left(100-{ }_{t} \bar{V}_{x}^{(0)}\right) \\
\frac{d}{d t} t \bar{V}_{x}^{(1)} & ={ }_{t} \bar{V}_{x}^{(1)} \cdot \delta-1-\mu_{x+t}^{10}\left({ }_{t} \bar{V}_{x}^{(0)}-{ }_{t} \bar{V}_{x}^{(1)}\right)-\mu_{x+t}^{12}\left(100-{ }_{t} \bar{V}_{x}^{(1)}\right) \\
\frac{d}{d t} t \bar{V}_{x}^{(2)} & =0 .
\end{aligned}
$$

(b) In this case you cannot solve Thiele's equations forwards, because ${ }_{t} \bar{V}_{x}^{(1)}$ is not known at $t=0$. However you know that ${ }_{n} \bar{V}_{x}^{(j)}=0$ for all three states, so you would solve the equations backwards from there.
4. We have

$$
\left({ }_{t} V_{x: \bar{n}}+179.3\right)(1.04)=q_{x+t}\left(1,000+_{t+1} V_{x: n}\right)+p_{x+t} \cdot{ }_{t+1} V_{x: \bar{n} \mid}=1,000 q_{x+t}+{ }_{t+1} V_{x: \bar{n} \mid}
$$

Solving backwards ${ }_{4} V_{40: 51}=784.48,{ }_{3} V_{40: 51}=577.00$ and ${ }_{2} V_{40: 51}=377.27$.

