Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 8 Solutions

1. (a) Considering a time period $t+d t$, then the probability that a life who is healthy at age x will be dead by age $x+t+d t$ is
${ }_{t+d t} p_{x}^{13}={ }_{t} p_{x}^{11} \cdot \mathrm{P}$ [dies between ages $x+t$ and $x+t+d t$ from healthy \mid healthy at $\left.x+t\right]$
${ }_{t} p_{x}^{12} \cdot \mathrm{P}$ [dies between ages $x+t$ and $x+t+d t$ from sick \mid sick at $\left.x+t\right]$
$+{ }_{t} p_{x}^{13} \cdot \mathrm{P}[$ stays dead between ages $x+t$ and $x+t+d t \mid$ dead at $x+t]$
$={ }_{t} p_{x}^{11}\left(\mu_{x+t} \cdot d t+o(d t)\right)+{ }_{t} p_{x}^{12}\left(\nu_{x+t} \cdot d t+o(d t)\right)+{ }_{t} p_{x}^{13}(1)$
On rearranging, dividing by $d t$ and taking the limit as $d t$ approaches 0 , we get

$$
\frac{d}{d t} t p_{x}^{13}={ }_{t} p_{x}^{11} \cdot \mu_{x+t}+{ }_{t} p_{x}^{12} \cdot \nu_{x+t}
$$

To evaluate ${ }_{t} p_{x}^{13}$ numerically we choose a small stepsize s and using Euler's method we have

$$
\begin{aligned}
{ }_{s} p_{x}^{13} \approx & { }_{0} p_{x}^{13}+s\left[\left.\frac{d}{d t} p_{x}^{13}\right|_{t=0}\right] \\
= & 0+s\left[{ }_{0} p_{x}^{11} \cdot \mu_{x}+{ }_{o} p_{x}^{12} \cdot \nu_{x} \cdot\right] \\
& 0+s\left[1 \cdot \mu_{x}+0 \cdot \nu_{x} \cdot\right]=\mu_{x} \cdot s
\end{aligned}
$$

For the next iteration we use ${ }_{s} p_{x}^{13}=\mu_{x} \cdot s$ as the boundary point and have

$$
\begin{aligned}
{ }_{2 s} p_{x}^{13} & \approx{ }_{s} p_{x}^{13}+s\left[\left.\frac{d}{d t}{ }_{t} p_{x}^{13}\right|_{t=s}\right] \\
& =\mu_{x} \cdot s+s\left[{ }_{s} p_{x}^{11} \cdot \mu_{x+s}+{ }_{s} p_{x}^{12} \cdot \nu_{x+s} \cdot\right] \\
& ={ }_{s} p_{x}^{11}\left(\mu_{x+s} \cdot s\right)+{ }_{s} p_{x}^{12}\left(\nu_{x+s} \cdot s\right)+\mu_{x} \cdot s
\end{aligned}
$$

where ${ }_{s} p_{x}^{11}$ and ${ }_{s} p_{x}^{12}$ are evaluated in the same way as described in the lectures. These steps are repeated until the required occupancy probability is derived.
(b) (i) We can derive

$$
\begin{equation*}
\frac{d}{d t}{ }_{t} p_{x}^{11}=-{ }_{t} p_{x}^{11}\left(\sigma_{x+t}+\mu_{x+t}\right)+{ }_{t} p_{x}^{12} \cdot \rho_{x+t}=-{ }_{t} p_{x}^{11}(2 \mu)+{ }_{t} p_{x}^{12} \mu \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t}{ }_{t} p_{x}^{12}={ }_{t} p_{x}^{11} \cdot \sigma_{x+t}-{ }_{t} p_{x}^{12} \cdot\left(\rho_{x+t}+\nu_{x+t}\right)={ }_{t} p_{x}^{11} \cdot \mu-{ }_{t} p_{x}^{12}(2 \mu) \tag{2}
\end{equation*}
$$

Differentiating equation 1 w.r.t. t and substituting equation 2 we get

$$
\frac{d^{2}}{d t^{2}} t p_{x}^{11}=-2 \mu \frac{d}{d t} t p_{x}^{11}+\mu \frac{d}{d t} t p_{x}^{12}=-2 \mu \frac{d}{d t} t p_{x}^{11}+\mu\left({ }_{t} p_{x}^{11} \cdot \mu-{ }_{t} p_{x}^{12}(2 \mu)\right)
$$

But from equation 1

$$
{ }_{t} p_{x}^{12}=\frac{1}{\mu}\left(\frac{d}{d t} t_{x}^{11}+{ }_{t} p_{x}^{11}(2 \mu)\right)
$$

such that

$$
\frac{d^{2}}{d t^{2}} t p_{x}^{11}=-2 \mu \frac{d}{d t} t p_{x}^{11}+\mu^{2}{ }_{t} p_{x}^{11}-2 \mu\left(\frac{d}{d t} t p_{x}^{11}+{ }_{t} p_{x}^{11}(2 \mu)\right)
$$

which gives the second order differential equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} t p_{x}^{11}+4 \mu \frac{d}{d t}{ }_{t} p_{x}^{11}+3 \mu^{2}{ }_{t} p_{x}^{11}=0 \tag{3}
\end{equation*}
$$

We note that given ${ }_{t} p_{x}^{11}=0.5\left(e^{-\mu t}+e^{-3 \mu t}\right)$ then

$$
\frac{d}{d t}{ }_{t} p_{x}^{11}=-0.5 \mu\left(e^{-\mu t}+3 e^{-3 \mu t}\right) \quad \text { and } \quad \frac{d^{2}}{d t^{2}} t p_{x}^{11}=0.5 \mu^{2}\left(e^{-\mu t}+9 e^{-3 \mu t}\right)
$$

Substituting these three equations into the L.H.S of equation 3 we get 0 which shows that ${ }_{t} p_{x}^{11}=0.5\left(e^{-\mu t}+e^{-3 \mu t}\right)$ satisfies the differential equation.
(ii)For $0 \leq d \leq t$

$$
\begin{aligned}
{ }_{d, t} p_{x}^{12} & =\int_{s=t-d}^{t}{ }_{s} p_{x}^{11} \mu_{t-s} p_{x+s}^{\overline{22}} d s \\
& =\int_{s=t-d}^{t} 0.5\left(e^{-\mu s}+e^{-3 \mu s}\right) \mu e^{-2 \mu(t-s)} d s
\end{aligned}
$$

(Note that ${ }_{u} p_{y}^{\overline{22}}=e^{-2 \mu u}$)

$$
\begin{aligned}
& =0.5 e^{-2 \mu t} \int_{s=t-d}^{t} \mu\left(e^{\mu s}+e^{-\mu s}\right) d s \\
& =0.5 e^{-2 \mu t}\left[e^{\mu s}-e^{-\mu s}\right]_{t-d}^{t} \\
& =0.5 e^{-2 \mu t}\left[e^{\mu t}-e^{-\mu t}-e^{\mu(t-d)}+e^{-\mu(t-d)}\right] \\
& =0.5\left[e^{-\mu t}-e^{-3 \mu t}-e^{-\mu(t+d)}+e^{-\mu(3 t-d)}\right]
\end{aligned}
$$

(iii)Note that

$$
\begin{aligned}
{ }_{t} p_{30}^{12} & ={ }_{t, t} p_{30}^{12}=0.5\left[e^{-\mu t}-e^{-3 \mu t}-e^{-2 \mu t}+e^{-2 \mu t}\right] \\
& =0.5\left[e^{-\mu t}-e^{-3 \mu t}\right]
\end{aligned}
$$

Hence for $0 \leq d \leq t$

$$
{ }_{t} p_{30}^{12}-{ }_{d, t} p_{30}^{12}=0.5\left(e^{-\mu(t+d)}-e^{-\mu(3 t-d)}\right)
$$

(iv)The expected present value is

$$
\begin{aligned}
& =10,000 \int_{t=0}^{30} v^{t}\left({ }_{t} p_{30}^{12}-{ }_{0.25, t} p_{30}^{12}\right) d t \\
& =10,000 \int_{t=0}^{30} 0.5 e^{-0.05 t}\left(e^{-0.01(t+0.25)}-e^{-0.01(3 t-0.25}\right) d t \\
& =5,000 \int_{t=0}^{30}\left(e^{-0.06 t-0.0025}-e^{-0.08 t+0.0025}\right) d t \\
& =5,000\left[-\frac{1}{0.06} e^{-0.06 t-0.0025}+\frac{1}{0.08} e^{-0.08 t+0.0025}\right]_{0}^{30} \\
& =5,000(-2.7481+1.1368+16.6251-12.5313) \\
& =£ 12,413
\end{aligned}
$$

2. This is the probability that a life aged x who is currently sick, and has been sick for duration z, will be healthy at age $x+t$. For this to happen, the life must recover from the current sickness between ages $x+u$ and $x+u+d u$, where $d u$ is small and $x \leq x+u \leq x+t$, (probability ${ }_{u} p_{x, z}^{22} \cdot \rho_{x+u, z+u} . d u$) and, from being healthy at age $x+u+d u$, must be healthy again at age $x+t$ (probability ${ }_{t-u} p_{x+u}^{11}$). The probability of this happening is:

$$
{ }_{u} p_{x, z}^{\overline{22}} \cdot \rho_{x+u, z+u} \cdot d u \cdot t-u p_{x+u}^{11}
$$

and the required probability is the sum (i.e. integral) of these probabilities over all possible values of u.
3. Consider ${ }_{t+d t} p_{x}^{13}$, where $d t>0$, and condition on the state at age $x+t$. The life may be:
dead (probability ${ }_{t} p_{x}^{13}$)
healthy (probability ${ }_{t} p_{x}^{11}$), in which case the life must die before age $x+t+d t$ (probability $\mu_{x+t} . d t+o(d t)$)
sick, in which case the life must have fallen sick for the last time between ages $x+u$ and $x+u+d u$, for some u between 0 and t, (probability ${ }_{u} p_{x}^{11} \cdot \sigma_{x+u} \cdot d u$), remained sick until age $x+t$ (probability ${ }_{t-u} p_{x+u}^{\overline{22}}$) and then died before age $x+t+d t$ (probability $\nu_{x+t, t-u} . d t$)

Combining these probabilities, we have:

$$
{ }_{t+d t} p_{x}^{13}={ }_{t} p_{x}^{13}+{ }_{t} p_{x}^{11} \mu_{x+t} \cdot d t+\int_{u=0}^{t}{ }_{u} p_{x}^{11} \cdot \sigma_{x+u \cdot t-u} p_{x+u}^{\overline{22}} \cdot\left(\nu_{x+t, t-u} \cdot d t\right) d u+o(d t)
$$

Rearranging, dividing by $d t$ and letting $d t$ decrease to 0 gives the required differential equation.
To calculate numerical values for ${ }_{t} p_{x}^{13}$, we choose a small stepsize and using Eulers method and the boundary condition ${ }_{0} p_{x}^{13}=0$, we get a value for ${ }_{s} p_{x}^{13}$. We do a second iteration using $s p_{x}^{13}$ as the new boundary condition to get a value ${ }_{2 s} p_{x}^{13}$. The iterations are repeated for as many times as required to get the occupancy probability.
4. Consider ${ }_{t+d t} p_{x, z}^{23}$. Using the same argument as in the answer to Question 2, we have:

$$
{ }_{t+d t} p_{x, z}^{23}={ }_{t} p_{x, z}^{23}+{ }_{t} p_{x, z}^{21} \cdot \mu_{x+t} \cdot d t+{ }_{t} p_{x, z}^{\overline{22}} \cdot \nu_{x+t, z+t} \cdot d t+\int_{u=0}^{t}{ }_{u} p_{x, z}^{21} \cdot \sigma_{x+u \cdot t-u} p_{x+u}^{\overline{22}} \cdot\left(\nu_{x+t, t-u} \cdot d t\right) d u+o(d t)
$$

Rearranging, dividing by $d t$ and letting $d t$ decrease to 0 gives the following differential equation:

$$
\frac{d}{d t} t p_{x, z}^{23}={ }_{t} p_{x, z}^{21} \cdot \mu_{x+t}+{ }_{t}{ }_{x, z}^{\overline{p^{2}}} \cdot \nu_{x+t, z+t}+\int_{u=0}^{t}{ }_{u} p_{x, z}^{21} \cdot \sigma_{x+u \cdot t-u} p_{x+u}^{\overline{22}} \cdot \nu_{x+t, t-u} d u
$$

