Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 6

1. A life office uses the following Markov model for pricing and valuation of joint-life insurances and annuities of all types, sold to two lives (x) and (y).

If a benefit is paid for at outset by means of a single premium, the policy value $V(t)$ is just its expected present value of the benefit at time t. Hence state Thiele's equation(s) for the following benefits.
(a) An assurance of $£ 1$ payable immediately upon the first death of (x) and (y).
(b) An assurance of $£ 1$ payable immediately upon the second death of (x) and (y).
(c) An assurance of $£ 1$ payable immediately upon the death of (x), provided (y) is then still alive.
(d) An assurance of $£ 1$ payable immediately upon the death of (x), provided (y) is then dead.
(e) An annuity payable continuously at rate $£ 1$ per annum, while (x) and (y) are both alive.
(f) An annuity payable continuously at rate $£ 1$ per annum, while at least one of (x) and (y) is still alive.
(g) An annuity payable continuously at rate $£ 1$ per annum to (y), while (y) is alive but provided (x) is dead. .
2. (Excel exercise): The office in Q. 1 uses the following mortality basis:

$$
\begin{aligned}
& \mu_{x+t}^{13}=\mu_{x+t}^{24}=0.0004 \times 1.09^{x+t} \\
& \mu_{y+t}^{12}=\mu_{y+t}^{34}=0.0004 \times 1.09^{y+t}
\end{aligned}
$$

with force of interest $\delta=0.05$ per annum and no expenses.
Using an Euler scheme with step size $h=0.01$ years, find $V^{1}(0)$, if the office sells each of the following contracts to (40) and (35).
(a) A term assurance with sum assured $£ 1$ payable immediately on the first death of (40) and (35), if this occurs within 10 years.
(b) A term assurance with sum assured $£ 1$ payable immediately on the second death of (40) and (35), if this occurs within 10 years.
(c) A contingent assurance with sum assured $£ 1$ payable immediately on the death of (40), if this occurs within 10 years and (35) is still alive.
(d) An annuity payable continuously at rate $£ 1$ per annum while (40) and (35) are alive, but for a maximum term of 10 years.
(e) An annuity payable continuously at rate $£ 1$ per annum while at least one of (40) and (35) is alive, but for a maximum term of 10 years.
(f) A reversionary annuity payable continuously at rate £1 per annum while (40) is alive and (35) is dead, but for a maximum term of 10 years.
3. Calculate the following assuming the mortality of the AM92 table, and describe each expression in words:
(a) $10 p_{30: 40}$
(b) $q_{30: 40}$
(c) $\mu_{40: 50}$
(d) ${ }_{10} p_{[300]:[40]}$
(e) $q_{[30]:[40]}$
(f) $\mu_{[40]:[50]}$
(g) $\mu_{[40]+1:[60]+1}$
(h) ${ }_{3} \mid q_{[30]+1:[40]+1}$
4. Let T_{x} and T_{y} be the independent random future lifetimes of two lives age x and y, and define $T_{\min }=\min \left[T_{x}, T_{y}\right]$ and $T_{\max }=\max \left[T_{x}, T_{y}\right]$.
(a) Derive an expression for the density of $T_{\max }$.
(b) Define $\stackrel{\circ}{e}_{x y}=\mathrm{E}\left[T_{\text {min }}\right]$. Show that:

$$
\stackrel{\circ}{e}_{x y}=\int_{0}^{\infty}{ }_{t} p_{x y} d t
$$

(c) Show that $\operatorname{Cov}\left(T_{\text {min }}, T_{\text {max }}\right)=\left(\stackrel{\circ}{e}_{x}-\stackrel{\circ}{e}_{x y}\right)\left(\stackrel{\circ}{e}_{y}-\stackrel{\circ}{e}_{x y}\right)$
(d) Further let $K_{\min }$ be the integer part of $T_{\min }$ and define $e_{x y}=\mathrm{E}\left[K_{\min }\right]$. Show that
i. $e_{x y}=\sum_{t=1}^{\infty}{ }_{t} p_{x y}$. and
ii. $\stackrel{\circ}{e}_{x y} \approx e_{x y}+\frac{1}{2}$.
(e) Derive an expression for the 'force of mortality' associated with $T_{\text {max }}$, denoted $\mu_{\overline{x: y}}(t)$. What is its value at $t=0$? Explain this result.
5. Given that $l_{x y}=10,000, l_{x+10: y}=9,600$, and $l_{x: y+10}=9,200$ calculate the probability that, of the two independent lives aged x and y, exactly one will survive for 10 years.
6. Show that:
(a) $\ddot{a}_{x y}=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y}$.
(b) $\ddot{a}_{x y: \bar{n} \mid}=\ddot{a}_{x: \bar{n} \mid}+\ddot{a}_{y: \bar{n} \mid}-\ddot{a}_{\overline{x y}: \bar{n} \mid}$.
(c) $A_{\overline{x y}}=A_{x}+A_{y}-A_{x y}$.
7. Derive an expression for the variance of the random variable $v^{K_{\max }+1}$.
8. For a male aged 70 exact and a female aged 67 exact, who are subject to the mortality of the PMA92 and PFA92 tables respectively, with interest of 4% per annum, find:
(a) $\ddot{a}_{70: 67}$
(b) $\ddot{a}_{70: 67}^{(12)}$
(c) $\ddot{a}_{70: 67: \overline{10}}$
(d) $\ddot{a}_{70: 67: \overline{10}}^{(12)}$
(e) $\ddot{a}_{70: 67}$
(f) $\ddot{a} \frac{(12)}{70: 67}$
9. State in words the meanings of the symbols $A_{x y}, A_{\overline{x y}: \bar{n}}$ and $\bar{A}_{x y: \bar{n}}$. Prove that:
(a) $A_{\overline{x y}: \bar{n} \mid}=1-d \ddot{a}_{\overline{x y}: \bar{n} \mid}$
(b) $\bar{A}_{x y: \bar{n} \mid}=1-\delta \bar{a}_{x y: \bar{n} \mid}$.

