Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 2 Solutions

1. (a) The recursive relationship between pure endowment policy values is:

$$
(V(t)+P)(1+i)=p_{x+t} V(t+1)
$$

To prove this, write:
and note that:

$$
A_{x+t: \frac{1}{n-t \mid}}=q_{x+t} v \times 0+p_{x+t} v A_{x+t+1}: \frac{1}{n-t-1}
$$

and:

$$
\ddot{a}_{x+t: \overline{n-t}}=1+p_{x+t} v \ddot{a}_{x+t+1: \overline{n-t-1}}
$$

so:

$$
\begin{aligned}
\left(A_{x+t: \frac{1}{n-t \mid}}-P\left(\ddot{a}_{x+t: \overline{n-t}}-1\right)\right)(1+i) & =p_{x+t} A_{x+t+1: \frac{1}{n-t-1}}-P p_{x+t} \ddot{a}_{x+t+1: \overline{n-t-1}} \\
& =p_{x+t} V(t+1) .
\end{aligned}
$$

(b) The policy value for a level annuity-due payable for life is just \ddot{a}_{x+t}. The recursive relationship between policy values is therefore:

$$
\left(\ddot{a}_{x+t}-1\right)(1+i)=p_{x+t} \cdot \ddot{a}_{x+t+1} .
$$

The statement stands as its own proof.
2. An Excel workbook showing how this example may be laid out can be accessed through the module webpage.
3. (a) Let $(D A)_{x+r: \overline{n-r}}^{1}$ denote the EPV of a decreasing term assurance with initial sum assured of $n-r$. Define $V(t)$ as the policy value just before the payment of the $t^{t h}$ premium and P as the net premium. The policy value at time t, together with the net premium paid at time t, when accumulated at the rate of interest i should produce a value sufficient to provide a sum assured of $n-t$ at the end
of year to the proportion q_{x+t} expected to die during the year, and also to set up a reserve of $V(t+1)$ for the proportion p_{x+t} expected to survive. Therefore:

$$
(V(t)+P)(1+i)=q_{x+t}(n-t)+p_{x+t} V(t+1) .
$$

Proof:

$$
\begin{align*}
V(t)+P & =(D A)_{x+t: \overline{n-t}}^{1}-P \ddot{a}_{x+t: \overline{n-t}}+P \\
& =(D A)_{x+t: n-t \mid}^{1}-P\left(\ddot{a}_{x+t: n-t \mid}-1\right) . \tag{1}
\end{align*}
$$

We note that

$$
(D A)_{x+t: \overline{n-t} \mid}^{1}=q_{x+t} v(n-t)+p_{x+t} v(D A)_{x+t+1: \overline{n-t-1}}^{1},
$$

and

$$
\ddot{a}_{x+t: \overline{n-t} \mid}-1=a_{x+t: \overline{n-t-1}}=v p_{x+t} \ddot{a}_{x+t+1: \overline{n-t-1} \mid} .
$$

Substituting these into equation (1), we can write:

$$
\begin{aligned}
(V(t)+P)(1+i) & =q_{x+t}(n-t)+p_{x+t}\left((D A)_{x+t+1: \overline{n-t-1}}^{1}-P \ddot{a}_{x+t+1: \overline{n-t-1}}\right) \\
& =q_{x+t}(n-t)+p_{x+t} V(t+1)
\end{aligned}
$$

as required.
(b) The reserve can be found directly, or by using the relationship in (a) twice from the boundary condition $V(n)=0$. Either way we need to find the net premium,

$$
P=\frac{(D A)_{x: n}^{1}}{\ddot{a}_{x: n}}
$$

We have $x=30, n=30$, mortality is according to the A1967-70 ultimate table and interest is 4% p.a.

$$
\begin{aligned}
\frac{(D A)_{30: \overline{30}}^{1}}{\ddot{a}_{30: 301}} & =\frac{31 A_{30: \overline{30}}^{1}-(I A)_{30: \overline{30}}^{1}}{\ddot{a}_{30: \overline{30}}}=\frac{31\left(M_{30}-M_{60}\right)-\left(R_{30}-R_{60}-30 M_{60}\right)}{N_{30}-N_{60}} \\
& =\frac{30 M_{30}-R_{31}+R_{61}}{N_{30}-N_{60}}=\frac{30(1981.9552)+21167.520-75245.722}{219735.21-35841.261} \\
& =0.029258 .
\end{aligned}
$$

Using the recursive relationship for the first time with $q_{59}=0.01299373$, we have

$$
(V(29)+0.029258)(1.04)=1 \times 0.01299373+0
$$

so that $V(29)=-0.016764$. Using the recursive relation for the second time with $q_{58}=0.01168566$, we have

$$
(V(28)+0.029258)(1.04)=2 \times 0.01168566+(1-0.01168566)(-0.016764)
$$

so that $V(28)=-0.022716$.
(c) The problem is that the reserve is negative. A level premium has been used to pay for a decreasing risk. This could cause problems if the policyholder lapses the policy since it will leave the insurer with a loss. One way to deal with this problem is to charge a higher level premium payable for a term shorter than the term of the policy so that negative reserves do not arise.
4. (a)

$$
\begin{gathered}
{ }^{6.5} V_{35: 55 \mid} \cdot(1+i)^{0.5}={ }_{0.5} q_{41.5}+{ }_{0.5} p_{41.5} \cdot{ }_{7} V_{35: \overline{25}} \cdot \\
\text { But }{ }_{7} V_{35: \overline{251}}=A_{42: \overline{18}}-P_{35: 25 \mid} \cdot \ddot{a}_{42: \overline{18 \mid}}=0.50121-0.02393(12.969)=0.19081 .
\end{gathered}
$$

Assuming a constant force of mortality between exact ages 41 and 42 , then $\left({ }_{0.5} p_{41.5}\right)^{2}=p_{41}$ giving ${ }_{0.5} p_{41.5}=0.99949$. Therefore

$$
{ }_{6.5} V_{35: 25 \mid}=\frac{(1-0.99949)+0.99949(0.19081)}{(1.04)^{0.5}}=0.18751 .
$$

(b)

$$
\begin{aligned}
& \left({ }_{16} V_{35: \frac{1}{25}}+P_{35: \frac{1}{251}}\right)(1+i)^{0.25}={ }_{0.25} q_{51} \times 0+{ }_{0.25} p_{51} \cdot{ }_{16.25} V_{35: \frac{1}{251}} \quad \text { and } \\
& { }_{16} V_{35:: \frac{1}{251}}=A_{51: 91}-P_{35:: \frac{1}{251}} \cdot \ddot{a}_{51: 91}=A_{51: 91}-\frac{A_{35: 251}}{\ddot{a}_{35: 51}^{251}} \cdot \ddot{a}_{51: 91} \\
& =\frac{D_{60}}{D_{51}}-\frac{\frac{D_{60}}{D_{35}}}{16.027}(7.625)=0.50604 .
\end{aligned}
$$

Assuming a constant force of mortality between exact ages 51 and 52, $\left({ }_{0.25} p_{51}\right)^{4}=p_{51}$ giving ${ }_{0.25} p_{51}=0.9993$. Therefore

$$
{ }_{16.25} V_{35: 25 \mid} \frac{1}{}=\frac{(0.50604+0.02197)(1.04)^{0.25}}{0.9993}=0.53358
$$

(c) We note that the premiums are paid quarterly and the sum assured is paid at the end of year of death or on survival to maturity.

$$
\left({ }_{16.75} V_{35: \overline{25}}^{(4)}+0.25 \times P_{35: 25}^{(4)}\right)(1+i)^{0.25}={ }_{0.25} q_{51.75}+{ }_{0.25} p_{51.75} \cdot{ }_{17} V_{35: 251}^{(4)} .
$$

But

$$
\begin{gathered}
P_{35: 251}^{(4)}=\frac{A_{35: 25}}{\ddot{a}(4)}=\frac{0.38359}{16.027-\frac{3}{8}\left(1-\frac{D_{60}}{D_{35}}\right)}=0.0244 . \\
{ }_{17} V_{35: 251}^{(4)}=A_{52: 81}-(0.0244) \ddot{a}_{52: 81}^{(4)} \\
=0.73424-(0.0244)\left(6.91-\frac{3}{8}\left(1-\frac{D_{60}}{D_{52}}\right)\right)=0.56836
\end{gathered}
$$

Assuming a constant force of mortality between exact ages 51 and 52 , then ${ }_{0.25} p_{51.75}=0.9993$, giving

$$
{ }_{16.75} V_{35: \overline{251}}^{(4)}=\frac{(1-0.9993)+0.9993(0.56836)}{(1.04)^{0.25}}-0.25(0.0244)=0.55701
$$

Also

$$
\left({ }_{16.5} V_{35: \overline{25}}^{(4)}+0.25 \times P_{35: \overline{25}}^{(4)}\right)(1+i)^{0.25}={ }_{0.25} q_{51.5} \cdot v^{0.25}+{ }_{0.25} p_{51.5} \cdot{ }_{16.75} V_{35: 25}^{(4)}
$$

such that
${ }_{16.5} V_{35: \overline{25 \mid}}^{(4)}=\frac{(1-0.9993)(1.04)^{0.25}+0.9993(0.55701)}{(1.04)^{0.25}}-0.25(0.0244)=0.54579$.
5. We have:

$$
(V(t)+179.3)(1.04)=q_{x+t}(1,000+V(t+1))+p_{x+t} V(t+1)=1,000 q_{x+t}+V(t+1) .
$$

Solving backwards $V(4)=784.48, V(3)=577.00$ and $V(2)=377.27$.
6. (a) Thiele's equation is:

$$
\frac{d}{d t} V(t)=V(t) \delta-1+\mu_{x+t} V(t)
$$

Intuitive reasoning: during time $d t$, interest of $V(t) d t$ is earned and annuity benefit of $d t$ is paid out. If the annuitant dies during time $d t$, which happens with probability $\mu_{x+t} d t$ there is no sum assured to pay but the life office keeps the reserve $V(t)$.
For proof, note that the policy value is $V(t)=\bar{a}_{x+t}$ so that $\bar{A}_{x+t}=1-\delta V(t)$ and Thiele's equation above is thus equivalent to Question 2(b) of Tutorial 1. The appropriate boundary condition is $V(n)=0$.
(b) Thiele's equation is:

$$
\frac{d}{d t} V(t)=V(t) \delta+\mu_{x+t} V(t)
$$

Intuitive reasoning: during time $d t$, interest of $V(t) d t$ is earned and no benefit is paid out. If the annuitant dies during time $d t$, which happens with probability $\mu_{x+t} d t$ there is no sum assured to pay but the life office keeps the reserve $V(t)$.
For proof, note that the policy value is $V(t)=A_{x+t: \frac{1}{n}}=e^{-\delta(n-t)}{ }_{n-t} p_{x+t}$. Hence:

$$
\begin{aligned}
\frac{d}{d t} V(t) & =\delta e^{-\delta(n-t)}{ }_{n-t} p_{x+t}+e^{-\delta(n-t)} \frac{d}{d t}\left({ }_{n-t} p_{x+t}\right) \\
& =\delta V(t)+e^{-\delta(n-t)} \frac{d}{d t}\left(\frac{{ }_{n} p_{x}}{{ }_{t} p_{x}}\right) \\
& =V(t) \delta+e^{-\delta(n-t)}{ }_{n} p_{x} \frac{-1}{{ }_{t} p_{x}^{2}}\left(-{ }_{t} p_{x} \mu_{x+t}\right) \\
& =V(t) \delta+e^{-\delta(n-t)}\left(\frac{{ }_{n} p_{x}}{{ }_{t} p_{x}}\right) \mu_{x+t} \\
& =V(t) \delta+\mu_{x+t} V(t) .
\end{aligned}
$$

The appropriate boundary condition is $V(n)=1$.
(c) Thiele's equation is of the form in (a) above during payment of the annuity, and of the form in (b) above during deferral.
The appropriate boundary condition is $V(\omega-x)=0$, where ω is the limiting age of the life table.
7. We have:

$$
\begin{aligned}
\frac{d}{d t} V(t) & =V(t) \delta+P-\mu_{x+t}(10,000+V(t)-V(t)) \\
& =V(t) \delta+P-10,000 \mu_{x+t}
\end{aligned}
$$

The appropriate boundry condition is $V(n)=10,000$.

