Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 6 Solutions

1. In the following, we omit trivial equations of the form $\frac{d}{d t} V^{i}(t)=0$.
(a) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta-\left(\mu_{y+t}^{12}+\mu_{x+t}^{13}\right)\left(1-V^{1}(t)\right)$.
(b) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta-\mu_{y+t}^{12}\left(V^{2}(t)-V^{1}(t)\right)-\mu_{x+t}^{13}\left(V^{3}(t)-V^{1}(t)\right)$
$\frac{d}{d t} V^{2}(t)=V^{2}(t) \delta-\mu_{x+t}^{24}\left(1-V^{2}(t)\right)$
$\frac{d}{d t} V^{3}(t)=V^{3}(t) \delta-\mu_{y+t}^{34}\left(1-V^{3}(t)\right)$.
(c) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta+\mu_{y+t}^{12} V^{1}(t)-\mu_{x+t}^{13}\left(1-V^{1}(t)\right)$.
(d) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta-\mu_{y+t}^{12}\left(V^{2}(t)-V^{1}(t)\right)+\mu_{x+t}^{13} V^{1}(t)$

$$
\frac{d}{d t} V^{2}(t)=V^{2}(t) \delta-\mu_{x+t}^{24}\left(1-V^{2}(t)\right)
$$

(e) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta-1+\left(\mu_{y+t}^{12}+\mu_{x+t}^{13}\right) V^{1}(t)$.
(f) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta-1-\mu_{y+t}^{12}\left(V^{2}(t)-V^{1}(t)\right)-\mu_{x+t}^{13}\left(V^{3}(t)-V^{1}(t)\right)$
$\frac{d}{d t} V^{2}(t)=V^{2}(t) \delta-1+\mu_{x+t}^{24} V^{2}(t)$
$\frac{d}{d t} V^{3}(t)=V^{3}(t) \delta-1+\mu_{y+t}^{34} V^{3}(t)$.
(g) $\frac{d}{d t} V^{1}(t)=V^{1}(t) \delta+\mu_{y+t}^{12} V^{2}(t)-\mu_{x+t}^{13}\left(V^{3}(t)-V^{1}(t)\right)$

$$
\frac{d}{d t} V^{3}(t)=V^{3}(t) \delta-1+\mu_{y+t}^{34} V^{3}(t)
$$

2. A spreadsheet to help with this exercise (tut6_q2.xls) can be downloaded from:
```
www.ma.hw.ac.uk/~}\mathrm{ andrea/f79AF.
```

The easiest approach is to program Thiele's equations with general annuity-type benefits b_{i} and assurance-type benefits $b_{i j}$, each defined in a separate cell, and then find the answers simply by setting each benefit to 0 or 1 . The general equations are:

$$
\begin{aligned}
\frac{d}{d t} V^{1}(t) & =V^{1}(t) \delta-b_{1}+\mu_{y+t}^{12}\left(b_{12}+V^{2}(t)-V^{1}(t)\right)-\mu_{x+t}^{13}\left(b_{13}+V^{3}(t)-V^{1}(t)\right) \\
\frac{d}{d t} V^{2}(t) & =V^{2}(t) \delta-b_{2}+\mu_{x+t}^{24}\left(b_{24}-V^{2}(t)\right) \\
\frac{d}{d t} V^{3}(t) & =V^{3}(t) \delta-b_{3}+\mu_{y+t}^{34}\left(b_{34}-V^{3}(t)\right)
\end{aligned}
$$

The answers (to 6 decimal places) are as follows:
(a) 0.215863
(b) 0.015415
(c) 0.130831
(d) 6.956499
(e) 7.829249
(f) 0.339573 .
3. (a) ${ }_{10} p_{30: 40}$ is the probability that (30) and (40) both survive 10 years: ${ }_{10} p_{30 \cdot 10} p_{40}=$ 0.97853.
(b) $q_{30: 40}$ is the probability that one or both of (30) and (40) die within one year: $1-p_{30: 40}=0.001526$
(c) $\mu_{40: 50}$ multiplied by a small time element $d t$ is interpreted as the probability that (40) or (50) or both die within time dt: $\mu_{40}+\mu_{50}=0.003274$
(d) ${ }_{10} p_{[30]:[40]}$ is as for (a) but on a select basis: ${ }_{10} p_{[30]} \cdot{ }_{10} p_{[40]}=0.97887$
(e) $q_{[30]:[40]}$ is as for (b) but on a select basis: $1-p_{[30]:[40]}=0.001264$
(f) $\mu_{[40]:[50]}$ is as for (c) but on a select basis: $\mu_{[40]}+\mu_{[50]}=0.002293$
(g) $\mu_{[40]+1:[60]+1}$ as for (f) but on select basis for (41) and (61) both with select duration 1: $\mu_{[40]+1:[60]+1}=0.008129$.
(h) ${ }_{3} \mid q_{[30]+1:[40]+1}$ is the probability that one or both of (31) and (41), each with select duration of 1 , will die within one year deferred for three years: ${ }_{3} \mid q_{[30]+1:[40]+1}=$ 0.001976
4. (a) The CDF of $T_{\max }, P\left(T_{\max } \leq t\right)$, denoted ${ }_{t} q_{\overline{x y}}$, can be given as ${ }_{t} q_{x t} q_{y}$. The density is therefore

$$
\begin{aligned}
f_{\overline{x y}}(t) & =\frac{d}{d t}{ }_{t} q_{\overline{x y}}=\frac{d}{d t}{ }_{t} q_{x t} q_{y}=\frac{d}{d t}\left(1-{ }_{t} p_{x}-{ }_{t} p_{y}+{ }_{t} p_{x t} p_{y}\right) \\
& ={ }_{t} p_{x} \mu_{x+t}+{ }_{t} p_{y} \mu_{y+t}-{ }_{t} p_{x t} p_{y}\left(\mu_{x+t}+\mu_{y+t}\right) \\
& ={ }_{t} p_{x} \mu_{x+t}+{ }_{t} p_{y} \mu_{y+t}-{ }_{t} p_{x y} \mu_{x+t: y+t}
\end{aligned}
$$

(b) The density of $T_{\text {min }}$ is ${ }_{t} p_{x y} \mu_{x+t: y+t}$. Therefore its the expected value is given by $\mathrm{E}\left[T_{\text {min }}\right]=\int_{t=0}^{\infty} t \cdot{ }_{t} p_{x y} \mu_{x+t: y+t} d t$. Applying integration by parts, we let $u=t$ such that $\frac{d u}{d t}=1$ and we let $\frac{d v}{d t}={ }_{t} p_{x y} \mu_{x+t: y+t}$ such that $v={ }_{-t} p_{x y}$.

$$
\mathrm{E}\left[T_{\text {min }}\right]=-\left.t \cdot{ }_{t} p_{x y}\right|_{t=0} ^{t=\infty}-\int_{t=0}^{\infty}-_{t} p_{x y} d t=\int_{t=0}^{\infty}{ }_{t} p_{x y} d t
$$

(c)

$$
\begin{aligned}
\operatorname{Cov}\left(T_{\min }, T_{\max }\right) & =\mathrm{E}\left[T_{\min } T_{\max }\right]-\mathrm{E}\left[T_{\text {min }}\right] \cdot \mathrm{E}\left[T_{\max }\right] \\
& =\mathrm{E}\left[T_{x}\right] \cdot \mathrm{E}\left[T_{y}\right]-\stackrel{\circ}{e}_{x y}\left(\stackrel{\circ}{e}_{x}+\stackrel{\circ}{e}_{y}-\stackrel{\circ}{e}_{x y}\right) \\
& =\stackrel{\circ}{e}_{x} \stackrel{\circ}{4}_{y}-\stackrel{\circ}{e}_{x y}\left(\stackrel{\circ}{e}_{x}+\stackrel{\circ}{e}_{y}-\stackrel{\circ}{e}_{x y}\right)=\left(\stackrel{\circ}{e}_{x}-\stackrel{\circ}{e}_{x y}\right)\left(\stackrel{\circ}{e}_{y}-\stackrel{\circ}{e_{x y}}\right) .
\end{aligned}
$$

(d) i. The probability function of $K_{\min }$ is $t \mid q_{x y}$ so that:

$$
\begin{aligned}
\mathrm{E}\left[K_{m i n}\right] & =\sum_{k=0}^{k=\infty} k \cdot{ }_{k} \mid q_{x y}=\sum_{k=0}^{k=\infty} k\left({ }_{k} p_{x y}-{ }_{k+1} p_{x y}\right) \\
& =0\left({ }_{0} p_{x y}-{ }_{1} p_{x y}\right)+1\left({ }_{1} p_{x y}-{ }_{2 p_{x y}}\right)+2\left({ }_{2} p_{x y}-{ }_{3} p_{x y}\right)+\cdots \\
& ={ }_{1} p_{x y}+{ }_{2} p_{x y}+{ }_{3} p_{x y}+\cdots=\sum_{k=1}{ }_{k} p_{x y} .
\end{aligned}
$$

ii.

$$
\begin{aligned}
{ }_{e}{ }_{x y} & =\int_{t=0}^{\infty}{ }_{t} p_{x y} d t=\int_{t=0}^{1}{ }_{t} p_{x y} d t+\int_{t=1}^{2}{ }_{t} p_{x y} d t+\int_{t=2}^{3}{ }_{t}{ }_{x y} d t+\cdots \\
& \approx 0.5\left({ }_{0} p_{x y}+{ }_{1} p_{x y}\right)+0.5\left({ }_{1} p_{x y}+{ }_{2} p_{x y}\right)+0.5\left({ }_{2} p_{x y}+{ }_{3} p_{x y}\right)+\cdots \\
& =0.5+{ }_{1} p_{x y}+{ }_{2} p_{x y}+{ }_{2} p_{x y}+\cdots=0.5+\sum_{k=1}^{k=\infty}{ }_{k} p_{x y}=0.5+e_{x y} .
\end{aligned}
$$

(e) The 'force of mortality' associated with $T_{\max }$ can be defined as

$$
\mu_{\overline{x: y}}(t)=\frac{f_{\overline{x y}}(t)}{1-F_{\overline{x y}}(t)}=\frac{{ }^{t} p_{x} \mu_{x+t}+{ }_{t} p_{y} \mu_{y+t}-{ }_{t} p_{x y} \mu_{x+t: y+t}}{{ }_{t} p_{\bar{x} y}} .
$$

This way of defining a force is valid for any continuous random variable defining the time to a future event. For $t=0$ we have $\mu_{\overline{x: y}}(0)=0$. This may be surprising at first sight. However, considering the multiple-state model, for both lives to die in time $d t$ requires two transitions, which is an event whose probability is $o(d t)$, hence:

$$
\lim _{d t \rightarrow 0} \frac{\mathrm{P}\left[T_{\max } \leq d t \mid T_{\max }>0\right]}{d t}=\lim _{d t \rightarrow 0} \frac{o(d t)}{d t}=0 .
$$

5. We have ${ }_{10} p_{x}=\frac{l_{x+10: y}}{l_{x: y}}=0.96$ and ${ }_{10} p_{y}=\frac{l_{x: y+10}}{l_{x: y}}=0.92$. Therefore the required probability is:

$$
{ }_{10} p_{x}\left(1-{ }_{10} p_{y}\right)+{ }_{10} p_{y}\left(1-{ }_{10} p_{x}\right)=0.1136 .
$$

6. (a) This is the expected value of the random variable $\ddot{a}_{\overline{K_{m i n}+1}}$. Therefore:

$$
\begin{aligned}
\ddot{a}_{x y} & =\sum_{k=0}^{\infty} \ddot{a}_{\overline{k+1} k} \left\lvert\, q_{x y}=\sum_{k=0}^{\infty} \frac{1-v^{k+1}}{d}\left({ }_{k} p_{x y}-{ }_{k+1} p_{x y}\right)\right. \\
& =\frac{1}{d} \sum_{k=0}^{\infty}\left({ }_{k} p_{x y}-{ }_{k+1} p_{x y}-v^{k+1}{ }_{k} p_{x y}+v^{k+1}{ }_{k+1} p_{x y}\right) \\
& =\frac{1}{d}\left(\sum_{k=0}^{\infty}{ }_{k} p_{x y}-\sum_{k=0}^{\infty}{ }_{k+1} p_{x y}-v \sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y}+\sum_{k=0}^{\infty} v^{k+1}{ }_{k+1} p_{x y}\right)
\end{aligned}
$$

But $\sum_{k=0}^{\infty}{ }_{k+1} p_{x y}=\sum_{k=0}^{\infty}{ }_{k} p_{x y}-1$ and $\sum_{k=0}^{\infty} v^{k+1}{ }_{k+1} p_{x y}=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y}-1$. Substituting gives

$$
\ddot{a}_{x y}=\frac{1}{d}\left((1-v) \sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y}\right)=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y} \quad \text { since } \quad d=1-v .
$$

(b) This is the expected value of the random variable $\ddot{a}{\overline{\min \left(K_{m i n}+1, n\right)}}$.

$$
\begin{aligned}
& \ddot{a}_{x y: \bar{n} \mid}=\sum_{k=0}^{n-2} \ddot{a}_{\overline{k+1} \mid} \cdot{ }_{k} \mid q_{x y}+{ }_{n-1} p_{x y} \cdot \ddot{a}_{\bar{n} \mid}=\sum_{k=0}^{n-2} \ddot{a}_{\overline{k+1} \mid}\left[{ }_{k} p_{x y}-{ }_{k+1} p_{x y}\right]+{ }_{n-1} p_{x y} \cdot \ddot{a}_{\bar{n}} \\
& =\sum_{k=0}^{n-2} \ddot{a}_{\overline{k+1}}\left[\left({ }_{k} p_{x}+{ }_{k} p_{y}-{ }_{k} p_{\overline{x y}}\right)-\left({ }_{k+1} p_{x}+{ }_{k+1} p_{y}-{ }_{k+1} p_{\overline{x y}}\right)\right] \\
& +\left({ }_{n-1} p_{x}+{ }_{n-1} p_{y}-{ }_{n-1} p_{\overline{x y}}\right) \cdot \ddot{a}_{\bar{n}} \\
& =\sum_{k=0}^{n-2} \ddot{a}_{\overline{k+1}}\left[\left({ }_{k} p_{x}-{ }_{k+1} p_{x}\right)+\left({ }_{k} p_{y}-{ }_{k+1} p_{y}\right)-\left({ }_{k} p_{\overline{x y}}-{ }_{k+1} p_{\overline{x y}}\right)\right] \\
& +\left({ }_{n-1} p_{x}+{ }_{n-1} p_{y}-{ }_{n-1} p_{\overline{x y}}\right) \cdot \ddot{a}_{\bar{n}} \\
& =\left(\sum_{k=0}^{n-2} \ddot{a}_{\overline{k+1} \mid} \cdot{ }_{k} \mid q_{x}+{ }_{n-1} p_{x} \cdot \ddot{a}_{\bar{n} \mid}\right)+\left(\sum_{k=0}^{n-2} \ddot{a}_{\overline{k+1} \mid} \cdot{ }_{k} \mid q_{y}+{ }_{n-1} p_{y} \cdot \ddot{a}_{\bar{n} \mid}\right) \\
& -\left(\sum_{k=0}^{n} \ddot{a}_{\overline{k+1}} \cdot k \mid q_{\overline{x y}}+{ }_{n-1} p_{\overline{x y}} \cdot \ddot{a}_{\bar{n} \mid}\right)=\ddot{a}_{x: \bar{n} \mid}+\ddot{a}_{y: \overline{n \mid}}-\ddot{a}_{\overline{x y}: n \mid}
\end{aligned}
$$

(c) $A_{\overline{x y}}$ is the expected value of the random variable $v^{K_{\max }+1}$.

$$
\begin{aligned}
A_{\overline{x y}} & =1-d \ddot{a}_{\overline{x y}}=1-d\left(\ddot{a}_{x}+\ddot{a}_{y}-\ddot{a}_{x y}\right) \\
& =\left(1-d \ddot{a}_{x}\right)+\left(1-d \ddot{a}_{y}\right)-\left(1-d \ddot{a}_{x y}\right)=A_{x}+A_{y}-A_{x y} .
\end{aligned}
$$

7. The expected value of the random variable: $v^{K_{\max }+1}$ is

$$
A_{\overline{x y}}=\sum_{k=0}^{\infty} v^{k+1} \cdot{ }_{k} \mid q_{\overline{x y}} \quad \text { where } \quad v=\frac{1}{1+i} .
$$

The variance of $v^{K_{\max }+1}$ is given by:

$$
\begin{aligned}
\operatorname{Var}\left[v^{K_{\max }+1}\right] & =\mathrm{E}\left[\left(v^{K_{\max }+1}\right)^{2}\right]-\left(\mathrm{E}\left[v^{K_{\max }+1}\right]\right)^{2} \\
& =\sum_{k=0}^{\infty}\left(v^{k+1}\right)^{2} \cdot{ }_{k}\left|q_{\overline{x y}}-\left(A_{\overline{x y}}\right)^{2}=\sum_{k=0}^{\infty}\left(v^{2}\right)^{k+1} \cdot{ }_{k}\right| q_{\overline{x y}}-\left(A_{\overline{x y}}\right)^{2}
\end{aligned}
$$

For a rate of interest j we define $V=1 /(1+j)$ and let $V=v^{2}$. This means that $j=i^{2}+2 i$. Substituting in the above we get:

$$
\operatorname{Var}\left[v^{K_{\max }+1}\right]=\sum_{k=0}^{\infty} V^{k+1} \cdot{ }_{k} \mid q_{\overline{x y}}-\left(A_{\overline{x y}}\right)^{2}=A_{\overline{x y}}^{*}-\left(A_{\overline{x y}}\right)^{2}
$$

where the asterisk indicates rate of interest j.
8. (a) $\ddot{a}_{70: 67}=10.233$ (from tables).
(b) $\ddot{a}_{70: 67}^{(12)} \approx \ddot{a}_{70: 67}-0.458=9.775$.
(c) $\ddot{a}_{70: 67: \overline{10}}=\ddot{a}_{70: 67}-v^{10}{ }_{10} p_{70}^{m} \cdot{ }_{10} p_{67}^{f} \cdot \ddot{a}_{80: 77}=7.458$.
(d) $\ddot{a}_{70: 67: 10 \mid}^{(12)}=\left(\ddot{a}_{70: 67}-0.458\right)-v^{10}{ }_{10} p_{70}^{m} \cdot 10 p_{67}^{f} .\left(\ddot{a}_{80: 77}-0.458\right)=7.204$.
(e) $\ddot{a}_{70: 67}=\ddot{a}_{70}^{m}+\ddot{a}_{67}^{f}-\ddot{a}_{70: 67}=15.44$.
(f) $\ddot{a}_{70: 67}^{(12)}=\ddot{a}_{70: 67}-0.458=14.982$.
9. (a) $A_{\overline{x y}: \bar{n}}$ is the EPV of an assurance of 1 payable at the end of the year in which the second of (x) and (y) dies, if that death occurs within n years.

$$
A_{\overline{x y}: n}=\mathrm{E}\left[v^{\min \left[K_{\max }+1, n\right]}\right]=\mathrm{E}\left[1-d \ddot{a}_{\overline{\min }\left[K_{\max }+1, n\right]}\right]=1-d \mathrm{E}\left[\ddot{a}_{\overline{\min \left[K_{\max }+1, n\right]}}\right]=1-d \ddot{a}_{\overline{x y}: n} .
$$

(b) $\bar{A}_{x y: n}$ is the EPV of an assurance of 1 payable immediately upon the first death of (x) or (y), if that death occurs within n years.

$$
\bar{A}_{x y: n}=\mathrm{E}\left[v^{\min \left[T_{\min }, n\right]}\right]=\mathrm{E}\left[1-\delta \bar{a}_{\min \left[T_{\min }, n\right]}\right]=1-\delta \bar{a}_{x y: n} .
$$

