Trends and Differences in Cancer Morbidity and Mortality Risk in England

Ayşe Arık

Heriot-Watt University, Edinburgh
Research Associate

joint work with Erengül Dodd, Andrew Cairns and George Streftaris

under Modelling, Measurement and Management of Longevity and Morbidity Risk research programme funded by the ARC
Outline

1. Aim of the study
2. Data
3. Models for incidence rates
4. Cancer incidence rates
5. Cancer mortality rates
6. Summary
Purpose of the study

The main purpose of the study

1. Identify the trends of the more common cancers at different ages and different regions
2. Modelling of regional cancer morbidity risk by deprivation index over time using a Bayesian framework
3. Identify morbidity inequalities between different regions and deprivation levels
4. Compare cancer incidence rates with cancer death rates
Cancer morbidity risk data groupings

Cancer registration data and cancer cause of death data for England provided by the Office for National Statistics (ONS)

- International Statistical Classification of Diseases (ICD): ICD 10
- Age groups: 0, 1-4, 5-9, …, 95+
- Single years: 2001 - 2016
- The Index of Multiple Deprivation (IMD)
- Regions of England: North East, North West, Yorkshire and the Humber, East Midlands, West Midlands, East, London, South East and South West
- Gender
The Index of Multiple Deprivation

The IMD is a weighted combination of seven indices of deprivation:

- Income (22.5%)
- Employment (22.5%)
- Education (13.5%)
- Health (13.5%)
- Crime (9.3%)
- Barriers to housing and services (9.3%)
- Living environment (9.3%)

<table>
<thead>
<tr>
<th>Deprivation</th>
<th>Level 1</th>
<th>The most deprived group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 10</td>
<td></td>
<td>The least deprived group</td>
</tr>
</tbody>
</table>

...
# Cancer cause of death data groupings

<table>
<thead>
<tr>
<th></th>
<th>Cancer:</th>
<th></th>
<th>Cancer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mouth, gullet, stomach</td>
<td>2</td>
<td>gut, rectum</td>
</tr>
<tr>
<td>3</td>
<td>larynx</td>
<td>4</td>
<td>trachea</td>
</tr>
<tr>
<td>5</td>
<td>lung and bronchus</td>
<td>6</td>
<td>breast</td>
</tr>
<tr>
<td>7</td>
<td>uterus, cervix</td>
<td>8</td>
<td>ovary</td>
</tr>
<tr>
<td>9</td>
<td>prostate</td>
<td>10</td>
<td>other male genital</td>
</tr>
<tr>
<td>11</td>
<td>skin, bones and certain organs</td>
<td></td>
<td>lymphatic</td>
</tr>
</tbody>
</table>

- Age groups: 20-24, 25-29, ..., 85+
- Age-standardisation based on European Standard Population (ESP) 2013
Models for incidence rates

\[ C_{a,t,d,g,r} \sim \text{Poisson}(\theta_{a,t,d,g,r} E_{a,t,d,g,r}) \]

\[ \theta_{a,t,d,g,r} \sim \text{Lognormal}(\mu_{a,t,d,g,r}, \sigma^2) \]

\[ \mu_{a,t,d,g,r} = \beta' X \]

\[ \beta's \sim \text{Normal}(0, 10^4) \]

\[ \sigma^2 \sim \text{Inv.Gamma}(1, 0.001), \]

1. \( C_{a,t,d,g,r} \): number of cancer registrations of a given malignant neoplasm at age a in year t for gender g in deprivation level d and region r of England
2. \( E_{a,t,d,g,r} \): mid-year population estimates
3. \( \theta_{a,t,d,g,r} \): incidence rates of a given malignant neoplasm
4. \( X \): vector of covariates, specifically age, year, deprivation, gender and region, in addition to potential interaction(s)
5. \( \beta \): appropriate coefficients
6. Bayesian variable selection methodology to decide the best model for \( \mu_{a,t,d,g,r} = \beta' X \) based on marginal likelihood & deviance information criterion
**Change points**

1. Allow change point(s) in time trends (and age)
2. The pruned exact linear time (PELT) method is considered for detection of changes

\[
\mu_{a,t,d,g,r} = \beta_0 + \beta_1 \text{ year} + \ldots
\]

may become

\[
\mu_{a,t,d,g,r} = \beta_0 + \beta_{1,1} \text{ year}_{<2006} + \beta_{1,2} \text{ year}_{\geq2007} + \ldots
\]

- E.g. new trend after new screening policy introduced
- or after a certain age
All cancer incidence

\[ \mu_{a,t,d,g,r} = \beta_0 + \beta_{1,a} + \beta_2 t + \beta_3 t^2 + \beta_4 t^3 + \beta_{5,g} + \beta_{6,r} + \beta_{7,d} + \beta_{8,a,g} + \beta_{9,a,d} + \beta_{10,a} t + \beta_{11,g} t + \beta_{12,a,r} + \beta_{13,g,d} + \beta_{14,r} t + \beta_{15,g,r} + \beta_{16,r,d} + \beta_{17,a} t^2 + \beta_{18,a} t^3 + \beta_{19,r} t^2 \]

- age is a categorical variable with \( a = 1, 2, \ldots, 14 \)
- year, denoted by \( t \), is a numerical variable with \( t \in \{2001, \ldots, 2016\} \)
- gender is a categorical variable with \( g = 1, 2 \)
- region is a categorical variable with \( r = 1, \ldots, 9 \)
- deprivation is a categorical variable with \( d = 1, \ldots, 10 \)
Pronounced differences between deprivation deciles
Regional differences ?
Trachea, bronchus and lung cancer incidence: females

\[ \mu_{a,t,g,r} = \beta_0 + \sum_{a=1}^{9} \beta_{1,a} + \beta \cdot t^m \]

\[ a=1, \ldots, 9 \quad m=1, 2 \]

+ gender + region + deprivation + interactions

Age-standardised fitted incidence rates of lung cancer for females in England

- A widening gap between deprivation deciles over time
*Colorectal (bowel) cancer incidence*

- The National Bowel Cancer Screening Programme began in 2006, targeted population between ages 60 and 69
- We have a break point in 2006

\[ \mu_{a,t,g,r} = \beta_0 + \beta_{1,a} + \beta_{,.1}t_1^m + \beta_{,.2}t_2^m \]

\( a=1,\ldots,9 \quad m=1,\ldots,3 \)

+ gender + region + deprivation + interactions

**Table 1:** Bayesian variable selection based on marginal likelihood & DIC for main effects in bowel cancer when age is categorical & year is numerical

<table>
<thead>
<tr>
<th>variable added</th>
<th>marginal lik.</th>
<th>diff of mlik</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 null</td>
<td>-276904.21</td>
<td></td>
<td>553736.35</td>
</tr>
<tr>
<td>2 age</td>
<td>-85942.14</td>
<td>190962.06</td>
<td>171805.90</td>
</tr>
<tr>
<td>3 gender</td>
<td>-74600.86</td>
<td>11341.28</td>
<td>149119.36</td>
</tr>
<tr>
<td>4 region</td>
<td>-74238.50</td>
<td>362.35</td>
<td>148340.49</td>
</tr>
<tr>
<td>5 deprivation</td>
<td>-74120.32</td>
<td>118.18</td>
<td>148043.63</td>
</tr>
<tr>
<td>6 year with break point</td>
<td>-73976.24</td>
<td>119.48</td>
<td>147739.43</td>
</tr>
</tbody>
</table>

**When we consider change points**
In 2010, screening was extended to aged 74

The rates are dropping in the most recent years
Prostate cancer incidence

\[ \mu_{a,t,g,r} = \beta_0 + \beta_{1,a} + \beta_{t^m} + \text{region} \]

\[ a=1,\ldots,9 \quad \text{m}=1,\ldots,4 \]

+ deprivation + interactions

Age-standardised fitted incidence rates of prostate cancer in England

- Less deprivation inequality yet bigger regional inequality
Breast cancer incidence

\[ \mu_{a,t,g,r} = \beta_0 + \begin{bmatrix} \beta_{1,a} \end{bmatrix} + \text{year} + \text{region} \]

\[ a = 1, \ldots, 14 \]

+ deprivation + age:year

Age–standardised fitted incidence rates of breast cancer in England

- An increasing trend in all regions
Variation in the IMD: males

AD\(_{t,r}\) = HR\(_{t,r}\) − LR\(_{t,r}\)

RD\(_{t,r}\) = \(\frac{HR_{t,r} - LR_{t,r}}{LR_{t,r}}\), \(t = 2001, 2016\)

where HR\(_{t,r}\) is the highest rate and LR\(_{t,r}\) is the lowest rate in year t for each region r.
Variation in the IMD: females

The change in RD is the highest in lung cancer for both genders
RD in prostate cancer has declined for all regions apart from London
RD in other cancer types mostly remained unchanged
Pronounced differences between deprivation deciles

A decreasing trend in all regions
Crude lung cancer mortality rates: females

Remarkable differences between deprivation deciles depending on region

Flattened rates for more affluent groups yet an increasing trend for more deprived groups
Crude prostate cancer mortality rates

A slightly decreasing trend with the flattened rates in the most recent years

Less deprivation or regional inequality
Crude breast cancer mortality rates

A decreasing trend in all regions
Less deprivation or regional inequality
Summary

- Deprivation and regional inequalities for all cancer morbidity are widening
- Remarkable deprivation and regional differences in lung cancer rates for both genders
- Deprivation inequality for bowel cancer morbidity rates remained unchanged
- Deprivation inequality for prostate cancer morbidity rates declined apart from London
- Deprivation inequality for breast cancer morbidity rates remained unchanged
- Crude CoD rates suggest inequalities for all cancer and lung cancer but not for prostate and breast cancers

Forthcoming research: Correlating morbidity and mortality datasets
Sources


Thank You!