# Cohort Effects in US Cause-of-Death Mortality Data: The Link to Controllable Risk Factors

#### Andrew J.G. Cairns joint work with Cristian Redondo Lourés

Heriot-Watt University, Edinburgh

HMD Conference, 4 & 6 October 2022







Andrew Cairns

Cohort Effects

# Outline

- Introduction
- Data
- The CBDX model
- CBDX-I: Cohort effects for individual causes of death
- The Common Cohort Effects (CCE-n) model
- Results and discussion





#### Introduction

- Death rates have been improving gradually over the last century (at least until 2020!)
- What will mortality rates be in 2025, 2030, 2050, 2100?
- Understanding past improvements will potentially help us to forecast the future
- Cause of death data might help

- What are the drivers of historical mortality improvements?
  - Medical and public health advances
  - Individual, controllable risk factors: smoking; diet; exercise; ...
  - Access to healthcare
- Cause of death (CoD) data can give us some insights:

Good quality data by cause of death is now available (e.g. HMD, CDC, ONS) CoD  $\times$  single or 5-year age group  $\times$  single year

- Analysis:
  - Often use 5 to 7 CoD groups (e.g. all cancers in one group)
  - But a more granular approach can give more insight into what has happened in the past
- How do we make best use of this data?
- E.g. how can we exploit this data to get better insights into historical trends in all-cause mortality?

- Details: Redondo Lourés and Cairns (2019, 2021)
- US data
- Sources: CDC (deaths); HMD, Current Population Survey (exposures)
- By sex
- By education level: low ( $\leq$  high school graduation); high (> high school)
- Single ages (40-84) (\*)
- Single years (1989-2017) (\*)
- 51 causes of death (contraction of HMD intermediate list)
- (\*) Excluded: the oldest and youngest cohorts (too few observations)
   (\*) Included: cohorts born in 1915-1970
- US analysis here  $\Rightarrow$  what is potentially feasible for other countries e.g. using the HMD causes of death database (causesofdeath.org)

Infontious discosso

1

| 1  | Infectious diseases                   |    |                                  |    |                                    |
|----|---------------------------------------|----|----------------------------------|----|------------------------------------|
| 2  | Cancer: mouth, gullet                 | 3  | Cancer: oesophageal              |    |                                    |
| 4  | Cancer: stomach                       | 5  | Cancer: colon                    | 6  | Cancer: rectum, anus               |
| 7  | Cancer: liver                         | 8  | Cancer: pancreas                 | 9  | Cancer: other digestive system     |
| 10 | Cancer: larynx                        | 11 | Cancer: lung, bronchus, trachea  | 12 | Cancer: skin                       |
| 13 | Cancer: breast                        | 14 | Cancer: cervix                   | 15 | Cancer: uterus                     |
| 16 | Cancer: ovary                         | 17 | Cancer: other female genital     | 18 | Cancer: prostate                   |
| 19 | Cancer: other male genital            | 20 | Cancer: bladder                  | 21 | Cancer: urinary organs             |
| 22 | Cancer: lymphatic etc.                | 23 | Benign tumours                   | 24 | Cancer: other locations            |
| 25 | Blood diseases                        | 26 | Diabetes                         |    |                                    |
| 27 | Vascular dementia                     | 28 | Other mental illness             | 29 | Parkinson's disease                |
| 30 | Alzheimer's                           | 31 | Other diseases of nervous system |    |                                    |
| 32 | Blood pressure + rheumatic fever      | 33 | Ischaemic heart diseases         | 34 | Non-rheumatic valve disorders      |
| 35 | Other heart diseases                  | 36 | Cerebrovascular diseases         | 37 | Circulatory diseases               |
| 38 | Influenza                             | 39 | Pneumonia                        | 40 | Other acute respiratory infections |
| 41 | Chronic Obstructive Pulmonary Disease | 42 | Other respiratory diseases       |    |                                    |
| 43 | Liver cirrhosis                       | 44 | Other liver diseases             | 45 | Other digestive diseases           |
| 46 | Diseases: skin, bone, tissue          | 47 | Diseases: urine, kidney,         |    | -                                  |
| 48 | Suicide                               | 49 | Road/other accidents             | 50 | Accidental Poisonings              |
| 51 | Other causes                          |    |                                  |    |                                    |

Detail  $\Rightarrow$  able to separate causes with and without significant risk factors or inequality

E.g. cancers: some with strong single risk factors; some with multiple risk factors; some with no risk factors

# Significant cohort effects and controllable risk factors

- (Mortality) cohort effect: variation in (sub-) population mortality by time and age has a significant element linked to cohort year of birth
- Potential reasons for a cohort effect include:
  - Variation in prevalence by cohort of controllable risk factors
    - e.g. smoking, poor diet, exercise, alcohol etc.
  - Cohort-related preventative medical interventions: e.g. vaccination against Human Papilloma Virus (HPV)  $\Rightarrow$  impact on cervical cancer
  - Other population-level early-life experiences

Hypothesis:

For a specific cause of death:

- a significant cohort effect ⇒ ??? one or more significant controllable risk factors (or a significant cohort-specific health intervention)
- $\bullet$  bigger cohort effect  $\Rightarrow$   $\ref{eq:second}$  bigger relative risk associated with specific risk factors
- a significant gap between high and low-educated also ⇒ one or more significant controllable or preventable risk factors even if there is no significant cohort effect
- $\bullet$  51 causes of death  $\Rightarrow$  greater insight into individual controllable risk factors
- Cause-of-death cohort effects + controllable risk factors  $\Rightarrow$  insight into all-cause mortality cohort effects

$$\log m(t,x) = \alpha(x) + \underbrace{\sum_{k=1}^{3} \beta_k(x) \kappa_k(t) + \gamma(t-x)}_{\text{CBD-M7 model}}$$

where

$$eta_1(x)=1, \quad eta_2(x)=x-ar x, \quad eta_3(x)=(x-ar x)^2-\sigma_x^2 \quad ( ext{fixed age effects})$$

plus seven identifiability constraints.

# The CBDX-I Model

Model each of the *N<sub>cod</sub>* causes of death, *c*, individually:

$$\log m(\boldsymbol{c},t,x) = \alpha(\boldsymbol{c},x) + \sum_{k=1}^{3} \beta_{k}(x)\kappa_{k}(\boldsymbol{c},t) + \gamma(\boldsymbol{c},t-x)$$

- Same model for each cause:
  - but different parameter estimates
  - general structure including non-parametric  $\alpha(c, x)$  is needed to get a good fit in all years and ages and for all causes of death
- Different models customised would make it harder to identify common features
- 7N<sub>cod</sub> identifiability constraints

# CBDX-I: Selected Cohort Effects, $\gamma(c, y)$ , for low-educated females



• Reported death counts in the legend represent the total for 1989-2017, ages 40-84

- Smoking is the main controllable risk factor for lung and laryngeal cancers, and Chronic Obstructive Pulmonary Disease (COPD)
- Very similar cohort effects
- $\bullet\,$  But low death counts  $\Rightarrow$  significant sampling variation in cancer of the larynx



• Other causes of death with different controllable risk factors have distinctly different cohort effects

(E)

- $\bullet$  Lung cancer, COPD and cancer of larynx  $\Rightarrow$  ??? a common cohort effect
- Other causes of death with links to other controllable risks (e.g. excessive alcohol consumption) also have similar cohort effects and these have a different shape from a smoking cohort effect
- So perhaps we just need a small number of cohort effects that reflect variation in a small number of controllable risk factors
  - $\chi(\text{smoking}, y)$
  - $\chi(\text{alcohol}, y)$
  - $\chi(diet/exercise/obesity, y)$
  - ....
- where y = cohort year of birth
- Be aware: cohort effects for risk factors might be correlated e.g. a tendency by cohort to lead a generally healthy or unhealthy lifestyle

## The CCE-n Model: n Common Cohort Effects

Model the  $N_{cod}$  causes jointly with common cohort effects

$$\log m(c, t, x) = \alpha(c, x) + \sum_{k=1}^{3} \beta_k(x) \kappa_k(c, t) + \sum_{\substack{j=1 \\ \gamma(c, t-x)}}^{n} \delta_j(c) \chi_j(t-x)$$

where  $\chi_1(y), \ldots, \chi_n(y)$  are *n* common cohort effects that apply to each cause of death

and the  $\delta_j(c)$  control the contribution of each common cohort effect,  $\chi_j(y)$ , to the cause-specific cohort effect  $\gamma(c, y)$ 

$$\log m(\boldsymbol{c},t,x) = \alpha(\boldsymbol{c},x) + \sum_{k=1}^{3} \beta_{k}(x) \kappa_{k}(\boldsymbol{c},t) + \sum_{j=1}^{n} \delta_{j}(\boldsymbol{c}) \chi_{j}(t-x)$$

- Motivation: the *n* common cohort effects can be linked to *n* significant, underlying controllable risk factors
  - e.g. smoking
- Each cause of death, c, has scaling factors  $\delta_1(c), \ldots, \delta_n(c)$  attached to the common cohort effects
- Hypothesis

Example:  $\chi_1(y)$  links to cohort smoking prevalence & intensity Then, the size of  $\delta_1(c)$  links to the *relative risk* of smoking for cause of death c.

- If smoking is not a risk factor for CoD c then  $\delta_1(c) = 0$
- ${\scriptstyle \bullet}$  Bigger the relative risk  $\Rightarrow$  bigger  $\delta_1(c)$

# Identifiability constraints

Similar identifiability constraints to the CBDX-I model, but fewer

- 4*n* constraints on the *n* common cohort effects,  $\chi_1(y), \ldots, \chi_n(y)$
- $3N_{cod}$  constraints on the cause-of-death specific period effects,  $\kappa_k(c, t)$

|              | Model:              |            | CBDX-I         |         |            | CCE-3          |          |
|--------------|---------------------|------------|----------------|---------|------------|----------------|----------|
|              |                     | maximum    | effective      |         | maximum    | effective      | increase |
| Group        | $\#$ obs, $N_{obs}$ | log-lik, Î | # params, $ u$ | BIC     | log-lik, Î | # params, $ u$ | in BIC   |
| Males-Low    | 55440               | -205252    | 8910           | -253914 | -206549    | 6003           | +14580   |
| Males-High   | 55440               | -185460    | 8910           | -234123 | -186782    | 6003           | +14555   |
| Females-Low  | 59136               | -209396    | 9504           | -261609 | -210775    | 6390           | +15729   |
| Females-High | 59136               | -185151    | 9504           | -237365 | -186435    | 6390           | +15824   |

- CCE-3 Model fitted to each of the four sub-populations independently
- Bayes Information Criterion:  $BIC = \log \hat{L} 0.5\nu \log N_{obs}$  (so aim to maximise BIC)
- $\bullet$  All four populations: BIC  $\Rightarrow$  CCE-3 is the best model

#### Examples: Low educated females; CDBX-I versus CCE-3



- Good correspondence between CCE-3 and CBDX-I
- But with reduced noise in the estimated cohort effects
- Distinctly different cohort effects are now clearer

#### Discussion I

- The CCE-*n* model fitted to cause of death data avoids a significant amount of overfitting and leads to smoother and more robust estimates of the cohort effects
- The *n* fitted cohort effects give some insight into underlying risk drivers
- The *n* cohort effects can feed into all-cause mortality modelling

- Caution: e.g. smoking as a controllable risk factor
- $\gamma(c, y)$  is not the same as the underlying controllable risk factor
  - Impact depends on the prevalence and intensity of the controllable risk factor (e.g. 50% smoking prevalence: 40/10 heavy/light smokers different from 10/40)
  - Identifiability  $\Rightarrow$  risk-factor(y)  $\sim \gamma(y)$ + cubic(y)
  - Magnitude of  $\gamma(c,y)$  depends on the relative risk linking the risk factor to CoD death rate

# Discussion II

- If treatment of disease/illness is consistent between sub-populations then modelled period and cohort effects ⇒ give insight into relative changes in the underlying behaviour
- The approach might also allow us to decompose cause-specific improvements by controllable risk factors *versus* medical and other advances
- We can also use the model to compare improvements in one CoD versus another one:
  - e.g. lung cancer versus COPD

# Comparison of the key period effect, $\kappa_1(t)$ , for lung cancer and COPD



• Lung versus COPD gap: Consistent picture by male/female and low/high-educated

• Potential inference: Lung cancer treatment has been improving faster than COPD 1.5% to 2.5% per annum faster since 1989

# Comparison of the key period effect, $\kappa_1(t)$ , for lung cancer and COPD



- E.g.  $4 \times$  COPD: Different trajectories also inform us about the relative changes in the prevalence/intensity of the underlying risk factor
- $\bullet$  E.g. Low-educated females +40% versus High-educated males -40%

# Discussion III

- Here: three common cohort effects. But is that the right number?
- Interpreting the common cohort effects,  $\chi_i(y)$ , is potentially challenging e.g. prevalence of controllable risk factors by year of birth might be correlated
- Common cohort effects can help explain cohort effects estimated at the all-cause level

# Discussion IV

- Methodology can be adapted to HMD cause of death data
  - Need to adapt to 5-year age groups Problem: 5-year age groups  $\Rightarrow$  we only observe blocks of 5 cohorts
    - 1989 + ages 70-74  $\Rightarrow$  1915—1919 cohorts
    - 1990 + ages 70-74  $\Rightarrow$  1916—1920 cohorts
    - $1991 + \text{ages } 70\text{-}74 \Rightarrow 1917\text{---}1921 \text{ cohorts } \dots$

Needs some reprogramming of  $1\times 1$  APC models. Either:

- $_{\bullet}$  work with single ages but likelihood function aggregates into 5  $\times$  1;
- e.g. 1989 + ages 70-74  $\Rightarrow$  cohort effect=  $\gamma(1917)$
- or e.g. 1989 + ages 70-74  $\Rightarrow$  cohort effect  $\frac{1}{5} \sum_{y=1915}^{1919} \gamma(y)$

Robustness experiment: group our US data into 5-year age bands and compare with single-age results

• How to handle smaller populations? Potentially merge some smaller causes of death into coherent groups by controllable risk factors Robustness experiment: group US causes of death in the same way and compare results with 51-CoD results

# Summary

- Work in progress
- We propose the Common Cohort Effect model as a way to link cohort effects for different causes of death to underlying controllable risk factors
- US data: Three common cohort effects were found to be very effective
- Potential to add insight into the contribution of different causes to all-cause mortality improvements
- Potential to provide insight into the effect of specific controllable risk factors at the all-cause level
- E: A.J.G.Cairns@hw.ac.uk
- W: www.macs.hw.ac.uk/~andrewc/ARCresources



