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Abstract

We compare results for twelve multi-population mortality models fitted to ten distinct
socio-economic groups in England, subdivided using the Index of Multiple Deprivation.
Using the Bayes Information Criterion to compare models, we find that a special case of
the Common Age Effect (CAE) model fits best in a variety of situations, achieving the best
balance between goodness of fit and parsimony.

We provide a detailed discussion of key models to highlight which features are important.
Group-specific period effects are found to be more important than group-specific age effects,
and non-parametric age effects deliver significantly better than parametric (e.g. linear) age
effects. We also find that the addition of cohort effects is beneficial in some cases but not
all. The preferred CAE model has the additional benefit of being coherent in the sense of
Hyndman et al. (2013); some of the other models considered are not.

Keywords: Multi-population mortality models, Deprivation, Mortality inequality, Socio-
economic models

1 Introduction

It is well-known that socio-economic inequalities in death rates and life expectancies exist in
many countries. Those inequalities have been documented in the literature, see for example,
Mackenbach et al. (1997) and Balia & Jones (2008). From an actuarial point of view it is
important to take those differences into account for the pricing of annuities or life insurance
products, and this is best achieved by considering stochastic mortality models that aim to
capture the dynamics of death rates in different socio-economic groups while also allowing
for common features that are shared by all.

In this paper we consider socio-economic groups defined with reference to the Index
of Multiple Deprivation (IMD) in England. This index measures relative deprivation and
allows us to identify ten groups. A brief empirical study of those ten groups can be found
in Kleinow et al. (2019).

The main question we aim to answer in this paper is what model should be fitted to
the group-specific data keeping in mind that all groups are sub-populations of the English
national population, which suggests that they might share some common characteristics.
Therefore, we are looking for a stochastic mortality model for multiple populations that
allows us to capture common features as well as group specific factors.

Many stochastic multi-population models for mortality have been proposed in the lit-
erature. The most well-known model is that suggested by Li & Lee (2005). Their model
is an extension of the Lee-Carter model, Lee & Carter (1992), that combines common age
and time trends affecting all populations with population-specific components to allow for
derivations from the common mortality table. An alternative is the common age effect model
(CAE) suggested by Kleinow (2015). This model is also a modification of the Lee-Carter
model. But, in contrast to the Li & Lee model, the CAE model treats all or some age effects
as common while allowing for population specific period effects.

Some models that were originally developed for a single population can easily be adapted
to multiple populations by allowing for some parameters to be common to all of them. One
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example is the model proposed by Plat (2009) which is one of the models that we adapt to
fit multiple populations.

To be more specific, the contribution of this paper is a quantitative comparison of a
number of stochastic multi-population models fitted to the mortality experiences in ten
socio-economic groups in England. We introduce the different models and first compare
them using the Bayesian Information Criterion. We then take a closer look at the best
preforming models discussing the parameter estimates obtained for those models with a focus
on identifying those parameters that capture the differences between groups and parameters
that are common to all groups.

We also compare the fitted model-specific death rates with those actually observed in the
ten groups to get a better idea of the advantages and shortcomings of the different models.
While we will mostly focus on data for the female population, we find that models with
cohort effects perform well for the male population and we therefore investigate those in
more detail for both sexes.

While we concentrate in this paper on quantitative measures and goodness of fit for
model selection, we should mention that other model properties, often called qualitative
criteria, are also important to consider when models are chosen for a particular application.
For example, models that result in perfect correlation between mortality improvements in
different groups are not a good choice as they ignore group-specific trends. There are, of
course, a number of other considerations, see for example, Villegas et al. (2017) and Cairns
et al. (2018), and we will mention some of those when we discuss individual models. However,
the focus of this paper is on quantitative criteria.

The remainder of the paper is organised as follows. We first describe the available data
and discuss some empirical findings in section 2. In section 3 we then introduce the set of
mortality models which we fit to the available data, and we then provide a first quantitative
comparison of models in terms of their BIC in section 4. Parameter estimates for the some
selected models are presented in section 5 and the fitted death rates implied by different
models are discussed in section 6. In this section we find that some models might benefit
from the inclusion of a cohort effect which we investigate in section 7. Finally, we summarise
our main conclusions in section 8.

2 The Data

The data for our study consist of sex-specific deaths counts and exposures for ten socio-
economic groups in England. The groups are determined by the Index of Multiple Depriva-
tion (IMD) published by the UK Office for National Statistics. In the following we provide
a brief description of the IMD and the related mortality data.

2.1 Index of Multiple Deprivation

The ONS measures different aspects of deprivation in small geographic areas in England,
called Lower Layer Super Output Areas (LSOA). All LSOAs are of similar population size
dividing the entire population into 32,844 small groups. The IMD is then calculated for
each LSOA as a weighted average of seven indices measuring different aspects of depriva-
tion: income (weight 22.5%), employment (22.5%), education (13.5%), crime (9.3%), health
(13.5%), barriers to housing and services (9.3%), and living environment (9.3%). Each
of those seven indices is based on a basket of indicators from the most recently available
statistics. The IMD score for an individual LSOA represents a measure for the relative
deprivation of the population living in that LSOA compared to other LSOAs. The LSOAs
are then ranked according to their IMD score from the most deprived to the least deprived
area in England and ten deciles are formed. Detailed information about the IMD can be
found in Smith et al. (2015a) and Smith et al. (2015b) where the construction of the index
is explained in detail.

2.2 Mortality Data and Notation

The ONS has published sex-specific population sizes, denoted by Exti, and deaths counts,
Dxti, for each IMD decile i, age x and year t for ages 0 to 89 (and 90+ as one group) and
calendar years 2001 to 2017, see the ONS data portal on their website1.

1The mortality data can be sourced at ONS website https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsand
marriages/deaths/adhocs/009299numberofdeathsandpopulationsindeprivationdecileareasbysexandsingleyearofageenglandandwales
registeredyears2001to2017, accessed on 24 June 2019.
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Population sizes in 2017 are shown in Table 1. The total populations (over all ages) in
the different deciles are of similar size, although they are smaller in the more deprived areas
than in the less deprived. Although the numbers of LSOAs in each decile are the same.
differences arise in Table 1 because (a) the individual LSOAs vary in size, (b) less deprived
LSOAs tend to be larger and (c) more deprived LSOAs tend to have a greater proportion
of the population aged less than 40.

Group IMD males IMD females
g1 (most deprived) 1,094,182 1,142,736

g2 1,138,784 1,213,750
g3 1,198,198 1,269,708
g4 1,274,284 1,348,478
g5 1,334,111 1,424,273
g6 1,392,196 1,490,977
g7 1,414,449 1,519,678
g8 1,420,182 1,530,570
g9 1,435,837 1,553,131

g10 (least deprived) 1,439,358 1,562,401

Table 1: Total population size
∑

xExti in individual deciles i by sex for ages 40 to 89 in the year
2017.

2.3 Mortality in the Ten Groups

Before turning to mortality models we briefly discuss some empirical features of the mortality
expierences in the ten socio-economic groups. In figure 1 we plot the crude death rates
Dxti/Exti by age for the year 2015, and the rates at age 65 by year. We find that both,
males and females, have very similar mortality pattern at age 65 and in 2015. The death rates
in the most deprived areas are very high compared to the least deprived. In fact, there seems
to be an almost perfect ranking of death rates with respect to the deprivation deciles. The
differences between groups seem to be more pronounced in the male populations, especially
at younger ages. For both sexes those differences decrease with age. We also observe that
mortality improvements have been smaller for the most deprived groups compared to the
strong improvements experienced by the least deprived.
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Figure 1: Crude death rates (log-scale) in 2017 (left) and at age 65 (right) for males (top row)
and females.

To compare mortality in different populations over a wider age range we standardise
death rates to compensate for differences in the demographic structures of the populations.
To this end we calculate an age standardised mortality rate (ASMR) which is a weighted
average of the crude death rates over a defined age range. The ASMR for group i in calendar
year t for specific ages X is defined as:

ASMR(ti) =
∑
x∈X

Dxti

Exti
wx with weights wx =

Es
x∑

x∈X E
s
x

where the weights are determined by the age-specific exposures, Es
x, in some standard pop-

ulation. For our empirical results, we use the European Standard Population (ESP) in 2013
and the age range X = {40, . . . , 89} (Revision of the European Standard Population, 2013
Edition)2.

In Figure 2 we plot the ASMRs for the available calendar years for both sexes.

2Report is available at: https://ec.europa.eu/eurostat/documents/3859598/5926869/KS-RA-13-028-
EN.PDF/e713fa79-1add-44e8-b23d-5e8fa09b3f8f, downloaded 24 June 2019
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Figure 2: Group-specific ASMRs based on ages 40 to 89 for the ten IMD deciles, males (left)
and females (right). The weighting is based on the European Standard Population recalibrated
in 2013.

We find in Figure 2 that the ASMRs are clearly ranked with respect to the level of
deprivation for both sexes. The rates decrease steadily over time for all groups until 2011,
after which there appears a slow down of mortality improvements, a feature which was not
so obvious in the crude death rates in Figure 1.

2.4 The IMD as an indicator of Mortality

Since the focus of this paper is on a quantitative comparison of mortality models for different
socio-economic groups we should make some comments about the suitability of the IMD as
a means to identify different groups, in particular, with a view towards mortality modelling.
After all, the index was not specifically created for identifying groups which experience
different mortality patterns.

In fact there are a few issues with the IMD in that respect. First of all, one of the
components in the IMD is related to health. In the research report by Smith et al. (2015a)
it is explained that the health domain score is constructed by several indicators including
comparative illness measure, morbidity rate and illness and disability ratio among others.
These indicators are very relevant to the death rates in a population, and their inclusion
in the IMD is likely to have an impact on our results. However, we would argue that the
impact is relatively small. Most importantly, there is a high correlation between individual
components of the IMD. Specifically the correlation between health and income deprivation
is 0.83 and between health and employment deprivation 0.88. So income and employment
deprivation would act as effective proxies if health deprivation was excluded from the IMD.

The IMD deciles are derived from the ranks of the LSOAs rather than the index values.
The ranks clearly do not capture the actual differences between deprivation in different
LSOAs. Instead, they only show that one LSOA is more or less deprived than another but
not by how much.

While the ten deciles are constructed such that each decile contains an equal number
of LSOAs, the population sizes are different as shown in Table 1. This will have an effect
on parameter uncertainty but we would expect that effect to be rather small, since the
population sizes are similar.

The IMD measures deprivation rather than affluence. While the two concepts are related,
it is important to keep this in mind when considering our empirical results. A good example
for illustrating this issue is income deprivation. The income deprivation score is constructed
from data on low-income state benefits, meaning that two LSOAs with a similar number of
people receiving similar amounts of income benefits will have a similar rank with respect to
the income deprivation score. On the other hand, the average income in those two LSOAs
might be very different as this is determined by the differences in income of those people
who receive high incomes and therefore, no or little income benefits.

All of the issues mentioned here suggest that a more detailed analysis of individual
aspects of deprivation might be more suitable for the identification of socio-economic groups.
However, the strong differences between deciles with respect to mortality suggest that the
IMD is well suited to improve mortality models.
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m1 logmxti = αxi + β1
xiκ

1
ti + β2

xiκ
2
ti (Renshaw & Haberman (2003))

m2 logmxti = αxi + β1
xiκ

1
ti + β2

xκ
2
ti (m1 with common β2

x)
m3 logmxti = αxi + β1

xκ
1
t + β2

xiκ
2
ti (Li & Lee (2005))

m4 logmxti = αxi + β1
xiκ

1
ti (Lee & Carter (1992))

m5 logmxti = αxi + β1
xκ

1
ti + β2

xκ
2
ti (Kleinow (2015))

m6 logmxti = αx + β1
xκ

1
ti + β2

xκ
2
ti (m5 with common αx)

m7 logmxti = αxi + κ1ti + (x− x̄)κ2ti (Plat (2009))
m8 logmxti = αx + κ1ti + (x− x̄)κ2ti (m7 with common αx)
m9 logmxti = αxi + κ1t + (x− x̄)κ2ti (m7 with common κ1t )

m10 logmxti = αxi + κ1ti + (x− x̄)κ2t (m7 with common κ2t )
m11 logmxti = αxi + κ1t + (x− x̄)κ2t (m7 with common κ1t and κ2t )
m12 logmxti = κ1ti + (x− x̄)κ2ti (Cairns et al. (2006))

Table 2: List of models considered in this study.

3 Multi-Population Mortality Models

The focus of this study is on comparing multi-population stochastic mortality models with
respect to their ability to fit the mortality experiences in the ten IMD deciles simultaneously.
In this section we look at twelve models with different parametric structures and analyse
the results. All models are fitted to data for females and males. They all have an ’Age-
Period-Cohort’ (APC) structure.

3.1 Basic Modelling Assumptions and Estimation

We assume that the number of deaths Dxti at age x, in year t and for IMD decile i has a
Poisson distribution,

Dxti ∼ Pois (mxtiExti) ,

with intensity parameter mxtiExti where mxti is the death rate, and Exti denotes the expo-
sure at risk, that is, the mid-year population estimate as introduced earlier.

In the following, the death rate mxti will be assumed to follow a parametric model and
we use maximum likelihood estimation to estimate its unknown parameters. It is well-known
that identifiability problems exist in all of the specific models for mxti which we consider in
our study. We, therefore, impose constraints on the parameters to obtain unique parameter
estimates. As this is a common topic in the literature on stochastic mortality models we do
not provide details on the constraints. Instead, we refer the reader to the relevant literature,
in particular, the references given in Table 2 where the specific models are introduced.

3.2 Model specification

All considered models are for the log death rates, logmxti. They are listed in Table 2 where
they are roughly ordered according to their complexity with model m1 being the model with
the most parameters. All other models can be derived from m1 by imposing restrictions on
some of the parameters.

The unknown parameters α, β and κ capture age and period effects. The parameter α
acts as the ’baseline’ age pattern of mortality while κ describes the period effect. Finally, β
rescales this period effect to obtain different mortality improvements at different ages.

3.3 Relationships between models

As mentioned above, model m1 is the most complex in the sense that it has the largest
number of parameters. All other models are nested in m1, and some are also nested in
others. Figure 3 shows the model hierarchy with arrows pointing from the nested model to
the more complex model.
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Figure 3: Tree plot specifying nested models (arrows are pointing to the more detailed model)

Figure 3 shows the distinction between two families of models at high level: Lee-Carter-
type models with nonparametric effects β on the left hand side, and Cairns-Blake-Dowd-type
models on the right hand side where the age effects β are either constant or linear in age x
but the parameter α is chosen to be nonparametric as suggested by Plat (2009).

4 Quantitative Comparison of Models

To compare the different models we first consider two quantitative criteria: the Bayesian
Information Criterion and the explanation ratio.

4.1 Model ranking with respect to the BIC

For an initial ranking we fit the twelve models to female and male data separately and
calculate the BIC values. The BIC is defined as

BIC = k log(n)− 2 log(L̂)

where k represents the degrees of freedom, which is the number of parameters reduced by
the number of constraints required for the model. The sample size n is calculated as the
product of the number of ages, years and groups. Finally, log(L̂) denotes the log likelihood
function. Due to the way the BIC is defined here, lower BIC values indicate a better fit of
the model.

females males

Model k log(L̂) BIC log(L̂) BIC
m1 1800 -34398.54 85083.16 -35634.78 87555.64
m2 1359 -34652.44 81600.86 -35900.31 84096.61
m3 1215 -34848.27 80689.64 -36065.10 83123.31
m4 1150 -35083.25 80571.50 -36293.44 82991.87
m5 918 -35058.84 78423.59 -36242.45 80790.81
m6 486 -35336.06 75069.36 -36702.57 77802.39
m7 820 -35653.80 78726.80 -37422.19 82263.59
m8 388 -37375.07 78260.70 -38213.32 79937.20
m9 676 -36104.58 78325.48 -37821.39 81759.10
m10 676 -35746.95 77610.23 -37491.71 81099.75
m11 532 -36760.83 78335.10 -38171.44 81156.32
m12 340 -46822.86 96721.99 -41385.10 85846.45

Table 3: BIC and log likelihood values for all models fitted to IMD deciles for ages 40 to 89. The
degrees of freedom are denoted by k.
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In general, Table 3 shows that models with more parameters tend to have higher log-
likelihood values, but they are then penalised for over-parametrization in the BIC calcula-
tion. For females and males, Model m6 (the CAE model with common αx) turns out to
be the preferred model in the sense that it has the lowest BIC value, and therefore, seems
to strike a good balance between goodness of fit and number of parameters. Model m8,
which imposes a specific form on the parameters β1 and β2, is the second-best model in our
collection. The feature that both models share, is that the baseline age factor α is common
to all groups.

Considering the results in Table 3 for some of the other models, we notice that switching
from group-specific αxi in model m5 to common αx (m6) does not deteriorate the log-
likelihood too much, and as there are less parameters after the change, the BIC is improved
significantly from m5 to m6. A similar effect is observed when comparing models m7 and
m8. This indicates that the different socio-economic groups have a very similar basic age
structure.

Comparing the BIC values in Table 3 for models m6 and m7 shows that the assumptions
β1 = 1 and β2 = x− x̄ are not justified for the data set that we consider here. The number
of parameters in model m7 is actually greater than the number of parameters for model m6.
Nevertheless, even the log likelihood value of m6 is better than that of m7.

Models m7 and m8 explicitly assume that annual changes in log death rates are linear in
age. It is well-known that this is assumption is justified for relatively old ages, but not for
younger ages. To investigate the impact of the chosen age range on our results in Table 3
we repeat our analysis for the age range 65-89, see Table 4. In that table we find that model
m6 still provides a better fit than model m8 (although the gap is smaller), which is a further
indication that the assumption of linear improvements (in age) log death rates does not
seem to be justified for our data set.

females males

Model k log(L̂) BIC log(L̂) BIC
m1 1050 -19284.74 47341.88 -19570.98 47914.38
m2 834 -19424.59 45816.98 -19700.23 46368.27
m3 690 -19596.88 44958.48 -19853.85 45472.42
m4 650 -19773.19 44976.91 -20051.25 45533.04
m5 618 -19663.73 44490.65 -19898.83 44960.84
m6 411 -19817.36 43068.49 -20179.78 43793.34
m7 570 -19964.27 44690.70 -20407.43 45577.02
m8 363 -20194.42 43421.58 -20546.68 44126.10
m9 426 -20764.87 45088.84 -21090.39 45739.86
m10 426 -20051.93 43662.95 -20482.63 44524.35
m11 282 -21015.19 44386.39 -21180.54 44717.09
m12 340 -20858.08 44556.74 -20704.75 44250.09

Table 4: BIC and log likelihood values for all models fitted to IMD deciles for ages 65 to 89. The
degrees of freedom are denoted by k.

4.2 Explanation ratio

We are also interested in how much of the information contained in empirical deaths rates,
Dxti/Exti, is explained by our models. To this end we consider the explanation ratios for
our ten socio-economic groups following the definition by Li and Lee (2005):

Ri = 1−

∑
xt

(
log Dxti

Exti
− log m̂xti

)2
∑

xt

(
log Dxti

Exti
− αc

xi

)2
where log m̂xti denotes the fitted log death rate for a specific model in table 2 but with
the unknown parameters replaced by their maximum likelihood estimates. The baseline age
factor αc

xi in the denominator is defined as the average over time of the log death rates at
certain ages and groups:

αc
xi =

1

nY

∑
t

log
Dxti

Exti
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where nY is the total number of years; for our data we have nY = 17. The explanation ratio
Ri describes the percentage of observed mortality variation in group i that can be explained
by a model.

In Table 5 we show the obtained values for Ri for some of our models. In general, the
explanation ratios are maybe smaller than we would expect from a large population like
England & Wales. However, we should keep in mind that an individual IMD devile has
a much smaller population size, and the uncertainty about parameter estimates and fitted
death rates is correspondingly high, see for example Enchev et al. (2015).

Group Rm1 Rm3 Rm5 Rm6 Rm7 Rm8

1 0.81 0.77 0.77 0.75 0.70 0.56
2 0.78 0.74 0.74 0.71 0.70 0.58
3 0.78 0.75 0.74 0.72 0.68 0.64
4 0.79 0.77 0.75 0.73 0.69 0.68
5 0.76 0.74 0.72 0.69 0.65 0.61
6 0.82 0.79 0.76 0.75 0.71 0.65
7 0.74 0.74 0.69 0.67 0.63 0.55
8 0.75 0.72 0.69 0.68 0.63 0.58
9 0.77 0.71 0.68 0.66 0.61 0.52
10 0.78 0.75 0.73 0.69 0.71 0.63

Table 5: Explanation ratios Ri for all groups and some models.

We also clearly observe in Table 5 that models with more parameters tend to have higher
explanation ratios. In particular, we find that the two models with the best BIC values and
relatively few parameters, m6 and m8, have rather low explanation ratios with model m6
dominating model m8.

5 Estimated Parameters

We will now turn to comparing our models with respect to qualitative aspects. In particular,
we are interested in how the estimated parameter values compare to those estimated from
our baseline model m1. Therefore, we start with a short discussion of m1 and then provide
estimates and discussions for some of the other models where we concentrate on those that
provide a good fit to our data in the sense of a low BIC value, see Table 3.

5.1 Our Baseline Model - m1

As mentioned above, our model m1 was proposed by Renshaw and Haberman (2003) as
an extension to the Lee-Carter model for the mortality experience in a single population.
Therefore, all parameters in this model are group specific, see Table 2. Using this model
would implicitly assume that mortality patterns are very different between groups in both,
ages and years. We consider the model here as a baseline, and we will compare the estimated
age and period effects in other models with those obtained for model m1.

As there are some identifiability issues with this model, we need to impose constraints
to obtain a unique solution when maximising the likelihood function. We have chosen to
apply the following set of constraints for each group i:∑

x

(β1
xi)

2 = 1,
∑
x

(β2
xi)

2 = 1, κ1
0i = 0,

∑
t

κ2
ti = 0.

Figure 4 shows the estimated parameters.
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Figure 4: Estimated parameters for model m1 (female population).

We observe in Figure 4 that the estimated values of αxi as the overall age pattern confirm
our earlier observations that clear differences exist between socio-economic groups and that
those differences are decreasing with age. This seems to indicate that it would be reasonable
to choose α as a group-specific parameter, that is, a different basic age pattern for all IMD
deciles. However, we should keep in mind that α is not identifiable in this model and that our
results in Table 3 clearly point towards the opposite conclusion. When considering models
m6 and m8 we will see how other parameters pick up the age-related differences between
groups when α is common to all groups.

The parameter κ1
ti is the leading period effect. It clearly shows a downward trend indi-

cating longevity improvements during the observation period 2001-2017 for all IMD deciles.
However, we notice the kink appearing in 2011 at which the downward slope of κ1

ti becomes
less steep. This corresponds to the well-documented slow-down of longevity improvements
since 2011, which we here observe for all groups. Figure 4 also reveals that the mortality
improvement rates are very different between groups with the least deprived experiencing
the strongest improvements. We should mention here that the slope of κ1 is only identifiable
up to a group-specific constant. However, we have chosen our constraint on β1 such that
the parameters β1 are on a similar level for all groups. This means that the different slopes
of κ1 can only be explained by mortality improvement rates that are different for different
IMD deciles. This would make it unlikely that κ1 can be chosen to be common to all groups,
which is consistent with our results in Table 3 where we show that the BIC of model m3 is
less good than many of the others.

We also observe that there is much variability in β1
xi for ages up to about sixty, but that

there seems to be a pattern for older ages. In particular, we find that β1 increases from
age sixty to a maximum value at around age 75, and then decreases. This indicates that
at age 75 we observe the greatest mortality improvements. The age at which we observe
maximum improvements seems to be similar in all groups. Also, more generally, it seems that
the parameters β1 and β2 are similar across groups with non-systematic differences between
them. This would suggest that those parameters can indeed by modelled as common without
loosing too much quality of fit.

Finally, both κ2
ti and β2

xi are rather noisy and without any regular pattern, as they absorb
second order effects which are not covered by the other parameters.

5.2 The Best Fitting Model m6 - Common Age Effects

As mentioned earlier, the models that fit our data best are the two models that have no
group-specific age effects: m6 and m8 with m6 providing the better fit. The model m6 is a
modification of the CAE model m5, proposed by Kleinow (2015). To investigate the effect
of choosing common age effects rather than groups specific effects we compare the estimates
of the age effects, α, β1 and β2 of the two models (m5 and m6) with each other and with
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those obtained for our baseline model m1.
The original CAE model m5 suggests that age-related mortality improvements over time

are the same across all groups while the basic age structure captured by αxi are group
specific. In contrast, in model m6 even that basic age structure is not specific to the socio-
economic group. This might be surprising given the big differences between the αxi in Figure
4. To investigate this further we show the estimated values of the parameters α in Figure 5.
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Figure 5: MLE estimates of the parameters in models m5 and m6. The dashed line in the plot
of α is for m6. The dotted lines in the plots of β1 and β2 represent the estimated parameters in
model m1 for comparison.

We find in Figure 5 that the slope of the estimated αx in model m6 (the dashed line) is
roughly equal to the average slope of the group specific age effects αxi for model m5, which
look very similar to those estimated in m1, see Figure 4.

Comparing the time effects we find that the differences between groups are clearly picked
up by the period effects κ1 in model m6. The differences between those period effects
together with the common age effect β1 in m6 would only result in a parallel shift of death
rates from one group to another. The observed convergence of rates for high ages (Figures
1 and 4) is captured by the parameters β2 and κ2 in m6. While those two parameters
only capture second order effects in models m1 and m5, we find that the common basic age
structure α in model m6 gives β2 and κ2 a stronger meaning. This change of interpretation
of β1 and β2 explains why they are rather different across the three models.

In Figure 5 we have also shown graphs of the estimates for β1 and β2 in model m1 to
compare them with our estimates in the CAE models m5 and m6. We clearly see that the
estimates for those parameters in m5 follow the same general pattern as the estimates in
m1. Of course, β1 and β2 are only uniquely identifiable in m1 and m5 up to a constant
factor, but we have chosen the identifiability constraints for the two models such that they
are on the same scale.
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5.3 Models m7 and m8 - Constant and Linear Age Effects

One way of further reducing the number of parameters in the CAE models m5 and m6 is
imposing a parametric structure on the common age effects β1 and β2. This is our motivation
for considering models m7 and m8. The model m7 was suggested by Plat (2009) as a model
for an individual population, so with a group-specific parameter αxi. The model can be
considered as an extension to the CBD model (Cairns et al. (2006)) with an extra ’baseline’
αxi, or a simplification of the CAE model m5 with β1

xi = 1 and β2
xi = x− x̄ for all groups i.

Comparing the BIC values for m6 and m8 (or m5 and m7) in Tables 3 and 4 we find
that the goodness of fit is reduced by introducing the constant and linear structure for the
age effects. On the other hand, when comparing the quality of fit of m7 and m8, we find
again that choosing the basic age structure α to be common to all IMD deciles is improving
the BIC.
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Figure 6: MLE estimates of the parameters in models m7 and m8. The dashed line in the plot
for α is for m8.

Figure 6 shows the obtained parameter estimates. Our conclusions are similar to those
drawn when we compared models m5 and m6: it is clearly so that the differences in death
rates between groups are captured by α, but if that parameter is chosen to be common to all
groups, the parameters κ1 and κ2 take over as the factors that distinguish the death rates
in different groups from each other.

Interestingly, we observe an almost perfect ranking of κ1 in model m8 (and m6) with the
lowest level of mortality in the least deprived group of the population. For κ2 in m8 this
ranking is the other way around indicating that the slope of the Gombertz-line is steepest
for the least deprived groups. This observation is consistent with our findings in Figure 1
that mortality differences between socio-economic groups are greatest at young ages with
the least deprived having the lowest rates, but that those differences are very small at old
ages, meaning that the age-related increase in mortality is strongest for the least deprived.

12



5.4 Model m3 - Common Time Effect

While we have found in tables 3 and 4 that common age effects seem to improve the BIC
of the considered models, this is not found for a common period effect κ1 as in model m3.
This model was first proposed by Li and Lee (2005) as a model which captures the common
trend in a number of populations and combines that common trend with population-specific
factors β2 and κ2.
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Figure 7: MLE estimates of the parameters in model m3. The dotted lines in the plots of β1

and κ1 represent the estimated parameters in model m1 for comparison. The plot for β1 also
includes the estimates for model m5.

We show the estimated parameter values in Figure 7 and find that the common period
effect picks up general development of death rates over time across all groups. However,
there are of course differences between groups that we discussed earlier. In particular, there
are differences in the mortality improvement rates in the different groups and a common
time trend κ1 together with a common parameter β1 is clearly not able to capture those
differences. It seems that the additional group-specific age and period effects β2 and κ2 are
rather similar to each other, and are not able to capture those differences and other second
order effects. Those observations together with the obtained BIC values for all our models
lead us to the conclusions that common period effects are not present in our data, and that
the parameters κ1 and κ2 are best chosen to be group-specific.

6 Goodness of Fit

The BIC values presented in Section 4 indicate the relative goodness of fit of individual
models when compared to others. In this section we further investigate the fit of some of
our models to the observed data by considering graphical diagnostics, namely residual plots
and plots that compare observed and fitted death rates at specific ages or years.

6.1 Standardised residuals

We start our analysis with Pearson’s residuals, Ztxi, defined as the standardised difference
between crude observations:

Zxti =
Dxti − Extim̂xti√

Extim̂xti

where m̂xti is the model-specific fitted death rate at age x in year t.
A good model should result in standardised residuals which show no trends or clusters

along any of the dimensions. Studying the distribution of the residuals Z over the underlying
data range can therefore give indications for systematic effects in the data that a model fails
to capture.
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We have found that models m6 and m8 provide the best fit in terms of the BIC compared
to the other models in Table 2. Therefore, we focus on their standardised residuals, and
we start by comparing the mean squared error of the two models for each individual socio-
economic group.

Group m6 m8
g1 0.674 1.209
g2 0.804 1.145
g3 0.723 0.954
g4 0.760 0.974
g5 0.824 1.096
g6 0.689 1.037
g7 0.8323 1.184
g8 0.767 1.079
g9 0.792 1.177
g10 0.743 1.007

Table 6: Mean-squared error (MSE) calculated from standardised residuals of models m6 and
m8 at individual group level.

Table 6 shows that m6 has much lower MSEs than m8, which would expect to find since
m6 has more parameters than m8. Despite model m8 having greater MSEs they are still
close to 1 for all groups. Extending our analysis to all twelve models in Table 2, we find
that model m1, the most complex model with the greatest number of parameters, has the
lowest MSE, which is much lower than 1 indicating that the model is over-fitting the data.

Another important aspect of standardised residuals is their distribution over the data
range and this is best assessed by graphical analysis, for example, heatmaps of the residuals
over the underlying age and year range.

In Figure 8 we show the heatmaps for the common age effect model m6 for groups g1,
g5 and g10 with years on the horizontal axis and ages on the vertical axis. The heatmaps
for all three groups show no obvious pattern or bias indicating that the obtained residuals
are randomly distributed and that model m6 captures all of the structure in our data. In
particular, there is no structure along individual axis (corresponding to ages and years), and
there is no obvious diagonal (corresponding to a cohort effect). This indicates that m6 has
captured age, year and cohort effects from the IMD males data well.

Figure 8: Heatmaps for standardised residuals from model m6 (fitted to female population) over
the underlying data range for group 1 (left), 5 (middle) and 10 (right). Black cell indicate positive
residuals Zxti and grey cell indicate negative values.

While we do not report heatmaps for other groups, we have assessed those and found
similar results. None of the heatmaps shows any non-random cluster of positive or negative
residuals.
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Figure 9: Standardised residuals of m6 (fitted to female population) over age (left), year (middle)
and cohort (right) for subgroup 1 (top) and 10 (bottom). The colours in age and year plot
represent each underlying year/age.

To investigate residuals further we also consider plots for the residuals as functions of
age, year and cohort separately in figure 9. We find that most residuals are between -2
and 2 as we would expect. While there are some larger residuals we find no significant
structure or clusters. In particular, there seem to be no data ranges for which residuals have
a particularly large or small variance a feature we would be unable to detect from heatmaps.
There is, of course, one noticeable exemption: the residuals for cohorts born around 1918
show significantly larger residuals than other cohorts. Again, this shows that model m6
provides a very good fit to the observed mortality data.

Turning to model m8, we plot the heatmaps for the three groups g1, g5 and g10 in Figure
10.

Figure 10: Heatmaps of standardised residuals of model m8 (fitted to female population) for
subgroups 1, 5 and 10.

We find in Figure 10 that the residuals from model m8 are significantly different from
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those obtained from m6. There are clearly some clusters of positive and negative residuals,
in particular, along ages and cohorts. The difference between models m6 and m8 is that
the age pattern of mortality is assumed to be linear in model m8. The heatmaps in Figure
10 indicate that this is a rather strong assumption as it seems that there is some remaining
structure with respect to age in the residuals for the three groups. The heatmaps also
suggest that might be appropriate to include a cohort effect in model m8.

Figure 11: Standardised residuals of m8 (fitted to female population) over age (left), year (middle)
and cohort (right) for subgroup 1 (top) and 10 (bottom). The colours in age and year plot
represent each underlying year and age.

Considering scatterplots again, we find in figure 11 that the residuals for model m8 show
indeed some structure, in particular, along the age and cohort dimensions. This confirms
our conclusions drawn from the heatmaps.

6.2 Fitted mortalities diagnostic

A more straight forward graphical diagnostic is to directly compare the shape of the crude
death rates with the fitted rates obtained from the models in Table 2 using the estimated
parameters. The crude deaths rates are given in Figure 1. We observed in Section 2.3 that
there is a clear ranking of socio-economic groups with no strong difference in the variability
of rates in different groups.

To compare the observed crude deaths rates to the fitted rates obtained for our models
we now reproduce the plots from Figure 1 but for the fitted rates from common age effect
model m6, see Figure 12.
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Figure 12: Fitted log death rates (female population) using model m6 for the year 2017 (left)
and at age 65 (right).

We observe in Figure 12 that the obtained rates from model m6 are smoother than the
observed rates in Figure 1 as we would expect. The model is able to capture some of the
features of observed rates, in particular, the differences between groups are decreasing with
age (estimated β1

x is decreasing in age).
To compare the fitted rates form model m8 with the observed rates we again reproduce

the plots in Figure 1 with the fitted rates, see Figure 13.

Figure 13: Fitted log death rates (female population) using model m8 for the year 2017 (left)
and at age 65 (right).

We observe in Figure 13 that the parametric forms of β1 and β2 in model m8 lead to
even smoother functions of age and calendar year than we observed for model m6.

It seems that both models, m6 and m8 are able to capture some of the important features
of group-specific death rates. While we have seen that m6 is able to mimic some of the age
specific features in our data, we find that the much simpler model m8 is producing very
similar fitted rates. So, if for applications, simplicity of the model is more important than
the quality of fit, model m8 might be the preferred model.

7 Cohort Effects

We found in Figure 10 that there is some evidence for a cohort effect in the residuals of
model m8. This suggests that extending model m8 with a cohort effect will improve the
quality of fit. Therefore, we introduce the extended model, called m8c:

logmxti = αx + κ1
ti + (x− x̄)κ2

ti + γci for c = t− x

where γci denotes a group-specific effect for the cohort born in year c = t− x.
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We continue to use maximum likelihood estimation to obtain estimated parameter values.
There are, of course, identifiability issues as for other models and we apply appropriate
constraints to obtain a unique parameter estimate.
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Figure 14: Parameter estimates for model m8c with group-specific cohort effects fitted to the
female population.

Figure 14 shows the estimated parameter vectors. Comparing these estimates with those
obtained for model m8 in Figure 6, we find that the estimates for α and κ1 are almost
identical for the two models, m8 and m8c. The largest differences are observed in the second
order period effect κ2. This indicates that the cohort effects in model m8c are capturing
features in the residuals which the leading parameters α and κ1 did not pick up. Therefore,
it seems that the added cohort effects are providing an improvement to model m8.

The estimated cohort effects look very volatile which suggests a high degree of uncer-
tainty. We also notice that differences between socio-economic groups are narrow for cohorts
born at about 1930, but those differences are rather large for other cohorts. Given the high
variability of the cohort effects it seems that those large differences between groups seem to
be unrealistic.

Ultimately, stochastic mortality models are applied to project death rates. Projections
for individual cohort effects need to be constructed carefully to avoid divergence of death
rates for different socio-economic groups from each other (see, for example, Hyndman et al.,
2013). The task of projecting rates would be simplified if there was just one common cohort
effect rather than one effect for each group.

Keeping those comments and the uncertainty about γci in mind, we investigate the
possibility of a common cohort effect, γc, by fitting an extended model m8 with a cohort
effect that is common to all socio-economic groups:

logmxti = αx + κ1
ti + (x− x̄)κ2

ti + γc for c = t− x

where γc does not depend on the socio-economic group i. The parameter estimates for this
model are shown in Figure 15.
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Figure 15: Parameter estimates for model m8c with common cohort effects fitted to the female
population.

Again, we observe only minor changes to the estimated age and period effects indicating
that the residuals from model m8 are rather stable and the cohort effects are capturing
structure in the residuals of this model. The observed common cohort effect is in the same
range as the individual effects.

7.1 Goodness of Fit

To obtain further insights into the importance of cohort effects for model m8 we fit the
model without a cohort effect, with individual effects and with common cohort effect to our
data and compare the BICs. In Table 7 we report the obtained BIC values for males and
females. For easy comparison we also include the BIC values for the best fitting model m6.

females males

Model k log(L̂) BIC log(L̂) BIC
m8 388 -37375.07 78260.70 -38213.32 79937.20
m8c 1045 -34612.99 78680.96 -35604.34 80663.65

m8c (common) 451 -36340.44 76761.45 -36562.17 77204.91
m6 486 -35336.06 75069.36 -36702.57 77802.39

Table 7: BIC and log likelihood values for model m8 without cohort effect, with individual cohort
effects and with common cohort effect. All models are fitted to IMD deciles for ages 40 to 89.
The degrees of freedom are denoted by k.

We find in Table 7 that models with a common cohort effect are better suited to our
data than models with no cohort effects or individual cohort effects. However, when we
compare model m8 with a common cohort effect to our best fitting model m6 we noticed
that the results are not so clear. While model m8 with a common γ outperforms model m6
for the male population we find that the opposite is true for the female population. This
suggests that the inclusion of non-parametric age effects in our model is more important for
the female population than it is for the male population.

The quality of fit can be investigated further with the graphical diagnostics already
applied in Section 6. Heatmaps of standardised residuals are shown in Figure 16.
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Figure 16: Heatmaps for standardised residuals from m8c (fitted to female population) with
group-specific cohort effects γci for group 1 (left), group 5 (middle) and group 10 (right). Black
cell: positive figures; Grey cell: negative figures.

Comparing the heatmaps in Figure 16 with those in Figure 10 we find that the inclusion
of group-specific cohort effects removed the remaining structure observed in the residuals of
model m8.

Figure 17: Distribution of standardised residuals by m8c (fitted to female population) over age
(left), year (middle) and cohort (right) for group 1 (top) and 10 (bottom) with γci applied.
Colours in age and year plot represent different years/ages.

Turning to the model with common cohort effect γc we again plot the heatmaps of
the obtained residuals, see Figure 18. In this figure we clearly observe that there is some
(quadratic) structure along the age dimension present in the residuals for groups 1 and 10
that the common cohort effect is unable to capture. This is again an indication that model
m6 with the non-parametric age effects is a better choice then model m8 with cohort effects.
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Figure 18: Heatmaps of standardised residuals fitted from m8c with common γc (fitted to female
population) in group 1 (left), 5 (middle) and 10 (right). Black cell: positive figures; Grey cell:
negative figures.

Figure 19: Distribution of standardised residuals by m8c with common cohort effect (fitted to
female population) over age (left), year (middle) and cohort (right) for group 1 (top) and group
10 (bottom) with common γc applied. Colours in age and year plot represent different years/ages.

Summarising the results in this section for the female population, we conclude that
non-parametric age effects are a better choice than cohort effects for ensuring a good fit.
However, for the male population we have seen in Table 7 that model m8c with a common
γ has a lower BIC value than model m6. To compare the two models further (when fitted
to the male population), we plot the heat maps for the residuals of models m6 and m8c in
Figure 20.
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Figure 20: Heatmaps for standardised residuals from model m6 (top row) and model m8c (bottom
row). Both models are fitted to the male population over the underlying data range for groups 1
(left), 5 (middle) and 10 (right). Black cell indicate positive residuals Zxti and grey cell indicate
negative values.

Comparing Figures 18 and 20 we notice that the residuals of model m8c (fitted to the male
population, figure 20) still show some structure in the age dimension for group 1. However,
this structure is less obvious than what we observed for the female population (Figure 18),
and it has disappeared completely for males in groups 5 and 10. Comparing the model m8c
residuals to the residuals from model m6 we now find rather similar pictures for the two
models. Those observations are in line with the better BIC value of m8c compared to m6
as model m8c is able to capture most of the structure in the male mortality data with much
fewer parameters than model m6.

8 Conclusions

In this paper we compared the goodness of fit of several multi-population mortality models to
data for ten similarly-sized socio-economic groups. Our analysis suggests that models which
allow for group-specific time trends outperform models with a common first order period
effect, in particular the Li&Lee model, suggesting that mortality improvements in the ten
IMD deciles are different. This reflects the very different improvement rates observed since
the year 2000. For many applications, mortality projections will be required and choosing
a model with individual period effects as suggested here, will create the new challenge of
finding a parsimonious multivariate time series model for the period effects in the ten groups
that produces meaningful projected rates.

Our second most important conclusion from this empirical study is that models with
common non-parametric age effects β, like model m6, seem to provide a better fit than
models with log death rates that increase linearly in age. Although the inclusion of a cohort
effect can be beneficial (e.g. males m8c versus m6), its inclusion tends to be less significant if
the model incorporates non-parametric age effects: that is, in models such as m8c the cohort
effect is perhaps capturing what should really be modelled as age-period effects. Lastly, we
found that individual age effects do not improve the fit of a model.
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In summary, we conclude that the effect of age on mortality is similar in all socio-economic
groups while period effects are different.

It is also useful to remark that the preferred CAE model, m6, also satisfies the principle
of coherence (Hyndman et al., 2013). Other models do not satisfy this principle, and so it is
reassuring that the model that (mostly) has the highest BIC is one of those that is coherent.

This analysis is a first step towards projecting death rates in the ten IMD deciles in
England, but the empirical evidence found in our study suggests that mortality models for
a country can be refined significantly by considering mortality patterns in different socio-
economic groups.

Acknowledgments

The authors acknowledge financial support from the Actuarial Research Centre of the Insti-
tute and Faculty of Actuaries through the research programme on “Modelling, Measurement
and Management of Longevity and Morbidity Risk”.

References

Balia, S. & Jones, A. M. (2008), ‘Mortality, lifestyle and socio-economic status’, Journal of
Health Economics 27(1), 1 – 26.

Cairns, A. J. G., Blake, D. & Dowd, K. (2006), ‘A two-factor model for stochastic mortality
with parameter uncertainty: Theory and calibration’, Journal of Risk and Insurance
73(4), 687–718.

Cairns, A., Kleinow, T. & Wen, J. (2018), Trends in Canadian Mortality By Pension Level:
Evidence From the CPP and QPP. Working Paper, Actuarial Research Centre, Heriot-
Watt University.

Enchev, V., Kleinow, T. & Cairns, A. J. G. (2015), ‘Multi-population mortality models:
fitting, forecasting and comparisons’, Scandinavian Actuarial Journal online, 1–24.

Hyndman, R. J., Booth, H. & Yasmeen, F. (2013), ‘Coherent mortality forecasting: The
product-ratio method with functional time series models’, Demography 50(1), 261–283.

Kleinow, T. (2015), ‘A common age effect model for the mortality of multiple populations’,
Insurance: Mathematics and Economics 63, 147 – 152. Special Issue: Longevity Nine -
the Ninth International Longevity Risk and Capital Markets Solutions Conference.

Kleinow, T., Cairns, A. & Wen, J. (2019), ‘Deprivation and life expectancy in the UK’, The
Actuary, April 2019 .

Lee, R. D. & Carter, L. R. (1992), ‘Modeling and Forecasting U.S. Mortality’, Journal of
the American Statistical Association 87(419), 659–675.

Li, N. & Lee, R. (2005), ‘Coherent mortality forecasts for a group of populations: An
extension of the Lee-Carter method’, Demography 42(3), 575–594.

Mackenbach, J. P., Kunst, A. E., Cavelaars, A. E., Groenhof, F. & Geurts, J. J. (1997),
‘Socioeconomic inequalities in morbidity and mortality in western Europe’, The Lancet
349(9066), 1655 – 1659.

Plat, R. (2009), ‘On stochastic mortality modeling’, Insurance: Mathematics and Economics
45(3), 393 – 404.

Renshaw, A. & Haberman, S. (2003), ‘Lee-Carter mortality forecasting with age-specific
enhancement’, Insurance: Mathematics and Economics 33(2), 255 – 272. Papers presented
at the 6th IME Conference, Lisbon, 15-17 July 2002.

Smith, T., Noble, M., Noble, S., Wright, G., McLennan, D. & Plunkett, E. (2015a), The
English Indices of Deprivation 2015. Research Report, Department for Communities and
Local Government.

Smith, T., Noble, M., Noble, S., Wright, G., McLennan, D. & Plunkett, E. (2015b), The
English Indices of Deprivation 2015. Technical Report, Department for Communities and
Local Government.

23



Villegas, A. M., Haberman, S., Kaishev, V. K. & Millossovich, P. (2017), ‘A comparative
study of two-population models for the assessment of basis risk in longevity hedges’,
ASTIN Bulletin 47(3).

24


